

S U C C E E D I N G
W I T H A G I L E

Software Development Using Scrum

MIKE COHN

AAddison-Wesley
Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. N o liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact

U.S. Corporate and Government Sales
(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales

international@pearson.com

Visit us on the Web: www.informit .com/aw

The Library of Congress Cataloging-in-Publication data is on file.

Copyright © 2010 Mike Cohn

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, M A 02116
Fax (617) 671-3447

ISBN-13:978-0-321-57936-2
ISBN-10:0-321-57936-4
Text printed in the United States on recycled paper at Edwards Brothers in
Ann Arbor, Michigan.
Second printing January 2010

Editor- in-Chief
Karen Gettman

Executive Editor
Chris Guzikowski

Senior D e v e l o p m e n t
Editor
Chris Zahn

Managing Editor
Kristy Hart

Project Editor
Jovana San Nicolas-Shirley

Copy Editor
San Dee Phillips

Indexer
Lisa Stumpf

Proofreader
Karen Gill

Publishing Coordinator
Raina Chrobak

Cover Designer
Alan Clements

Composi tors
Jake McFarland
Bumpy Design

mailto:corpsales@pearsontechgroup.com
mailto:international@pearson.com
http://www.informit.com/aw

C o n t e n t s

FOREWORD x v n

ACKNOWLEDGMENTS x i x

A B O U T THE A U T H O R x x m

INTRODUCTION x x v

P a r t i G e t t i n g S t a r t e d 1
1 Why Becoming Agile Is Hard (But Worth It) 3

W h y T r a n s i t i o n i n g Is Ha rd 5

W h y It's W o r t h t h e E f fo r t 10

Look ing F o r w a r d 17

A d d i t i o n a l R e a d i n g 18

2 ADAPTing to Scrum 21
A w a r e n e s s 23

Des i re 26

A b i l i t y 31

P r o m o t i o n 34

T rans fe r 37

Pu t t i ng It A l l T o g e t h e r 4 0

A d d i t i o n a l R e a d i n g 41

3 Patterns for Adopting Scrum 43
Sta r t S m a l l or Go A l l In 43

Publ ic D i s p l a y of A g i l i t y or S t e a l t h 47

Pa t te rns f o r S p r e a d i n g S c r u m 50

I n t r o d u c i n g N e w Techn ica l P rac t i ces 55

One Final C o n s i d e r a t i o n 57

A d d i t i o n a l R e a d i n g 58

4 Iterating Toward Agility 61
The I m p r o v e m e n t B a c k l o g 62

The En te rp r i se T r a n s i t i o n C o m m u n i t y 63

I m p r o v e m e n t C o m m u n i t i e s 70

One Size Does N o t Fit A l l 79

Look ing F o r w a r d 79

A d d i t i o n a l R e a d i n g 80

xi

5 Your First Projects 81
S e l e c t i n g a P i lo t Pro jec t 81

Choos ing t h e R igh t T ime to S t a r t 84

S e l e c t i n g a P i lo t T e a m 86

S e t t i n g and M a n a g i n g E x p e c t a t i o n s 88

It's J u s t a Pi lot 92

A d d i t i o n a l R e a d i n g 92

Part II I n d i v i d u a l s 95
6 Overcoming Resistance 97

A n t i c i p a t i n g R e s i s t a n c e 97

C o m m u n i c a t i n g A b o u t t h e Change 101

The H o w s a n d W h y s of I nd i v i dua l Res i s tance 104

Res i s tance as a Use fu l Red Flag 114

A d d i t i o n a l R e a d i n g 115

7 New Roles 117
The Role of t h e S c r u m M a s t e r 117

The Produc t O w n e r 125

N e w Roles, Old R e s p o n s i b i l i t i e s 134

A d d i t i o n a l R e a d i n g 135

8 Changed Roles 137
A n a l y s t s 137

Pro jec t M a n a g e r s 139

A r c h i t e c t s 142

Func t i ona l M a n a g e r s 144

P r o g r a m m e r s 146

D a t a b a s e A d m i n i s t r a t o r s 148

Tes ters 148

User Expe r i ence D e s i g n e r s 151

Th ree C o m m o n T h e m e s 153

A d d i t i o n a l Read ing 153

9 Technical Practices 155
St r i ve f o r Techn ica l Exce l l ence 155

Des ign : I n t e n t i o n a l y e t E m e r g e n t 166

I m p r o v i n g Techn ica l P rac t i ces Is N o t O p t i o n a l 171

A d d i t i o n a l R e a d i n g 172

Part III T e a m s 175
10 Team Structure 177

Feed T h e m T w o Pizzas 177

Favor Fea tu re Teams 182

S e l f - O r g a n i z i n g D o e s n ' t M e a n R a n d o m l y A s s e m b l e d 189

Put Peop le on One Pro jec t 191

G u i d e l i n e s f o r Good T e a m S t r u c t u r e 197

O n w a r d 199

A d d i t i o n a l R e a d i n g 199

11 Teamwork 201
Embrace W h o l e - T e a m R e s p o s i b i l i t y 201

Rely On S p e c i a l i s t s bu t S p a r i n g l y 2 0 4

Do a L i t t le B i t o f Eve ry th i ng A l l t h e T ime 2 0 6

Foster T e a m Lea rn ing 2 0 9

Encou rage C o l l a b o r a t i o n T h r o u g h C o m m i t m e n t 2 1 5

A l l T o g e t h e r N o w 217

A d d i t i o n a l R e a d i n g 2 1 8

12 Leading a Self-Organizing Team 219
I n f l uenc ing S e l f - O r g a n i z a t i o n 2 2 0

I n f l uenc ing Evo lu t i on 227

There 's M o r e to L e a d e r s h i p Than Buy ing Pizza 232

A d d i t i o n a l R e a d i n g 233

13 The Product Backlog 235
S h i f t f r o m D o c u m e n t s to D i s c u s s i o n s 2 3 6

P rog ress i ve l y Ref ine R e q u i r e m e n t s 242

Learn to S t a r t W i t h o u t a S p e c i f i c a t i o n 2 4 9

M a k e t h e P roduc t Back log DEEP 253

D o n ' t Forget to Talk 2 5 4

A d d i t i o n a l R e a d i n g 2 5 4

14 Sprints 257
De l i ve r W o r k i n g S o f t w a r e Each S p r i n t 2 5 8

De l i ve r S o m e t h i n g V a l u a b l e Each S p r i n t 262

Prepare in Th is S p r i n t f o r t he N e x t 2 6 6

W o r k T o g e t h e r T h r o u g h o u t t he Sp r i n t 2 6 8

Keep T i m e b o x e s Regu la r and S t r i c t 2 7 6

D o n ' t Change t h e Goal 2 7 9

Get Feedback , Learn, and A d a p t 283

A d d i t i o n a l R e a d i n g 2 8 4

15 Planning 285
Prog ress i ve l y Ref ine Plans 2 8 6

D o n ' t Plan on O v e r t i m e to S a l v a g e a Plan 287

Favor Scope Changes W h e n Poss ib le 292

S e p a r a t e E s t i m a t i n g f r o m C o m m i t t i n g 2 9 6

S u m m a r y 3 0 5

A d d i t i o n a l R e a d i n g 3 0 5

xiii

16 Quality 307
I n t e g r a t e Tes t i ng In to t h e Process 3 0 8

A u t o m a t e a t D i f f e r e n t Levels 311

Do A c c e p t a n c e T e s t - D r i v e n D e v e l o p m e n t 317

Pay Of f Techn ica l D e b t 3 2 0

Q u a l i t y Is a T e a m E f fo r t 323

A d d i t i o n a l R e a d i n g 323

Part I V T h e O r g a n i z a t i o n 325
17 Scaling Scrum 327

S c a l i n g t he Produc t O w n e r 327

W o r k i n g w i t h a Large Produc t Back log 3 3 0

P roac t i ve l y M a n a g e D e p e n d e n c i e s 333

C o o r d i n a t e W o r k A m o n g Teams 3 4 0

S c a l i n g t he Sp r i n t P l ann ing M e e t i n g 3 4 5

C u l t i v a t e C o m m u n i t i e s of Prac t ice 347

S c r u m Does Sca le 352

A d d i t i o n a l R e a d i n g 353

18 Distributed Teams 355
D e c i d e H o w to D i s t r i b u t e M u l t i p l e T e a m s 3 5 6

Crea te C o h e r e n c e 3 5 9

Get T o g e t h e r in Person 367

Change H o w You C o m m u n i c a t e 372

M e e t i n g s 3 7 5

Proceed w i t h C au t i o n 3 8 6

A d d i t i o n a l R e a d i n g 387

19 Coexisting with Other Approaches 389
M i x i n g S c r u m and S e q u e n t i a l D e v e l o p m e n t 3 8 9

G o v e r n a n c e 3 9 4

C o m p l i a n c e 3 9 6

O n w a r d 4 0 2

A d d i t i o n a l R e a d i n g 4 0 2

20 Human Resources, Facilities, and the PMO 405
H u m a n Resou rces 4 0 6

Fac i l i t i es 4 1 2

The Pro jec t M a n a g e m e n t Of f i ce 4 2 0

The B o t t o m Line 4 2 4

A d d i t i o n a l R e a d i n g 4 2 4

xiv

Part V N e x t S t e p s 427
21 Seeing How Far You've Come 429

The Purpose of M e a s u r i n g 4 2 9

G e n e r a l - P u r p o s e A g i l i t y A s s e s s m e n t s 4 3 0

C rea t i ng Your O w n A s s e s s m e n t 4 3 7

A B a l a n c e d S c o r e c a r d f o r S c r u m T e a m s 4 3 8

S h o u l d W e Rea l l y B o t h e r w i t h This? 4 4 3

A d d i t i o n a l R e a d i n g 4 4 4

22 You're Not Done Yet 447

Reference List 449

Index 465

XV

F o r e w o r d

A n the time I hear people talking about software projects as journeys, and I think
they are implying that software projects are not just journeys, but they are jour -
neys into the unknown. We start with funding from a sponsor, muster together a
stout-hearted crew, head out in what we guess might be a useful direction, and the
rest is The Odyssey. We live the tales of the brave Odysseus: tales of Lotus Eaters,
the Cyclops, Circe, the Sirens, Scylla, and Calypso. We succeed or fail only with
the help or rage of the gods. H o w wonderfully romantic, and how perfectly silly.

I think that the more appropriate analogy along this line is the project as an
expedition. We have a goal or a short list of goals. We have some well-proven maps;
we have some vaguer ones, too. We have the advice and journals f rom those who
have been out there and made it back to tell their stories.

We don't walk out the door and face the unknown; but on the other hand,
there are some big question marks, and these bring us into a high-risk position.We
accept these risks, because if the expedition can succeed there are surely significant
rewards. We have skills, but there are uncertainties.

H o w do we deal with this? I recommend that we look back, oh, about 300
years, to the York Factory on Hudson Bay in Canada. At that time this was the
headquarters of the Hudson Bay Company. The Hudson Bay Company's main
line of business was to be the supplier of all necessary provisions for fur traders
going out on, you guessed it, expeditions, f rom Hudson Bay.The fur traders devel-
oped a great way to start an expedition, and it was called "The Hudson Bay Start."
Having done their one-stop shopping at The Company, the fur traders would go
out of Hudson Bay only a mile or two and set up camp. Why? Certainly not to set
up traps; they wanted to discover what they forgot to bring while they were less
than an hour's hike back into town! Being the excellent project person that you
are, you know that for the vast majority of time the leather-faced expert fur trader
would reappear for another shopping trip.

What the heck does all this have to do with the book in your hands right
now? Wi th Succeeding with Agile, Mike Cohn has delivered The Hudson Bay Start
for agile development. This is it. This is a weather-beaten experienced fur trapper
giving you the checklist to work through before you begin your expedition. By
reading this book, you will find that Mike brings up issues that you never thought
of, offers advice on how you might handle situations, and helps you define new
roles on your team.

xvi i

Don' t be the only person on your team to read this book; with self-organizing
teams anyone can be expedition leader at any given time. This book is going to
lead to many very interesting discussions; I guarantee it.

I worry a bit that I am saying that Mike has handed you a book without
choices for you. He points out early and often that you must make your choices
on individual, team, and organizational issues.

Succeeding with Agile is not about having a single successful project; it is about
how agility can transform an organization. I guess in Hudson Bay terms, it's about
how to have a great career asVoyageurs.

If you have any lingering doubts about Mike as an experienced expedition
leader, notice that his company is Mountain Goat Software.

T im Lister
Principal, The Atlantic Systems Guild, Inc.

N e w York City

A c k n o w l e d g m e n t s

owe a tremendous debt to my official reviewers: Brad Appleton,Johannes Brod-
wall, Rachel Davies, R o n Jeffries, Brian Marick, and Linda Rising. They read and
commented on the entire manuscript, sometimes multiple times. Each offered
tremendously valuable insights that have immeasurably improved the book.

Special thanks also to Tod Golding, Kenny Rubin, Rebecca Traeger, and my
wife, Laura, who spent hours discussing the table of contents with me. There were
times we thought those conversations would never end.

There's no way to thank Rebecca Traeger enough. She is a miracle worker as
an editor, adviser, and sounding board. As she is the former editor for the Agile
Alliance and the Scrum Alliance, I contend that she is the best-read person in the
agile world. She's also the world's greatest editor. She worked wonders with this
book, doing more slicing and dicing than aVeg-O-Matic on a late-night infomer-
cial.This book is significantly better for her involvement in it.

Wow A foreword by Tim Lister. I 'm incredibly honored. I've known Tim for
a handful of years, and so I e-mailed him to ask if he'd write the Foreword. I didn't
know it, but he was vacationing at the time I e-mailed him and so he replied a
week later. I saw the e-mail reply first on my phone, which only displayed the
first two lines. Before I tapped the message to see the full e-mail, I had flashbacks
of getting college admission letters—would it be good news or bad news? I was
ecstatic when he said yes. I was then doubly thrilled when he had such nice things
to say in his Foreword. Thank you, Tim.

My assistant, Jennifer Rai, provided invaluable help throughout this project.
From tracking down references, to getting permissions, to keeping my research
organized, she did it all. I appreciate her dedication, professionalism, and the con-
sistent thoroughness of her work. I couldn't ask for more in an assistant.

For the past two years I have been posting chapters to this book's website at
www.SucceedingWithAgile.com. I have been fortunate to have had a wonder-
ful group of people download, review chapters, and provide comments to me. I
would like to thank the following individuals for reading draft chapters posted on
that site or for providing anecdotes that made their way into the book: Fridtjof
Ahlswede, Peter Alfvin, Ole Andersen, Joshua Boelter, Mikael Boman, Rowan
Bunning, Butterscotch, Bill Campbell, Mun-Wai Chung, Scott Collins,Jay Conne,
John Cornell, Lisa Crispin, Alan Dayley, Ken DeLong, Scott Duncan, Sigfrid
Dusci, Mike Dwyer, Pablo Rodriguez Facal, Abby Fichtner, Hillel Glazer, Karen
Greaves, Janet Gregory, Ratha Grimes, Geir Hedemark, Fredrik Hedman, Ben
Hogan, Matt Holmes, Sue Holstad, Benoit Houle, Eric Jimmink, Quinn Jones,

http://www.SucceedingWithAgile.com

Martin Kearns, Jeff Langr, Paul Lear, Lowell Lindstrom, Catherine Louis, R u n e
Mai, Ar tem Marchenko, Kent McDonald, Susan Mcintosh, Alicia McLain, Ulla
Merz, Ralph Miner, Brian Lewis Pate, Trond Pedersen, David Peterson, R o m a n
Pichler,Walter Ries, Adam Rogers, R e n é Rosendahl, Kenny Rubin , Mike Russell,
Michael Sahota, George Schlitz, Lori Schubring, Raffi Simonian, Jamie Tischart,
Ryan Toone, Matt Truxaw, J. F. Unson, Srinivas Vadhri, Stefan van den Oord,
Bas Vodde, Bill Wake, Daniel Wildt, Trond Wingârd, Rüdiger Wolf, Elizabeth
Woodward, Nick Xidis, Alicia Yanik, and Mauricio Zamora.

Thank you to Jeff Schaich who did a wonderful job creating the illustrations
for this book. W h e n I was first introduced to Jeff, I was told he might be as much
of a perfectionist as I am. He may be, and his drawings show it.

Stephen Wilbers, author of Keys to Great Writing, provided some much needed
editing and advice early on. I am thankful for his suggestions and encouragement.

As always, the staff at Pearson was wonderful to work with. Chris Guzikowski
showed tremendous patience with me, especially early on when I refused to com-
mit to a deadline of any sort. Chris Zahn provided excellent guidance during those
early days when I was working to organize what I wanted to say. Jake McFarland
designed the interior of the book and did a wonderful job. Jake also showed tre-
mendous patience with my endless barrage of InDesign questions, for which I am
extremely thankful. Raina Chrobak was extremely helpful throughout the project,
but especially down the home stretch, which is always a frantic period.

Jovana San-Nicolas Shirley was fantastic as this book's project editor. She kept
everything moving smoothly, coordinating each of us involved in the final months
of the project. I appreciate her willing replies to my e-mails at all hours of the day
and night. San Dee Phillips did a top-notch (or is it top notch?) job for the final
copy edit. I thank her for going over the manuscript at exactly the right level and
for so carefully finding all the last little errors that really polished the text.

Thank you as well to cover designer Alan Clements. What a beautiful cover!
Can you judge a book by its cover? I hope so based on the number of people who
have already told me they love this one. Lisa Stumpf did a marvelous job with our
indexing. She herself should be indexed under thorough and meticulous. Karen
Gill did the final proofreading and was fantastic at finding all the little inconsisten-
cies and problems. Kim Scott of Bumpy Design took care of the final page com-
position. I appreciate her joining at the end to help all of us make the deadline.

I would also like to thank Chris Guzikowski and Karen Gettman of Pearson
for offering me the opportunity to edit a Signature Series of books for Addison-
Wesley. I can still clearly remember sitting at Ken Kaplan's place in Ben Lomond
in the woods of California in 1985 reading C Primer Plus. It was written by
Stephen Prata but was part of a series by Mitchell Waite. I didn't know what a se-
ries editor did, but it sounded important and cool. N o w I 'm learning what a series
editor does and am incredibly honored by their confidence in me.

My thanks also go to Lyssa Adkins, Lisa Crispin, Janet Gregory, Clinton Keith,
Roman Pichler, and Kenny Rubin. Each has written or is writing a book that will
be part of this series. We have had many discussions about writing, agile, how to
make certain points, and more. Through these discussions, each has improved this
book.

A special thank you to all of my clients and to everyone who has ever at-
tended one of my classes. I 'm not smart enough to sit around, think big thoughts,
and come up with great ideas on my own. Everything I know I've learned from
working with teams and observing what worked or from talking with participants
in classes. This book would be four pages long if not for you. Thank you.

Thank you to Ken Schwaber, Jeff Sutherland, Mike Beedle, Jeff McKenna,
Martine Devos, and others who were there in the earliest days of Scrum. Without
them writing about Scrum, presenting about it at early conferences, and talking
about it, Scrum wouldn't be what it is today. Thank you as well to all of the train-
ers and coaches in the Scrum community who push so hard to improve how we
do Scrum while pushing just as hard to keep Scrum from becoming more than
the simple framework it is. My conversations with you so many of you have influ-
enced me in more ways than you know

There's no way to thank my family enough for all the sacrifices they made
while allowing me the time to work on this book. I couldn't ask for a more won-
derful and loving wife than I have in Laura. Our daughters, Savannah and Delaney,
remain my practically perfect precious princesses. I cherish every moment with
them. And with this book finally done, I promise them many more hours and days
doing all the things we haven't done enough of lately—now it's my turn to make
you the ones who know how far love goes.

A b o u t t h e A u t h o r

M i k e Cohn is the founder of Mountain Goat Software, through which he pro-
vides training and consulting on Scrum and agile software development. Mike
specializes in helping companies adopt Scrum and become more agile as a way
of building extremely high performance development organizations. In addition
to this book, he is the author of User Stories Applied for Agile Software Development,
Agile Estimating and Planning, and books on Java and C + + programming.

With more than 25 years of experience, Mike has previously been a technol-
ogy executive in companies of various sizes, f rom start-up to Fortune 40. H e has
also written articles for Better Software, IEEE Computer, Cutter IT Journal, Software
Test and Quality Engineering, Agile Times, and the C / C + + Users Journal. Mike is a
frequent speaker at industry conferences and is a founding member of the Agile
Alliance and Scrum Alliance. He is also a Certified Scrum Trainer, having co-
taught the first Certified ScrumMaster class with Ken Schwaber in May 2003.

For more information, visit www.mountaingoatsoftware.com. Mike main-
tains a popular blog at blog.mountaingoatsoftware.com. He can also be found on
Twitter as mikewcohn and by e-mail at mike@mountaingoatsoftware.com.

http://www.mountaingoatsoftware.com
mailto:mike@mountaingoatsoftware.com

I n t r o d u c t i o n

his is not a book for those who are completely new to Scrum or agile. There
are other books, classes, and even websites for that. If you are completely new
to Scrum, start with one of those.1 N o r is this a book for purists. They can find
many blogs that will argue the one, true way of agile or Scrum. This is a book for
pragmatists. It is for those who have started with Scrum and then encountered
problems or for those who have not yet started with Scrum but who know they
want to. They don't need to read again about how to draw a burndown chart or
what three answers each person gives at the daily scrum. They need advice on the
harder stuff—how to introduce and spread Scrum, how to get people to let go of
doing a big design at the start of the project, how to deliver software that works
by the end of each sprint, what managers do, and more. If these concerns sound
familiar, this is a book for you.

To answer these questions, this book draws on my experience with Scrum
over the past 15 years, but especially over the last 4. For the last 4 years, every
evening after I spent the day with one of my clients, I would go back to my hotel
room and make notes about the problems they were facing, the questions they
asked, and the advice I gave. I then followed up, either with return visits or e-mails.
I wanted to know for sure what advice was working to solve which problems.

As I collected the questions, problems, and advice, I was able to look for com-
mon themes. Some obstacles were completely unique to one client or one team.
Others were more prevalent and repeated across many teams and organizations.
It is these more universal problems—and my advice on overcoming them—that
fo rm the basis of this book. This advice is particularly evident in two ways: First,
most chapters include boxes labeled Things to Try Now. These re-create the advice
I found myself giving most often or that was most helpful in particular situations.
Second, most chapters also include boxes labeled Objection. I have tried in these
boxes to reproduce a typical conversation in which someone disagreed with the
point I was making at the time. As you read these objections, try to hear the voice
of some of your coworkers. I suspect you have heard many of the same objections.
In these boxes, you will see how I've sought to overcome them.

1 A good starting point is www.mountaingoatsoftware.com/scrum.

http://www.mountaingoatsoftware.com/scrum

x x v i I n t r o d u c t i o n

What Else I've Assumed About You
Beyond assuming that you understand the basics of Scrum and now want to either
introduce it into your organization or get good at it, I assume that you have some
influence within the organization. That doesn't mean I have aimed this book at
directors, vice presidents, and the CEO. The type of influence I am assuming is
just as likely to come f rom your personality and individual credibility with your
coworkers as it is to come from whatever job title is on your business card. Sure,
having a fancy title can help. But as we'll see, the type of influence needed to suc-
ceed with Scrum more often comes from opinion leaders.

How This Book Is Organized
W h e n I began this book four years ago, my working subtitle was Getting Started
and Getting Good, as those were the two things I really wanted to help with. In
collecting anecdotes and giving advice, I realized that getting started and getting
good at Scrum are the same thing. There are not separate techniques we apply to
start and then different techniques we use to get good at it.

Part I is about getting started—it includes advice on whether to start small
or convert everyone at once, how to help people move from being aware that a
new process is needed to desiring change to having the ability to do it, and how
to select initial projects and teams.You will use the basic mechanisms introduced
in this section not only to get started but also to get good. Among these are the
improvement communities and improvement backlogs of Chapter 4, "Iterating
Toward Agility."

In Part II, I focus on individuals and the changes each needs to make as part
of the process of adopting Scrum. Chapter 6, "Overcoming Resistance," describes
the type of resistance some individuals may exhibit. In it, I offer advice for think-
ing about why someone is resistant and then provide guidance on how to help
the person get past the resistance. Chapters 7 and 8 describe the new roles that
exist on a Scrum project and the changes necessary in the traditional roles, such as
programmer, tester, project manager, and so on. Chapter 9, "Technical Practices,"
describes some of the technical practices (continuous integration, pair program-
ming, test-driven development, and so on) that should be used or at least ex-
perimented with and that can change much of how individuals approach their
day-to-day work.

In Part III, we expand outward from individuals to teams. We look first at how
to structure teams to best achieve the benefits ofScrum.Next , in Chapter 11 / 'Team-
work," I cover the nature of teamwork on a Scrum project. In Chapter 12,"Leading
a Self-Organizing Team," we look at what it means to lead a self-organizing Scrum
team. In that chapter, I provide specific advice for what ScrumMasters, functional

A N o t e on S o m e T e r m s x x v i i

managers, and other leaders can do to help a team self-organize for success. Chap-
ters 13-15 round out Part Three with a discussion of sprints, planning, and quality.

Part IV expands our focus outward once more, this time to the organization.
In Chapter 17, "Scaling Scrum," we take an extended look at what is necessary to
scale Scrum up to work on large, multi-team projects. In Chapter 18,"Distributed
Teams," we consider the additional complexities of distributed teams. Then, in
Chapter 19, "Coexisting with Other Approaches," we add yet more complexity by
discussing how to make Scrum work when part of the project uses a sequential
process or when there are compliance or governance requirements. Part IV con-
cludes with Chapter 20, "Human Resources, Facilities, and the PMO," focusing
on special considerations of the impact of Scrum on an organization's human
resources, facilities, and project management office groups.

Par tV contains two chapters. Chapter 21, "Seeing H o w Far You've Come,"
summarizes various approaches to measuring how far an organization has pro-
gressed in becoming agile. Chapter 22,"You're N o t Done Yet," concludes the book
with the reminder that being agile requires continuous improvement. It doesn't
matter how good you are today; to be agile you must be better next month.

A Note on Some Terms
As with most things, writing about Scrum is harder than talking about it. It is too
easy to misinterpret a sentence or take one sentence out of context.To avoid these
problems, I have tried to be careful and precise in my use of certain terms. I use
the word developer, for example, to refer to anyone on the development side of
the project.This includes programmers, testers, analysts, user experience designers,
database administrators, and so on.

The word team poses its own challenges. It, of course, includes the develop-
ers, but does team include the ScrumMaster and product owner? Naturally, this
depends on the context. W h e n I have wanted to be especially clear, I use whole
team to refer to everyone: developers, product owner, and ScrumMaster. However,
slavish use of whole team would have reduced the readability of the book. So you
will encounter team as well, but usually in places where the context makes it suf-
ficiently clear which group I 'm referring to.

In referring to Scrum and agile teams, I have also needed a te rm to refer to
those teams that are neither. In various places, I have used sequential, traditional, and
even non-agile. Each conveys a slightly different meaning and is used appropriately.

xxvii i In t roduct ion

How to Use This Book
Many books have a heading like the one above this sentence. But those headings
usually say How to Read This Book. The best way to read this book is to use it.
Don't just read it. When you encounter a Things to Try Now section, try some of
them. Or note them and try them at your next retrospective or planning meeting,
if that is what I recommended.

It is not necessary to read the book in order. In fact, there could well be entire
chapters you do not need to read. If in your organization's quest to become good
at Scrum, you have no significant problems with planning and no distributed
teams, then skip or skim those chapters. I do, however, recommend that everyone
read at least the first four chapters and read them in order. They lay the foundation
for much of what follows.

In Chapter 4 you will be introduced to the idea of improvement communi-
ties and improvement backlogs. An improvement community is a group of like-
minded individuals who are passionate about driving improvements in a particular
area. One improvement community could form when three people passionate
about the product backlog decide to collect best practices and advice to share
across teams. Another improvement community could include hundreds of people
interested in improving how your organization tests its applications. An improve-
ment backlog is exactly what it sounds like—a prioritized list of things that an
improvement community would like to help the organization get better at.

One of my hopes is that improvement communities—including the Enter-
prise Transition Community that guides and energizes the transition effort—will
use this book to load their improvement backlogs. In fact, many of the top-level
section headings have been deliberately worded so that those headings can go right
onto an improvement backlog. As examples, consider "Shift from Documents to
Discussions" in Chapter 13,"Prepare in This Sprint for the Next" in Chapter 14, and
"Automate at Different Levels" in Chapter 16.

As a long-time Scrum trainer and consultant, I have worked with hundreds
of teams and organizations, and I've come to believe that success with Scrum is
possible for every organization. Some will have a harder time than others. Some
will be challenged by a rigid corporate culture. Others will confront entrenched,
difficult personalities facing personal loss. The lucky ones will have supportive
leadership and passionately engaged employees. What each of these organizations
will have in common, though, is the need for pragmatic and proven advice. I have
written this book with the hope of providing it.

PARTI
Get t ing S ta r ted

Willingness to change is a strength
even if it means plunging part of the company

into total confusion for a while.

—Jack Welch

Chapter

W h y B e c o m i n g A g i l e Is H a r d (Bu t W o r t h It)

any software development organizations are striving to become more agile.
And who can blame them? Successful agile teams are producing higher-quality
software that better meets user needs more quickly and at a lower cost than are
traditional teams. Besides, who wouldn't want to be more agile? It just plain
sounds good, doesn't it? It is almost as though one cannot be too thin, too rich, or
too agile. But beyond the buzzword and hype, organizations that take becoming
agile seriously by adopting a process such as Scrum are seeing dramatic benefits.

They are seeing significant gains in productivity with corresponding decreases
in cost. They are able to bring products to market much faster and with a great-
er degree of customer satisfaction. They are experiencing greater visibility into
the development process, leading to greater predictability. And for them, out-of-
control, will-it-ever-be-done projects have become a thing of the past.

One company to realize these benefits by adopting Scrum is Salesforce.com.
Founded in 1999 in a San Francisco apartment, Salesforce.com is one of the true,
lasting dot-com-era success stories. With revenue of more than $450 million and
2,000 employees in 2006, Salesforce.com had noticed the frequency of its releases
had dwindled from four a year to one a year. Customers were getting less and
waiting longer to get it; something needed to be done. The company decided
to transition to Scrum. During the first year of making the switch, Salesforce.
com released 94% more features, delivered 38% more features per developer, and
delivered over 500% more value to its customers compared to the previous year
(Greene and Fry 2008). In the ensuing two years, revenue more than doubled to
more than $1 billion. With results like these, it is not surprising that so many or-
ganizations have transitioned to Scrum. Or at least tried to.

I say "tried to" because transitioning to Scrum and other agile methods is
hard—much harder than many companies anticipate. The changes required to
reap all of the rewards being agile can bring are far reaching. These changes de-
mand a great deal from not only the developers but the rest of the organization
as well. Changing practices is one thing; changing minds is quite another. It is my
aim in this book to show not only how to transition well but also how to succeed
long term.

4 Chapter 1 W h y Becoming Agi le Is Hard (But W o r t h It)

I've personally witnessed several failed agile adoptions that could have been
prevented. The first was in a company that had spent more than a million dollars
on its transition effort. Executives brought in outside trainers and coaches and
hired five people into an "Agile Office" to which new Scrum teams could turn
for advice. The company's failure was the result of thinking that the implications
of adopting Scrum would be restricted to only the development organization. The
executives who initiated this transition thought that educating and supporting
developers would be sufficient. They failed to consider how Scrum would touch
the work of salespeople, the marketing group, and even the finance department.
Without changes to these areas, organizational gravity pulled the company back
where it had started.

For completely different reasons, Josef ultimately failed at introducing Scrum
to his company. A newly promoted and first-time project manager, Josef was in-
stantly attracted to Scrum because it fit his natural management style. Josef easily
convinced his team—who had all been his peers as little as one month before—to
try Scrum on their new project. The project was wildly successful, earning ac-
colades for the team and winning Josef the chance at a much larger project. Josef
introduced the new project team to Scrum, and most members were willing to
try the new approach. Although those working on the project were happy to
use Scrum, some of the functional managers to whom they reported got ner-
vous about what Scrum might mean to their careers. Josef's luck ran out. The
functional managers—in particular the directors of quality assurance and database
development—banded together and convinced the vice president of engineering
that Scrum was inappropriate for projects of the complexity and importance be-
ing done in their company.

Caroline fared a little better. A vice president of development in a large data
management company, Caroline had more than 200 developers in her organiza-
tion. After seeing the benefits of Scrum on one project, she excitedly launched
an initiative to introduce Scrum across her division. All employees were provided
with training or coaching. Within a few months nearly all teams were producing
working software at the end of each two-week sprint. This was great progress.
When I visited this company a year later, though, the employees had failed to
make any additional headway. To be sure, teams were producing higher-quality
software and doing it a bit faster than they had before starting with Scrum, but
her company's gains were only a fraction of what they could have been. Caroline's
company had forgotten that continuous improvement is part of Scrum.

Frightening, isn't it? Each of these failures was a well-intentioned effort to
transition to Scrum.Yet all the good intentions in the world could not keep them
from failing. Don't worry, though. Transitioning to Scrum may be hard, but it's
entirely possible with the right approach. In this chapter we examine why transi-
tioning to any agile development process, including Scrum, is especially difficult.

W h y Transi t ioning Is Hard 5

We detail some of the challenges that derailed the companies I've mentioned.
Most important, though, we look at the reasons why the benefits of becoming an
agile organization are more than worth the effort.

Why Transitioning Is Hard
All change is hard. I've seen employees in an uproar over something so small as a
change in their company's healthcare plan. Larger changes can be even more pain-
ful. But there are certain attributes of transitioning to Scrum that make it more
difficult than most other changes. They are as follows:

• Successful change is not entirely top-down or bottom-up.

• The end state is unpredictable.

• Scrum is pervasive.

• Scrum is dramatically different.

• Change is coming more quickly than ever before.

• Best practices are dangerous.

Successful Change Is Not Entirely Top-Down or Bottom-Up
Successful organizational change cannot be fully top-down or bottom-up. In a
top-down change, a powerful leader shares a vision of the future and the orga-
nization follows the leader toward that vision. Imagine a charismatic, respected,
and powerful leader such as Steve Jobs telling his Apple employees that they are
moving beyond computer hardware and software to dominate digital music. His
reputation and style might have pointed the company in a new direction, but that
alone would not have been enough to pull off such a monumental feat. Change
management expert John Kotter agrees.

No one individual, even a monarch-like CEO, is ever able to
develop the right vision, communicate it to large numbers of
people, eliminate all the key obstacles, generate short-term wins,
lead and manage dozens of change projects, and anchor new ap-
proaches deep in the organization's culture. (1996, 51-52)

By contrast, in a bottom-up change, a team or some individuals decide that a
change is needed and they set about making it happen. Some teams undertake a
bottom-up change with an "ask for forgiveness later" attitude. Others flaunt that
they are breaking the rules. Still others attempt to fly under the corporate radar
as long as possible.

Most successful changes, and especially a change to an agile process like
Scrum, must include elements of both top-down and bottom-up change. Mary

6 Chapter 1 W h y Becoming Agi le Is Hard (But W o r t h It)

Lynn Manns and Linda Rising agree, writing in Fearless Change, "We believe that
change is best introduced bottom-up with support at appropriate points from
management—both local and at a higher level" (2004, 7). An organization at-
tempting to transition to Scrum without support from the top will encounter
resistance that cannot be overcome from below This usually occurs as soon as the
new Scrum process begins to affect how areas outside the original team do their
work. In response, middle managers protect their departments by striking out
against changes created by Scrum. Top-down support will be needed to remove
these kinds of impediments and obstacles.

Similarly, without bottom-up engagement, the transition will feel like sitting
under a ceiling fan in an open-air restaurant in Mexico: just a bunch of hot air
blowing down from above. When this happens, individuals resist being told what
to do. Bottom-up participation will be needed because it will be the individual
team members who work through the issues of discovering how Scrum will work
best within their organization.

Key to any successful adoption of Scrum will be combining elements of both
bottom-up and top-down change.

The End State Is Unpredictable
Perhaps you've read a book on Extreme Programming and have decided that is
the right approach for your company. Or maybe you attended a Certified Scrum-
Master training course and think Scrum sounds good. Or maybe you read a book
on a different agile process, and it sounds perfect for your organization.

In all likelihood, you're wrong.
None of these processes as described by their originators is perfect for your

organization. Any may be a good starting point, but you will need to tailor the
process to more precisely fit the unique circumstances of your organization, indi-
viduals, and industry. Alistair Cockburn concurs: "Having a chance to change or
personalize a process to fit themselves seems to be a critical success factor for a
team to adopt a process. It's the act of creation that seems to bind teams to 'their
own' process."1

You may have a clear vision of what "doing Scrum" means to you, and you
may get others to buy into exactly that same vision, but where the organization
ends up is likely to be somewhat different. In fact, to even refer to end states in a
Scrum transition is incorrect; there can be no end state in a process that calls for
continuous improvement.

This creates a problem for an organization that wants to transition to Scrum
through a traditional change approach that relies on gap analysis and then on
closing the identified gaps. If we cannot anticipate the end state of a Scrum

1 This and all other uncited references are personal communications between the
speaker and me.

W h y Transi t ioning Is Hard 7

transition, we cannot identify all of the gaps between there and the current state.
So, a gap analysis-driven change approach will not work. The closest we can come
is to identify gaps between where we are now and an improved, intermediate state.

After identifying these smaller gaps, though, we are still left with the problem
of how to close them. It is difficult (and often impossible) to predict exactly how
people will respond to the many small changes that will be needed on the way
to becoming agile. Teamwork expert Christopher Avery views organizations as
living systems.

We can never direct a living system, only disturb it and wait to see
the response....We can't know all the forces shaping an organiza-
tion we wish to change, so all we can do is provoke the system
in some way by experimenting with a force we think might have
some impact, then watch to see what happens. (2005,22-23)

So, a transition to Scrum cannot be a process that "articulates and defines the
entire change process required to bridge the gap between 'as is' and 'to be' and
creates tactical plans," as I read in a traditional change management book (Carr,
Hard, andTrahant 1996, 144-5). Creating such a plan would require leaping two
impossible hurdles: first, knowing exactly where we'll want to end up; and second,
knowing exactly the steps to get there. Because we cannot overcome these impos-
sibilities, the best we can do is adopt a "provoke and observe" approach (Avery
2005,23) in which we try something, see if it moves us closer to an intermediate,
improved state, and if so do more of it. These pokings and proddings of the orga-
nization are not random.They are carefully selected based on experience, wisdom,
and intuition to drive a successful transition to Scrum.

SEE ALSO
Chap te r 4, " I terat ing
T o w a r d Ag i l i t y , "w i l l
desc r i be t he overal l
p rocess I r e c o m m e n d
w h e n adop t i ng Sc rum.

Scrum Is Pervasive
When a change is isolated, when it doesn't affect everything a person does, that
change is often easier to introduce into an organization. Consider the case of an
organization using a non-agile process that decides to introduce a mandatory op-
erational readiness review before an application is deployed onto the company's
web servers. This is a relatively isolated change. Sure, there will be some developers
who will hate the new procedure and will complain, perhaps loudly. But, when it
comes down to it, this is not a pervasive change. Even if they don't like this change,
they can still continue doing the majority of their work unscathed.

Consider now the case of a developer transitioning to Scrum. This developer
has to work on smaller pieces of work at a time to complete something by the end
of each timeboxed sprint. The developer might have to write automated tests to
go with each new bit of code. She might even alternate short bouts of testing and
coding in something called test-driven development. And she might need to do
all this with her headphones off while pair programming. These are fundamental

8 Chapter 1 W h y Becoming Agi le Is Hard (But W o r t h It)

SEE ALSO
T h e impac t of S c r u m
on o the r g roups , s u c h
as f inance , opera t ions ,
h u m a n resources , and
o the rs is d i scussed
in Chap te r 20, " H u m a n
Resources , Faci l i t ies,
and t h e P M O . "

changes. They aren't something relegated to a few hours a day or week, as code
inspections might be. This type of fundamental change is difficult because it per-
vades everything about a developer's workday. Resistance will be greater because
the impact is greater.

Adopting Scrum is pervasive in a second way as well. Being agile will have
implications to the organization that reach far outside the software development
department. Introducing the operational readiness review would almost certainly
not impact finance, sales, or other departments. But each of those departments can
be impacted by Scrum. Finance groups will have to reconcile company policies
on capitalizing or expensing with the way Scrum projects run. Sales will want to
consider altering how they communicate date and scope commitments and may
change how they structure contracts. With more groups affected by a move to
Scrum, there is more chance for resistance and certainly more chance for mis-
understandings. These add up to make transitioning to Scrum harder than other
changes.

SEE ALSO
E m e r g e n t des ign and
tes t -d r i ven deve lop -
m e n t are d i s cussed In
Chap te r 9, "Techn ica l
P rac t i ces . "

Scrum Is Dramatically Different
Not only do the changes created by adopting Scrum pervade everything develop-
ment team members do, but also many of the changes go against much of their
past training. Many testers, for example, have learned that their job is testing for
compliance to a specification. Programmers have been trained that a problem is
to be analyzed in depth and a perfect solution designed before any coding begins.
On a Scrum project, testers and programmers need to unlearn these behaviors.
Testers learn that testing is also about conformance with user needs. Programmers
learn that a fully considered design is not always necessary (and sometimes not
even desirable) before coding begins. Abby Fichtner, who shares her thoughts on
her Hacker Chick blog, has told me she agrees with how hard this adjustment can
be for programmers.

Getting used to emergent design is hard because it feels like
you're going to be just hacking! And if you've prided yourself on
being a very good developer and always doing well-thought-out
designs, it turns your whole world upside down and says "no, all
those things you thought made you great, now those same things
actually make you a bad developer." Very world-rocking stuff

Because transitioning to Scrum involves asking people to work in ways that
are unfamiliar and run counter to training and experience, people are often hesi-
tant, if not outright resistant, to the change. Consider, for example, the case of
Terry, a senior and respected programmer in his company. Terry had participated
in a hands-on full-day class on test-driven development and was convinced of its
benefits. An enthusiastic Terry returned to the office expecting to stop doing big,

W h y Transit ioning Is Hard 9

up-front designs and allow design to emerge through the use of test-driven devel-
opment. It didn't go as smoothly as he thought it would. He wrote me an e-mail
describing his deflating experience.

Getting the other programmers to even try test-driven develop-
ment was much harder than I thought. I tried pushing it as a way
to skip the long up-front design phases we'd become accustomed
to, but failed miserably. After a few months I got the other devel-
opers to start writing tests first, but only because it was a good
idea on its own. They still wouldn't abandon the lengthy up-front
design phase. It took me another year to make much progress
shortening that, and we could still go much shorter.

Change Is Coming More Quickly Than Ever Before
Back in 1970 Alvin Toffler coined the term future shock, saying that it is the disori-
entation people feel when confronted with "too much change in too short a pe-
riod of time" (1970, 4). Human, and therefore organizational, capacity to change
is limited—ask people to change too many things at the same time and they shut
down; the shattering stress and disorientation of future shock kicks in.

In many organizations, employees have been suffering from future shock for
years. Teams are asked to do more with fewer people. Outsourcing and distributed
teams have become increasingly common. These adjustments were preceded by
the rush to move applications to a client/server model, then onto the web, and
then into services. Add to these the constant, and constantly accelerating, rate
of change in technology itself—new languages, new tools, new platforms—and
future shock is now. It should not be surprising that transitioning to Scrum can
often be the change that pushes people into future shock. The pervasive nature of
adopting Scrum and the fundamental changes it causes in how people work and
interact have a higher risk of triggering the future shock effect.

Best Practices Are Dangerous
With most organizational change, after someone figures out the right or best way
to do something, that way of doing it is captured as a "best practice" and shared
with everyone else. For some types of work, collecting and reusing best practices
is a tremendous aid to the change effort. An organization that is selling a product
to a new type of customer may, for example, capture best practices for overcom-
ing objections from potential customers. When transitioning to Scrum, however,
collecting best practices can be dangerous.

Like sirens singing to us from the rocks, best practices tempt us to relax and
stop the effort of continuous improvement that is essential to Scrum. Taiichi Ohno,
originator of the Toyota Production System, has written that "there is something

10 Chapter 1 W h y Becoming Agi le Is Hard (But W o r t h It)

called standard work, but standards should be changed constantly. Instead, if you
think of the standard as the best you can do, it's all over." Ohno goes on to say
that if we establish something as the "best possible way, the motivation for kaizen
[continuous incremental improvement] will be gone" (1982).

Although team members should always look to share with one another their
newly discovered good ways of working, they should resist the urge to codify
them into a set of best practices. One example of a best practice gone awry is the
company that decided that all daily scrums needed to be held no later than 10:00
a.m. I found this an extremely unnecessary dictate. I 'm not entirely sure what
purpose the dictate served. But many employees took the rule to be further proof
that "Scrum is all about micro-management."

• Think about your cur rent t ransi t ion to Scrum. A re you just ge t t ing
star ted, in the midd le , or fee l ing like you ' re near ing the end of the
t ransi t ion push? No mat te r w h e r e you are, ident i fy the pr imary
obstac le you th ink may be hold ing you back f r o m the next level of
success.

Why It's Worth the Effort
Despite all the reasons why transitioning to Scrum can be particularly difficult,
stakeholders in companies that have made the transition are happy they've done
so. One reason stakeholders are so satisfied is that time-to-market is reduced when
using an agile process like Scrum. This faster time-to-market is enabled by the
higher productivity of agile teams, which is in turn the result of the higher qual-
ity seen on agile projects. Because employees are freed up to do high-quality
work and because they see their work delivered sooner into the hands of waiting
users, job satisfaction goes up. With higher job satisfaction comes more engaged
employees, which leads to more productivity gains, initiating a virtuous cycle of
continued improvement.

The rest of this chapter looks in more depth at these claims. In doing so I
present evidence in support of each. Some of the evidence is anecdotal and drawn
from my experience, experiences of my clients and colleagues, or experiences
reported in magazines or at conferences. Additionally, though, the claims are sup-
ported by data from the following sources:

• A rigorous comparison of 26 agile projects against a baseline database of
7,500 primarily traditional development projects. This study was con-
ducted by Michael Mah, managing partner of QSM Associates (QSMA),
which has been collecting productivity, quality, and other metrics on
projects for more than 15 years. The agile projects Mah studied ranged
in size from 60 to 1,000 people (Mah 2008).

THINGST0
TRY NOW

W h y It 's W o r t h t h e E f f o r t 11

• Various academic and research papers, including aggregate research by
David Rico, Ph.D., who surveyed 51 published studies of agile projects
(2008).

• An online survey of more than 3,000 people conducted by agile tool
vendor,VersionOne (2008), and another of 642 people conducted by Dr.
Dobb'sJournal (Ambler 2008a), a popular development magazine. Each
survey was conducted in 2008. Industry surveys such as these cannot, of
course, be taken as definitive. Individuals opting to take such surveys are
probably predisposed toward favorable views of agile. Results f rom these
surveys are presented because they are more representative than con-
clusive. These surveys will be referenced as VersionOne and DDJ in the
sections that follow.

In the following sections we look at these reasons why transitioning to an
agile process like Scrum is worthwhile:

• Higher productivity and lower costs

• Improved employee engagement and job satisfaction

• Faster time to market

• Higher quality

• Improved stakeholder satisfaction

• What we've been doing no longer works

SEE ALSO
Data f r o m th is chap te r
is s u m m a r i z e d in
M i c r o s o f t P o w e r P o i n t
and A p p l e Keyno te
p resen ta t i ons avai lable
at w w w . s u c c e e d i n g -
w i t h a g i l e . c o m .

Higher Productivity and Lower Costs
There is unfortunately no universally agreed-upon measure of productivity. Mar-
tin Fowler has gone so far as to say that measuring productivity of developers is
impossible (2003). And although I agree with Fowler, I do think it is possible to
measure proxies or stand-ins for productivity. Some teams use the number of lines
of code as a proxy for productivity. Others use as a proxy the number of function
points delivered or simply the number of features delivered, ignoring that not all
features are the same size. Are there problems with these proxies? Absolutely. But
I think the usefulness of proxy productivity measures is justified if we can reason-
ably make the assumption that data has not been gamed by teams fabricating lines
of code or function points by duplicating code, failing to take advantage of reuse,
or so on. In many cases, especially those involving large data sets as the Q S M A
study does, I think this is a reasonable assumption.

Q S M A calculates a productivity index for the projects in its database. This
index takes into consideration effort, schedule, technical difficulty, and more and
is an attempt to help make cross-team comparisons more meaningful. In his com-
parison between agile and traditional projects, Mah found agile projects to be 16%

12 Chapter 1 W h y Becoming Agi le Is Hard (But W o r t h It)

more productive, an increase that he found to be statistically significant. Figure 1.1
shows the agile projects (as dots) compared to the average productivity and one
standard deviation around it in the QSMA database. As you can see, most of the
dots are above the industry average line, with a handful of projects more than one
standard deviation more productive than the industry average.

FIGURE 1.1
A g i l e t e a m s a r e
s i g n i f i c a n t l y m o r e
p r o d u c t i v e t h a n t h e
i n d u s t r y a v e r a g e .
S o u r c e : M a h 2 0 0 8 . - T

2 5

£

L-otver.

+-/- 1 Standard deviation

C O

O

jq—r<3"o ° o c o

<b ° \
o \

O Agile p ro j ec t

Smaller L-arg&r

FVojec-f Si re

The QSMA results are corroborated by both the DDJ andVersionOne sur-
veys. Eighty-two percent of participants in the DDJ survey felt that productivity
was somewhat or much higher when using agile methods like Scrum than it was
before. Only 5% felt productivity was somewhat or much lower. Seventy-three
percent of theVersionOne respondents believed that being agile had significantly
improved (23%) or improved (50%) productivity.

It stands to reason that if people are productive, costs will be lower. The
VersionOne and DDJ studies both bear this out, as can be seen in Table 1.1.2

David Rico's survey of case studies of agile teams published through 2008 is
shown in Table 1.2. Rico found that the median reported productivity increase
was 88% and the median cost savings was 26%. These indicate solid evidence that
agile teams are more productive, which leads to cost savings to their projects.

2 TheVers ionOne survey asked respondents to answer on a scale that included Signifi-
cantly Improved, Improved, N o Benefit, Worse, and M u c h Worse. The DDJ survey used
a similar scale but used M u c h Higher, Somewhat Higher, N o Change, Somewhat Lower,
and M u c h Lower. For improved readability, all tables in this chapter use the labels f rom the
VersionOne survey.

W h y It's W o r t h the Ef for t 13

Development Cost DDJ VersionOne

Improved 32% 30%

Significantly Improved 5% 8%

TABLE 1.1
A s i g n i f i c a n t
n u m b e r o f s u r v e y
r e s p o n d e n t s r e p o r t
t h a t a g i l e i m p r o v e d
d e v e l o p m e n t c o s t s .

As encouraging as these numbers are, they tell only part of the story. A sig-
nificant benefit to being agile—but one not reflected here—is that agile teams are
less likely to build functionality that is no longer needed. A common criticism of
a sequential development process is that by the time the software is delivered, the
users no longer need the functionality being provided. Because of the frequent
feedback, timeboxed sprints, and ability to reprioritize each sprint, a Scrum team
is more likely to work only on features users really need. Were we to include this
in our measurement of productivity, we would see even more dramatic results.

TABLE 1.2
I m p a c t o f a g i l e o n
p r o d u c t i v i t y a n d
c o s t . S o u r c e : R i c o
2008.

Category Lowest Reported Median Improve- Highest Reported
Improvement ment Improvement

Productivity 14% 88% 384%

Cost 10% 26% 70%

Improved Employee Engagement and Job Satisfaction
One factor contributing to the higher productivity and lower costs on agile proj-
ects may be that employees enjoy their jobs more. Fifteen months after adopting
Scrum, Salesforce.com surveyed its employees and found that 86% were having a
"good time" or the "best time" working at the company. Prior to adopting Scrum,
only 40% said the same thing. Further, 92% of employees said they would recom-
mend an agile approach to others. Results such as these are common; many of my
clients have done employee satisfaction surveys and always with similar results. In
its industrywide survey, VersionOne found that 74% of those surveyed reported
morale was improved (44%) or significantly improved (30%).

One reason why employees may enjoy their jobs more is because of the sus-
tainable pace promoted by agile processes. Chris Mann and Frank Maurer of
the University of Calgary studied the amount of overtime worked by one team
for the year before becoming agile and the first year after (2005). They found
that before implementing agile practices, team members worked an average of
19% overtime. After adopting an agile process, that dropped by nearly two-thirds
to an average of 7% overtime. Further, even though overtime was occasionally
needed even after adopting agile practices, there was less variability in the amount

14 Chapter 1 W h y Becoming Agi le Is Hard (But W o r t h It)

required, as measured by the standard deviations of the team before and after mov-
ing to agile. Johannes Brodwall, an agile software architect, says, "Overtime seems
to be much less common after we started with agile.Testers are especially noticing
the effect. They used to have extremely chunky workloads."

A lack of overtime is likely just one factor contributing to higher job satisfac-
tion among people working on agile teams. There are also the benefits of having
more control over your day-to-day work, seeing the results of your work get used
sooner, working more closely with coworkers, creating products that are more
likely to meet customer and user expectations, and so on. Employees who are
happier with their jobs and with their employers will be more engaged in the
work they do. Greater employee engagement will result in numerous benefits to
the organization.

Faster Time to Market
Agile teams tend to release their products more quickly than do traditional teams.
According to the VersionOne study, 64% of participants report that time to mar-
ket has been improved (41%) or significantly improved (23%).The QSMA study
comparing 26 agile projects to a database of 7,500 mostly traditional projects
found that agile projects have a 37% faster time to market, as shown in Figure 1.2.

Agile teams have faster times to market for two reasons. First, the higher pro-
ductivity of an agile team allows them to produce functionality more quickly
Second, agile teams are more likely to release incrementally When stakeholders
realize that a team can produce valuable functionality every sprint, they often de-
cide that they do not need to wait for one big-bang delivery of all functionality

FIGURE 1.2
A g i l e p r o j e c t s
h a v e a 3 7 % f a s t e r
t i m e t o m a r k e t
c o m p a r e d t o t h e
i n d u s t r y a v e r a g e .
S o u r c e : M a h 2008.

f t i jhe r

o O
o

L-oiver
Smaller

W h y It 's W o r t h t h e E f fo r t 15

Salesforce.com noticed the benefit of this immediately after its rapid transi-
tion to Scrum (Greene and Fry 2008). Figure 1.3 shows the cumulative number
of features delivered to customers in 2006 (before adopting Scrum) and 2007 (af-
ter initiating the transition around the start of the year). This figure shows a simple
metric: the raw number of features delivered and when they were delivered and a
powerful view of the additional value provided to customers in the first year of
using Scrum.

Higher Quality
If you ask a Scrum team what enables them to be more productive than in their
pre-Scrum days, most will say that at least part of their success is that they are
consistently producing higher-quality work. Wi thout bugs left behind to drag the
team down, they can move quickly and consistently forward. Quality is improved
because working at a sustainable pace prevents sloppiness. Quality is also improved
through many of the engineering practices such as pair programming, refactoring,
and a strong emphasis on early and automated testing.

David Rico's research bears out the claim that agile teams produce higher-
quality products. In his survey of 51 published studies of agile projects, he found
a minimum quality improvement of 10% and a median improvement of 63%.
Rico's research matches my experience at clients where I've been able to measure
and report on quality. For example, ePlanServices provides retirement plans to
medium-sized businesses. The service is provided largely through a powerful web
application. In the first nine months after initiating a Scrum transition, their defect
rate per thousand lines of code dropped by 70%.

The VersionOne survey also bears out the claim for higher quality with agile
processes such as Scrum. Sixty-eight percent of participants answered that agile
had improved (44%) or significantly improved (24%) software quality. Further,

Cumulative Value (features) delivered in Major Releases FIGURE 1.3
T h e c u m u l a t i v e
v a l u e o f f e a t u r e s
d e l i v e r e d b y
S a l e s f o r c e . c o m in
2 0 0 6 (p r e - S c r u m)
a n d 2007 (S c r u m) .

Mar April Maij June. July Auq Sep OcA Nov Pec- Jan Tit

Month

16 Chapter 1 W h y Becoming Agi le Is Hard (But W o r t h It)

84% of respondents felt that agile had reduced the number of software defects by
10% or more; 30% felt agile had reduced the number of defects by 25% or more.
The DDJ survey reported similar results, with 48% saying quality was somewhat
higher and 29% saying it was much higher.

Improved Stakeholder Satisfaction
Given all of the benefits of agile processes thus far, it is not surprising that they
lead to improved stakeholder satisfaction. The DDJ survey found that 78% of
survey participants believe that using an agile process has led to somewhat higher
(47%) or much higher (31%) stakeholder satisfaction.

One reason stakeholders are more satisfied by agile processes is because their
practices are more friendly toward the shifting priorities that are a fact of life
in today's fast-paced, competitive organizations. In the VersionOne study, 92% of
participants felt that agile improved the ability to manage changing priorities.
Additionally, along with gaining the ability to more easily change priorities, stake-
holders on agile projects learn the impact of change. A stakeholder at PetroSleuth,
a small development company in the oil and gas industry, found that to be true.

The Scrum process has led to our being more involved in the
daily review and discussion. This has led to us being more aware,
and being held accountable earlier in the process for any changes.
(Mann and Maurer 2005, 77)

The VersionOne survey looked deeper into additional factors leading to stake-
holder satisfaction. Table 1.3 shows the high percentages of survey participants
who reported that agile leads to better alignment between the technology and
business groups, reduced project risk, better ability to manage changing priorities,
and improved project visibility. Steve Fisher, a senior vice president at Salesforce.
com and stakeholder to many of the agile teams there, says adopting Scrum has
"delivered total visibility, total transparency, and unbelievable productivity...a
complete win" (Greene 2008).

TABLE 1.3
S o m e o f t h e rea-
s o n s s t a k e h o l d e r s
a r e s a t i s f i e d w i t h
ag i l e .

Improved Significantly
Improved

Enhanced ability to manage changing priorities 41% 51%

Improved project visibility 42% 41%

Improved alignment between IT and business goals 39% 27%

Reduced project risk 48% 17%

Look ing Forward 17

What We've Been Doing No Longer Works
One final reason to consider changing to Scrum is if your current development
process is no longer working. When a process that has worked in the past stops
working, a common tendency is to do more of it. This was certainly the case at
Yahoo!, where chief product officer Pete Deemer was one of the first to recognize
the need for change.

Originally, Yahoo! tried Scrum purely out of desperation—the
waterfall approach was clearly not working—and a year-long at-
tempt to do the waterfall "better" through more thorough plan-
ning and analysis, more in-depth documents, more sign-offs, and
so on was making things worse, not better. For the teams that
saw benefits, which were most of the teams that tried Scrum, the
benefits were visible almost immediately.

Clinton Keith, former chief technology officer at High Moon Studios, devel-
oper of console-based video games, tells a similar story.

As successful project managers at a well-funded startup, we felt
we could "apply more waterfall" to our ambitious new projects.
This had the opposite effect of what we hoped for and the proj-
ects spiraled out of control. Our assumptions were wrong and
forced us to rethink how we were managing projects.

• Ident i fy the benef i ts you have gained f r o m using Scrum so far.
• If you have not ye t ga thered met r i cs on quality, emp loyee morale,

s takeholder sat is fact ion, or so on, se lec t a f e w factors of in terest
and measure a basel ine you can compare against later.

• If you ga thered basel ine m e a s u r e m e n t s earlier and have been do-
ing Scrum for at least th ree or six mon ths , remeasure and see w h a t
progress has been made. Create your o w n " w h y Scrum is w o r t h
i t " charts that you can share w i t h o ther t e a m s as they begin to
t ransi t ion to Sc rum or w i t h ex is t ing t e a m s w h o are having d i f f icu l ty
s t ick ing w i t h it.

THINGSTO
TRY NOW

Looking Forward
Becoming agile is hard. It is harder than most other organizational change efforts
I've witnessed or been part of. I started this chapter by laying out some of the rea-
sons why this is so, including the need to change from the top-down and bottom-
up simultaneously, the impossibility of knowing exactly what the end state will
look like, the dramatic and pervasive changes caused by Scrum, the difficulty of

46 C h a p t e r 1 W h y B e c o m i n g A g i l e Is H a r d (B u t W o r t h It)

a d d i n g m o r e c h a n g e o n t o p o f all tha t is a l ready o c c u r r i n g , and t h e n e e d t o avoid

t u r n i n g S c r u m i n t o a list o f best pract ices .

B e c a u s e you ' r e still r ead ing , I can assume tha t this list o f cha l lenges d idn ' t send

y o u away. Tha t ' s f o r t u n a t e because t h e r e are t r e m e n d o u s advantages t o b e h a d b y

t h e o r g a n i z a t i o n tha t o v e r c o m e s t h e chal lenges . T h e s e i n c l u d e m o r e p r o d u c t i v e

t eams , l o w e r costs, h a p p i e r employees , r e d u c e d t i m e t o m a r k e t , b e t t e r quality, and

i m p r o v e d s t akeho lde r sat isfaction.

I n t h e n e x t c h a p t e r w e l o o k m o r e closely at w h a t is invo lved in m o v i n g y o u ,

y o u r t e a m , and y o u r o rgan i za t i on f r o m t h e stage w h e r e y o u k n o w c h a n g e is n e c -

essary and y o u be l ieve tha t S c r u m is t h e answer t o a p o i n t w h e r e y o u can b e g i n

m a k i n g real progress and c o n t i n u o u s i m p r o v e m e n t s .

Additional Reading
Ambler, Scott. 2008. Agile adoption rate survey, Februanht tp : / /www.ambysof t .com/
surveys/agile February2008.html.

This article presents the results of a survey conducted in February 2008 and goes
beyond the results presented here.

Greene, Steve, and Chris Fry. 2008. Year of living dangerously: H o w Salesforce.com
delivered extraordinary results through a "big bang" enterprise agile revolution. Session
presented at Scrum Gathering, Stockholm, ht tp: / /www.sl ideshare.net /sgreene/
scrum-gathering-2008-stockhohn-salesforcecom-presentation.

Greene and Fry led the rollout of Scrum at Salesforce.com. They have shared this en-
tertaining slide deck that covers h o w they did it, what they learned, and what they'd
do differently.

Mah, Michael. 2008. H o w agile projects measure up, and what this means to you. Cutter
Consortium Agile Product & Project Management Executive Report 9 (9).

This is M a h s comparison of 26 agile projects to his baseline database of productivity
data on over 7,500 mostly traditional projects.

Rico, David F. 2008. W h a t is the R O I of agile vs. traditional methods? An analysis of
extreme programming, test-driven development, pair programming, and Scrum (using
real options). A downloadable spreadsheet f rom David Rico ' s personal websi teht tp : / /
davidfrico.com/agile-benefits.xls.

An extensive survey of the available literature on agile projects that summarizes key
percentage improvements in productivity, cost, quality, schedule, customer satisfaction,
and return on investment.

http://www.ambysoft.com/
http://www.slideshare.net/sgreene/

Addit ional Reading

VersionOne. 2008. The state of agile development: Third annual survey. Posted as a
downloadable PDF in the Library of White Papers on the VersionOne websitehttp://
www. versionone. com/pd f / 3rdAnnualStateOfAgile_FullDataReport.pdf.

Every year, agile tool developer VersionOne conducts the largest survey of the state of
agile adoption. The survey is international in scope and is the broadest view into the
use of agile practices.

Chapter

A D A P T i n g t o S c r u m

ori Schubring was among the first to realize that things had to change. An ap-
plication development manager for a large manufacturing company, Lori realized
that its development process had become "so formalized that we hindered our
ability to remain flexible for the business. It got to the point where we weren't
turning around project requests fast enough" (2006, 27). Aware of the need to
change, Lori attended a free, half-day seminar introducing Scrum. What she saw
there was a better way to develop software, a framework she thought might help
her organization. As such, Lori developed the desire to change to Scrum. Next,
she acquired the ability to do it by participating in a ScrumMaster class, attend-
ing an agile conference, and visiting a company that had already adopted Scrum.
Lori then promoted Scrum to her boss and team, convincing them of its benefits.
Finally, Lori transferred some of the implications of her team using Scrum to the
rest of her company so that organizational gravity would not pull the team back
to where it had started.

Lori's story encapsulates the five common activities necessary for a successful
and lasting Scrum adoption:

• Awareness that the current process is not delivering acceptable results

• Desire to adopt Scrum as a way to address current problems

• Ability to succeed with Scrum

• Promotion of Scrum through sharing experiences so that we remem-
ber and others can see our successes

• Transfer of the implications of using Scrum throughout the company

Conveniently, these five activities—Awareness, Desire,Ability, Promotion, and
Transfer—can be remembered by the acronym ADAPT.1 These activities are also

1 The five activities of ADAPT are based on A D K A R (Hiatt 2006), a general model of
change that includes the steps of Awareness, Desire, Knowledge, Ability, and Reinforce-
ment. In practice, I have found separating Knowledge and Ability to be unnecessary. In a
field such as software development, knowledge without ability is meaningless. Additionally,
the Reinforcement step of A D K A R is replaced in ADAPT with separate Promotion and
Transfer steps, emphasizing the importance of these activities to a successful transition.

22 Chapter 2 ADAPTing to Scrum

summarized in Figure 2.1, which shows Awareness, Desire, and Ability as overlap-
ping, whereas Promotion and Transfer repeat and occur throughout the transition
effort. After you have transitioned, this cycle will continue as you continuously
improve.

An organization that successfully adopts Scrum can be thought of as engaging
in these activities at multiple levels:

• Organizationally. The organization as a whole will engage in these activi-
ties. No matter how aware one person or group is, there must be a critical
mass of people with a similar awareness before the organization will be
able to collectively move forward. In thinking of the ADAPT model at
this level, we may speak of a company with an organizational desire to
adopt Scrum. Or we may say that our organization currently lacks the
ability to do Scrum.

• As individuals. Because organizations are made up of individuals, it is im-
portant to acknowledge that individuals will progress through the overall
transition at different rates. For example, you personally may already have
acquired the ability to do Scrum; you've learned some new skills and
some new ways of thinking about software development. A colleague,
on the other hand, is only starting to become aware that the current ap-
proach isn't working.

• As teams. Individuals can be aided or hindered in the transition to Scrum
by their teams. Teams tend to progress through the ADAPT cycle more
or less together. In the same way that studies have shown individuals are
more likely to be overweight if their friends are overweight (Thaler and
Sunstein 2009), you are more likely to have a desire to do Scrum if the
rest of your team does as well.

FIGURE 2.1
T h e f i v e ac t i v i -
t i e s o f a d a p t i n g t o
S c r u m .

Transfer

• J J J I I L ^

P^oivio+iort

A w a r e n e s s

• Per practice. The ADAPT model can also be applied to each new skill
that is acquired as part of adopting Scrum. Consider the increased reliance
on automated unit testing that is common on Scrum teams.The team and
its members must first become aware that the current approach to testing
isn't working. They must then develop the desire to automate more tests
and to do so earlier in the process. To do this will require that some team
members learn new skills. Promoting the team's success with automated
testing will encourage other development teams to emulate them. Finally,
transferring the implications of the team doing more automated testing
to other groups ensures that forces external to the team do not prevent it
f rom continuing with the new practice.

One of the first things you'll need to do, whether you are currently using
Scrum or just starting your adoption, is to decide where your individuals, teams,
and organization are in their ADAPT sequence. It could be that you are acquiring
the ability to do test-driven development on a team that is promoting its success
inside a department that desires to implement Scrum. The overall organization,
however, may be aware of only a general need to change. This chapter will discuss
not only the five ADAPT activities but also the tools you will need to encourage
and develop awareness, desire, ability, promotion, and transfer throughout all levels
of the organization.

Awareness
Change begins with an awareness that the status quo is no longer desirable. H o w -
ever, becoming aware that what worked in the past is no longer working can
be extremely difficult. The most dramatic example of this I personally experi-
enced was when I was a development director for a healthcare software company
back in the mid-1990s. Our company founder recognized that the company's
sole product—the one that had led to an extremely successful public offering and
tremendous growth in the company—had at most one year of sales left because of
the fundamental shift occurring at the time in the United States healthcare indus-
try. Our company would need to develop a new product that could capitalize on
the shift toward managed care. In a meeting of the entire company, our founder
presented a slide with the chart shown in Figure 2.2.

While most employees had been congratulating ourselves on our success,
which we anticipated would last forever, our founder realized we were entering
what he called the "Valley of Death." While in the Valley of Death, revenue from
the current product would quickly decline well in advance of increases in revenue
from the new product we hadn't started developing yet.

24 Chapter 2 ADAPTing to Scrum

FIGURE 2.2
T h e " V a l l e y o f
D e a t h " s h o w s
d e c l i n i n g r e v e n u e
f r o m t h e c u r r e n t
p r o d u c t i n a d v a n c e
o f t h e r e l ease o f a
n e w p r o d u c t .

KeVenwe.
Neiv
product

C-urrenf
^roduof

Time

Few of us can be as prescient as this company founder was. There is almost
always a lag between when the need to change first arises and when we become
aware of it. The lag can be particularly long if the company is doing well. Other
common reasons why individuals can be slow to develop an awareness of the need
to change include the following:

• A lack of exposure to the big picture. The need to adopt Scrum may be
the result of a confluence of factors not visible to everyone. The need for
a change may be apparent only to those who have seen the decline in sales
to new customers, heard the rumors of a strong competitor entering the
company's space, and anticipate the need to do more without adding staff

• A refusal to see what's right in front of us. Even when the need to change
is clear, we sometimes deny it. We may think the problems are temporary
and often fear what change may have in store. The "if it ain't broke, don't
fix it" mentality is about as far as can be from an agile "if it ain't perfect
(and it never will be), keep improving" mindset.

• Confusing motion with progress. Every day we see a flurry of activity.
Meetings are being held, status reports are being circulated, documents
are being written, and code is being checked in. It is easy to confuse all
of this motion with progress. When a lot is happening, it can be hard
to admit that all that activity is not leading us any closer to the desired
products.

• Listening to our own propaganda. The company newsletter is full of rah-
rah articles predicting the boundless future. The glass case in the lobby
proudly displays past Product of the Year trophies. Hallways are full of
gleeful, self-congratulatory chatter. Yet customers ask, "What have you
done for me lately?" Listening to our own cheerleading and propaganda
causes complacency. By all means, celebrate success but remember the
hard work that earned it.

A w a r e n e s s

Tools for Developing Awareness
Team members will become aware of the need to change at different times. Those
who have come to this realization quickly have the opportunity to assist in br ing-
ing others along to the same conclusion. In this section we will look at tools you
can use to help develop awareness of the need to change.

Communicate that there's a problem. BioWare is one of the world's leading de-
velopers of story-driven video games, with more than 400 employees and well-
known games such as Mass Effect, Jade Empire, Dragon Age, Knights of the Old Re-
public, Nevem'inter Nights, and Baldur's Gate. Although BioWare's products had been
successful, the projects to deliver them were not very efficient. Projects were af-
flicted by the usual symptoms of overtime, communication issues, and deliverables
that occasionally failed to meet expectations.

Because of its strong track record of successful products, it wasn't obvious to
all involved that the projects themselves could be more successful. Fortunately,
producer Trent Oster's search for a better way to develop games led h im to Scrum,
and he was able to hire several project managers with Scrum experience. But this
nucleus of early Scrum proponents could not make much progress until they
helped others become aware of the need to improve. They did this by communi-
cating a goal that would be shared by all projects.

High-quality games at a lower cost that are as fun to develop as
they are to play

This goal was wonderful for a couple of reasons. First, it is very hard to argue
with. I can't imagine a team member arguing that it was as fun working all those
long nights as it was playing the game that resulted. Second, it neither preached
nor proposed the solution. Consider the likely impact if BioWare's early Scrum
advocates had instead chosen "High-quality games built with an agile approach."
This would have convinced no one of the need to change except for those already
in favor of it. William Bridges, author of Managing Transitions, stresses the impor-
tance of selling the problem, not a specific solution to it (2003, 16).

Use metrics. As part of an overall communication strategy, metrics provide great
reinforcement of the core reasons for change. I have seen companies use employee
turnover, results f rom job satisfaction surveys, revenue per employee, and other
simple metrics to convey the message that change is necessary.

Provide exposure to n e w people and experiences. Encourage people to attend
conferences or training so that they hear about new techniques and practices. Or
send people to a trade show for your industry. Let them see what products com-
petitors are releasing. Or arrange meetings between team members and customers

26 Chapter 2 ADAPTing to Sc rum

so they can hear firsthand about what features are needed and in what time frame.
A good long-term strategy for providing exposure to new people and ideas is to
value diversity in new hires. Intentionally seeking people from different back-
grounds helps not only bring new ideas into the organization when they're hired,
but it also helps the organization with exposure to future new ideas.

SEE ALSO
Chap te r 3, " P a t t e r n s
fo r A d o p t i n g S c r u m , "
con t ras t s t he me r i t s
of s ta r t i ng w i t h a pi lot
p ro jec t or t rans i t ion-
ing e v e r y o n e at once .
Chap te r 5, "Your First
P ro jec t s , " desc r i bes
h o w to se lec t an init ial
or p i lot pro jec t .

Run a pilot project. A successful pilot project demonstrates that things can be bet-
ter. It is hard to argue with success. When those who aren't yet aware of the need
to change see a highly successful project run in a different way, they must either
discount the results on that project or become a bit more aware that a change
could be appropriate.

Focus attention on the most important reasons to change. If your organization
is like most others, you could probably create a lengthy list of reasons why the
current development process is broken: Products do not meet user expectations,
products take too long to develop, quality is poor, developer morale is low, over-
time is excessive, schedules are unpredictable, the cost of development is high, and
so on. In helping people become aware of the need to change, it is often best to
replace such a laundry list with one that is much shorter. What two or three rea-
sons are causing most of the problems? These reasons alone should be sufficient
to justify adopting Scrum. By narrowing the full list of reasons down to just the
critical ones, we focus more attention on the most compelling reasons.

One of my clients decided to adopt Scrum because its products had lost their
best-in-class status. Customers were continuing to use the products but mostly
out of years of loyalty and familiarity. To focus attention on this problem, I asked
them to remove all plaques, trophies, and industry awards from the lobby except
those earned within the past year. By removing old Product of the Year awards
from the lobby, we reinforced the fact that customers were asking "but what have
you done for me lately?" After the old mementos had been removed, the lobby
still showcased a decent number of awards. But the contrast with what employees
had become accustomed to was startling and helped increase the awareness that
the company's glory days were behind it unless changes were made.

Desire
Beyond being aware of the need to change, one must also have the desire to
change. I am aware that I should eat more vegetables; I don't yet desire to make
that change in my diet. Until my awareness turns to desire, my diet will remain
the same. Scrum trainer and consultant Michele Sliger tells of a company whose
transition was stalled by a similar lack of desire. A few weeks after a training class,
Sliger called the company to see how people were doing.

Desire

Due to the politics at their company, they decided that agile re-
ally wouldn't work there.That's the only group I know that took
the time to learn about agile (from an experienced agile consul-
tant and not just a book), really examined their culture and poli-
tics, and then said "No." Were they being practical? realistic? or
were they being fearful? pessimistic? I don't know. But no other
company I've worked with has ever said no like that. Perhaps
more should. I really respected the fact that these people decided
that they weren't ready, for whatever reason, rather than making
some half-hearted attempt.

Because they'd gone to the expense of bringing a Scrum trainer into the
company, at least some employees must have been aware of the need to do things
differently. But from Sliger's story we can conclude that there was insufficient
desire to take the change effort further.

Moving from an awareness that the current development process isn't work-
ing to the desire to use a different one can be very hard for many people. After all,
we've been educated to prefer a sequential approach, both through our schooling
and years of experience. Additionally, although we may be dissatisfied with ele-
ments of our projects, we've worked hard to get the right boss and the right team.
Scrum would change all that. Finally, as simple as it may seem, sometimes the tim-
ing may just not be right.

Twenty years ago a friend of mine recommended I read one of the Travis
McGee novels by John D. MacDonald. I bought The Girl in the Plain Brown Wrapper
that evening and started reading it. I hated it and stopped halfway through. About a
year later I saw the book on my shelf and decided to give it another try. I loved it
and went on to read all 20 of the other books featuring McGee. Something about
my mindset, where I physically was, or such, was wrong when I first read the book.
The same can be true when team members hear messages about the benefits of
Scrum. If the time isn't right for people, you will not be able to convince them.
The good news is that the same message delivered the same way but at a different
time will often be enough to move someone along from awareness to desire.

Tools for Increasing Desire
Increasing the desire to adopt Scrum is often much harder than creating an aware-
ness that the status quo must change. Fortunately, there are many tools for moving
people from awareness to desire.

Communicate that there's a better way. When building awareness, communication
centers on the key problems facing the organization or team adopting Scrum.
After we shift from building awareness to increasing desire, communication then
focuses on how Scrum can help address those problems. Mixing the two messages

56 Chapter 2 ADAPTing to Sc rum

(that the current approach isn't working well enough and that Scrum can help)
can cause some people to shut down and become unreceptive to either message.
However, as more employees become aware of the need to change, the change
agent's message can shift to one of evangelism. Lori Schubring, whose story started
this chapter, writes of the contagious nature of desire.

I was convinced agile could help us. I put a plan together, got
support from our director, and became the internal evangelist.
Because I believed so strongly, it was tough for anyone to ignore.
If people challenged the idea, I challenged them right back. My
desire caught on to some, others came along a little less willing.
A few key people took interest, and that really helped the rest of
the group open up to the possibilities of Scrum.

Create a sense of urgency. One way to turn awareness into desire is to turn up
the heat. By creating a sense of urgency, we make it clear to others that the status
quo cannot continue as such for long. Remember my awareness that I need to eat
more vegetables? Suppose my doctor called tomorrow and said that I would die
in six months if I didn't start eating broccoli, asparagus, cauliflower, and the like. I
would likely respond by figuring out how to like them.

Build momentum. Rather than focus on those who are reluctant or opposed to
Scrum, spend your time and effort helping those who are already enthusiastic.
Rather than argue what can or can't be done, do it with those who are will-
ing. The goal is to build an unstoppable momentum with each success leading
to another. When Steve Greene and Chris Fry of Salesforce.com look back on
their company's successful transition, they advise others to "focus on getting sev-
eral teams to excellence" (2008). Rather than spread support too thinly across all
teams, strive to make the adoption of Scrum look inevitable through these early
successes. Then others will desire to be part of it.

Get the team to take Scrum for a test drive. Rather than allow team members to
argue about Scrum in the abstract, have them get some quick experience with it.
Then they can discuss it and argue about specifics. A good approach is to agree to
a three-month trial. This will give the team ample opportunity to get past the first
one or two sprints, which are likely to still feel very uncomfortable. Hold a thor-
ough retrospective with the entire team at the end of the three months and col-
lectively decide how to move forward. The decision does not need to be "Scrum"
or "not Scrum." If the test drive was inconclusive or the team is divided, another
option is to continue the test drive for a few more months. Or perhaps the team

Desire

decides that it is not ready for a particular practice and chooses to temporarily
shelve it but will otherwise continue to work with Scrum.

Align incentives (or at least remove disincentives). There are many incentive pro-
grams, financial and otherwise, in organizations that can work against the adop-
tion of Scrum. Many organizations have bonus programs to reward one employee
for significant contributions to the team or department. Although such a program
may appear beneficial at first glance, it works against the "we're all in this together"
teamwork mentality we want of Scrum team members. Bonus programs that re-
ward testers based on the number of defects found (and logged in a defect tracking
system) have a similarly debilitating effect.

One organization I worked with revised its annual review form, removing the
individual-oriented criteria, such as job knowledge, time management, and ability
to balance multiple priorities. It replaced them with team-oriented criteria, such
as makes others better at their jobs, contributes to shared knowledge, willingness
to work beyond job title, and met team deliverable and quality goals.

In another company, I got the product owner and functional managers to
promise a unique nonmonetary bonus to the team if the product would be re-
leased on schedule with an agreed-upon set of features. Although the product
owner and managers trusted the team to continue to do high-quality work, I
asked the team members to propose a quality metric. I didn't want them to receive
their bonus by sacrificing quality. They proposed that quality would be measured
by the number of defects reported in the 30 days following release. Their goal
was to have fewer reported defects than two prior releases of a similar size. Four
months later the team delivered slightly more functionality than promised on the
planned date. When quality was measured a month later, the team members were
given their bonus—a four-week sprint during which they would be their own
product owners and could work on whatever they wanted. They took the op-
portunity to do some refactoring that had been bothering them. One tester took
time to explore a new testing tool. Two developers added a scripting interface to
a part of the application. This type of bonus was a win all around and avoided the
problems that tend to arise with cash or similar bonuses.

Focus on addressing fear. How we behave is often influenced by what we fear.
Because of bad past experiences, a product owner may fear an out-of-control
development organization that builds only what it wants. This leads the product
owner to prefer a development process with a detailed, up-front requirements
gathering phase, as this will prevent the developers from building only what they
want.

On the other hand, executive management may fear excessive schedule de-
lays. This leads them to favor a development process that provides early, precise

30 Chapter 2 ADAPTing to Sc rum

SEE ALSO
M a n y fears are t h e
resu l t of wa te r fa l l a -
c ies and agi le phob ias .
T h e s e are d i s cussed
In Chap te r 6, " O v e r -
c o m i n g Res i s tance . "
M a n y o the r fea rs are
a d d r e s s e d In t he ob jec-
t ion s idebars t h rough -
ou t th is book .

estimates of delivery dates. Managers almost always know they won't get the prod-
uct by the date promised. But, they reason, by getting the team to commit to an
early date and by keeping the pressure on them, they will get it earlier than they
would otherwise and can avoid large schedule slips.

An architect may favor doing a detailed up-front system design because she
excels at this. She fears that if the project's design phase is removed, then she will
look no more brilliant than her coworkers. When communicating with individu-
als whose desire may be impeded by a fear, look for opportunities to address why
the fears are likely unfounded.

Help people let go. People will not desire a new future until they can let go of the
past. Every transition brings with it the possibility of loss, and with loss comes grief.
Allow people time to grieve. Listen and accept their losses without arguing. Loss
is personal and subjective. You will never convince people who are grieving that
they are overreacting and that what was lost wasn't "that important." So don't try.

Don't discredit the past. In describing the transition and the brave, new agile
world you are moving to, do not downplay or discredit the past. Whatever devel-
opment process existed until now helped the organization succeed to the extent
it has. It deserves our sincere appreciation and respect. It couldn't have been all
bad.William Bridges, author oiManagingTransitions, describes the consequences of
building support for new initiatives at the expense of past efforts.

Many managers, in their enthusiasm for a future that is going
to be better than the past, ridicule or talk slightingly of the old
way of doing things. In doing so they consolidate the resistance
against the transition because people identify with the way things
used to be and thus feel that their self-worth is at stake whenever
the past is attacked. (2003, 34)

SEE ALSO
C h a p t e r 4 , " I t e r a t i n g T o -
w a r d A g i l i t y , " d e s c r i b e s
t he use of Improve -
m e n t c o m m u n i t i e s
as a w a y of engag ing
e m p l o y e e s In t h e t ran-
s i t ion to Sc rum.

Engage employees in the effort. Enlist as many allies at this stage as possible. An
ideal ally is an opinion leader who has earned the respect of a large part of the
audience you are targeting. The infectious enthusiasm of a few opinion leaders can
rapidly spread to others in the organization. Benoit Houle, a ScrumMaster with
BioWare, experienced this firsthand.

I was very fortunate to establish a great working relationship with
one of the senior programmers on the team who was very re-
spected. He was the ScrumMaster of our initial "pilot" Scrum
team for several sprints. He got extremely excited about the
process and bought numerous books about Scrum and Extreme

Abi l i ty 59

Programming. He did a great job as a ScrumMaster, and his en-
thusiasm was echoing in every corner of the office.

Get skeptics involved as well. Ask employees what they would need to see, ex-
perience, or know before wanting to try Scrum; then find ways to give it to them.

Ability
All of the awareness and desire in the world won't get a team anywhere if it does
not also acquire the ability to be agile. As we touched on briefly in Chapter 1,
"Why Becoming Agile Is Hard (But Worth It)," succeeding with Scrum requires
team members not only to learn new skills but also to unlearn old ones. Some of
the larger challenges Scrum teams will face include the following:

• Learning new technical skills. It is common for developers new to Scrum
to discover that while they are still good at their jobs, they aren't yet good
at being agile. They will have to develop skills they didn't require previ-
ously (or could justify ignoring). For example, programmers will need to
learn how to evolve the design of a system. Testers often must learn how
to test a system without as much reliance on documentation. Both usually
need to learn new ways of automating tests.

• Learning to think and work as a team. Many of us have enjoyed years of
working silently in a cubicle, headphones securely on, with as little team
interaction as possible. "You develop your part; I'll develop mine. We'll
talk if we find any problems when we integrate." Scrum teams are en-
couraged not to think in terms of my tasks and your tasks but of our tasks.
This forces collaboration among team members to new highs. Working
in this way also creates a mindset of shared responsibility that will be new
to many team members.

• Learning how to create working software within short timeboxes.
Scrum's short, focused, timeboxed sprints present significant challenges
to most teams who are new to working that way. Scrum teams strive to
avoid unnecessary handoffs from one specialist team member to another.
Developing working software by the end of each sprint will challenge
team members to find ways to eliminate wasteful handoffs and to work
more closely with each other.

Tools for Developing Ability
In most organizations, developing the ability to become agile (and then becoming
good at it) will take longer than building awareness or creating desire. Fortunately,
there are many good tools for developing ability, including the following:

60 Chapter 2 ADAPTing to Sc rum

Provide coaching and training. Scrum is sufficiently different from traditional soft-
ware development in that training along with on-site coaching or mentoring
is usually required. Lori Schubring, who led a successful Scrum adoption, says,
"Our ability to be successful with agile started with an educational process. In
my opinion, that was key. If we didn't understand something, we couldn't possibly
welcome it with open arms." Elizabeth Woodward, one of the leaders of IBM's
agile adoption, concurs.

We initiated our agile transformation by setting a goal to conduct
instructor-led two-day Disciplined Agile Development classes at
every major site world wide within the first quarter. Within the
first three quarters, we had taught over 4,400 software engineers
world wide. This was important for getting everyone on the same
page, for sharing the vision, and for building a sense of urgency.
We found that there was misinformation about agile that needed
to be addressed in order for teams to more willingly embrace
agile.

What seems to work best for most companies is some initial training, oriented
at creating a willingness to try Scrum and to understanding its core principles.
This general training is usually then followed up with practice-specific training
or coaching, such as bringing a test-driven development expert on-site to work
hands-on with teams in their code.

Shortly after initiating its Scrum adoption, Salesforce.com had me do an on-
site training course for more than 30 ScrumMasters, including some individuals
who would not be in that role on projects. Two months later it had me do a for-
mal, two-day training session for 35 product owners. Additional on-site coaches
were also brought in to work with the teams during this period. In hindsight, even
with this early and strong commitment to training and coaching, Chris Fry and
Steve Greene wish they had "trained product owners earlier and with more inten-
sity" and that they had gotten "outside coaching earlier."They offer the following
advice to companies transitioning to Scrum: "Get professional help" (2008).

Hold individuals accountable. Along with providing coaching and training, em-
ployees need to know they will be held accountable for applying the new skills
the organization is paying them to acquire.

Share information. While developing the ability to be agile, team members will be
awash with new information and challenges. Provide opportunities for them to
share information and problems. One way to do this is by cross-pollinating teams:
Encourage team members to occasionally attend another team's daily scrum

Abi l i ty 33

meeting or sprint review. Another option is to make use of the departmental
intranet, Wikis, communities of practice, and reading groups to disseminate infor-
mation.Yet another avenue for sharing is to ask those who have learned a new skill
to present a short training session on it to others. Or, if your group is large enough,
go further and have a day-long miniature agile conference. This is exactly what
Yahoo! did in its California headquarters. J. F. Unson, a Scrum coach with Yahoo!
at the time, describes the approach.

At Yahoo! we had a full-day internal open space conference,
where anyone could come in and propose topics. We had a
number of good sessions, especially ones dealing with enterprise
adoption, distributed agile, and so on. We had folks as far as the
UK schedule meetings around the open space and participate.
It really helps to build community within your company and
get people to come up with and own their solutions. Of course,
it helped that as a company we had critical mass to generate
enough participation. (2008)

IBM takes a similar approach, conducting two four-day meetings each year
that include technical leaders and managers from around the world plus the tech-
nical staff at the local site. Elizabeth Woodward describes how the company con-
ducts a number of smaller "mini-conferences" around the world for IBM employ-
ees adopting agile.

Each of those meetings has focused on agile, with presentations,
education, experience reports, and community working sessions
on agile topics. The working sessions were particularly produc-
tive because we were able to address key challenges such as using
Scrum in a distributed environment, with face-to-face debate
and discussion from a diverse, experienced group of people.

SEE ALSO
C o m m u n i t i e s of prac-
t i ce w i l l be desc r i bed
in Chap te r 17, "Sca l i ng
S c r u m . "

Set reasonable targets. Presented with a goal such as "be agile now," many teams
freeze, not knowing how to start. A successful Scrum transition needs to be split
into smaller pieces. So rather than asking a team to "start doing test-driven devel-
opment," the ScrumMaster should ask the team to develop one feature that way
in the next sprint. Similarly, organizations must balance a push for rapid progress
against the risk of pushing for too much too quickly. By encouraging teams to
select realistic, actionable targets, you can help them avoid the hesitation that can
occur before initiating any immense undertaking.

Just do it. Don't stall, waiting to know all the answers before you start. The best
way to develop the ability to do something is to start doing it. As Greene and Fry
advise, "Experiment, be patient, and expect to make mistakes" (2008).

62 Chapter 2 ADAPTing to Sc rum

Promotion
There are three goals during promotion. The first is to lay the groundwork for
the next pass through the ADAPT cycle. By promoting current successes you will
have a jump start on creating awareness for the next round of improvements. The
second goal is to reinforce agile behavior on existing teams by spreading the news
of the good things those teams have achieved. Finally, the third goal is to create
awareness and interest among those outside the groups directly involved in adopt-
ing Scrum. Many of those groups (such as human resources, sales, marketing, op-
erations, and facilities) can have a dramatic influence on the success of your transi-
tion. In the transfer phase, you will actively pursue making sure that such groups
will not pull the development organization back away from an agile mindset.

In seeking to promote Scrum, avoid turning your efforts into a marketing
campaign. Many employees have been through countless change initiatives. The
endless parade of such initiatives has left them jaded. Employees in many organiza-
tions have learned that if they don't like one change initiative, wait; another will
soon follow to replace it. An announcement that "we're going agile" is likely to
result in derisive comments and skepticism.

A good way to counter this cynicism is to avoid naming the transition effort.
Teams that have lived through the "Quality 2000" initiative that was followed by
"Better, Faster, Cheaper" and then "Customers First!" will not respond well to the
"Scrum and Proud of It" campaign. Organizational development expert Glenn
Allen-Meyer says that organizations name and brand their change initiatives be-
cause this type of marketing is what most organizations do.

When people at work hear the marketed messages of change,
they know they must either commit, comply, or leave.When they
do not see the value-adding features of the change, and they feel
they must comply in order to keep their jobs, then the differ-
ence between their true feelings and their compliance creates a
detachment—a schism—between themselves and their place of
work. (2000c, 24)

Getting coworkers to commit to a Scrum transition effort rather than merely
comply with it (perhaps waiting for it to blow over) is what we would like to
achieve with a successful promotion. One of Allen-Meyer's recommendations is
to keep the change process nameless (2000a). My experience from the transitions
I've directly managed, participated in, or observed confirms this.

One benefit to pursuing a nameless transition process is that it is harder to
resist what you can't name. Thomas, a team leader at a very large commercial
software developer, experienced this. After reading some of the early books and
articles on Scrum,Thomas thought it would be a good fit for his 40-person proj-
ect. Without any training or access to people with experience, he introduced

P r o m o t i o n 3 5

Scrum to the team. Employees were receptive and agreed to try. The team openly
promoted the fact that it was doing Scrum as there was no reason to hide it. U n -
fortunately, it misunderstood a few key elements of Scrum and failed miserably.

W h e n I met Thomas, he was still interested in Scrum and had continued read-
ing about it and learning more. Since his failed project, he'd attended a conference
and a two-day training class. Eighteen months had passed since the team's failed
attempt at Scrum, and Thomas felt ready to give it another go. So did his team.
Despite failing earlier, team members had gotten enough of a glimpse of the ben-
efits that they were willing to try again. Unfortunately, the unique vocabulary of
Scrum—ScrumMaster, sprint, product backlog, daily scrum, and even Scrum itself—had
taken on negative connotations within the organization. Thomas knew he would
not be able to tell his boss they were going to use Scrum again. H e told his boss
that they would instead use "agile." (Note the lowercase a rather than the capital
A, which would have again implied a brand.) Thomas and his team went on to
successfully apply their version o f a g i l e , " which was Scrum without the giveaway
vocabulary.

Tools for Promoting Scrum
Having established that coming up with an effective naming strategy and match-
ing T-shirts is one tool we won't use to promote the change process, let's turn our
attention to some tools we can use.

Publicize the success stories. As always, communication plays a key role during
the promotion activity of the ADAPT cycle. It is especially important to broadcast
the successes of the early adopters of Scrum within the organization. A study by
McKinsey & Company found that in successful change efforts, the emphasis was
on encouraging employees to build on successes rather than on having them fix
problems (2008). Promotional activities help shift employees' energy away from
all the problems they uncovered during awareness and focus them instead on the
successes they have been able to achieve.

A great way to communicate success is through internal experience report
presentations f rom teams that have already adopted Scrum. Noth ing beats hearing
from someone who is already doing it. These experience reports can be combined
with a general "Introduction to Scrum" presentation so that those unfamiliar with
Scrum can learn not only what Scrum is but also hear one team's story of using it.
If teams have begun collecting metrics, those can be included in the presentations
as well. Early metrics may be nothing more than a survey showing the percentage
of people who enjoy using Scrum, the percentage who think it has made them
more productive, and the percentage who think quality is higher. Later you can
add more rigorous metrics.

SEE ALSO
A n ed i tab le , red is t r ibu t -
ab le p resen ta t i on fo r
i n t roduc ing S c r u m is
avai lable at w w w .
m o u n t a i n g o a t s o f t w a r e .
c o m / s c r u m - a -
p resen ta t i on .

SEE ALSO
S o m e me t r i c s are
p r e s e n t e d in Chap te r
21, " S e e i n g H o w Far
You ' ve C o m e . "

64 Chapter 2 ADAPTing to Sc rum

Fortunately, the best way to promote the transition to Scrum requires no ef-
fort on your part. As Benoit Houle, ScrumMaster at BioWare, puts it: "Like viral
marketing, the best vehicle was word of mouth. The staff who worked on an agile
team praised the process—greater team ownership, more predictability, less wasted
effort and crunch time. Others heard and wanted to be part of it."

Matt Truxaw, a development manager and agile advocate at First American
CoreLogic, had a similar experience.

I liken the agile process to a whirlpool that builds over time,
sucking in new people and groups as it builds. We started with
limited buy-in from the developers themselves. By regularly talk-
ing about it and helping to promote the successes, we got more
developers excited about the process. Working both from within
the teams and providing coaching and guidance to the project
management group, we gained acceptance across most of that
team.

Host an agile safari. One of my favorite ways to promote Scrum comes from
Google. Team members who are curious about agile but who haven't had the op-
portunity to work on an agile team are allowed to go on an "Agile Safari."When
employees go on safari, they join an agile team for a couple of weeks to get a feel
for what agile is like and how it works. They experience agile "in the wild" rather
than merely reading about it. I really like this idea because it addresses a concern
Machiavelli identified 500 years ago when he wrote that people "do not truly
believe in new things unless they have actually had personal experience of them"
(2005,22).

Attract attention and interest. Shamelessly seek attention. The more often people
hear about Scrum (or better, see it or experience it), the better you will be doing
at the goal of making its ultimate adoption seem inevitable. A few months into
her department's transition, Lori Schubring attracted attention to the effort in a
novel way.

We also held an "Open House" on Halloween for the business
to come visit our department and see what we were doing with
Scrum. We created a Scrum-themed crossword puzzle and gave
away prizes. We put up posters explaining the different aspects
of Scrum such as the Scrum Board, Burndown Chart, Product
Backlog, and ScrumMaster. We gave away prizes and provid-
ed food and beverages. The internal information services staff
helped make the food and decorate the building, and the event
was a huge success.

Trans fe r

In their book Fearless Change, Mary Lynn Manns and Linda Rising point out
that providing food is always a good idea. N o t only will you get more attendees,
they are likely to be in a better mood (2004). Benoit Houle brought food to sprint
reviews at BioWare to encourage broad attendance at those meetings, which he
says were "a great way to promote the successes. Everyone in the company was
invited to attend." Houle also successfully used team rooms and walls full of index
cards detailing the work of the sprint to attract attention and interest.

Our war rooms full of 4" X 6" cards, team composition pictures,
and burndown charts were also quite communicative of our team
progress and accomplishments. Because of limited wall space in
team rooms, we started to spread miles of corkboards within our
corridors for our task boards and to show team progress and
achievements.

Transfer
After three years of pushing, attending literally thousands of daily scrums himself,
and running dozens of one-day "Intro to Scrum" classes for more than 500 team
members, Gino had much to be proud of. Much of the development department
was now using Scrum. Gino had started the company's shift to Scrum when he
was one of its many development managers. Through early results by his teams, he
gained a promotion to director of a new group in the company called the "Scrum
Office."The Scrum Office provided support and services to any team that wanted
help. It was similar to the project management office (PMO) of a company doing
traditional software development. Gino was good in his new role and soon had
more than half of the company's development staff working on projects that were
to some extent agile. Before the transition was fully realized, Gino accepted a big-
ger, better position at a company with bigger, harder challenges in transitioning
to Scrum. Back at his old company, the Scrum adoption eventually failed—not
because Gino was no longer there, but because no one (not even Gino) ever trans-
ferred the implications of Scrum outside the development organization.

I visualize Scrum as a rocket. Pushing that rocket forward is the power of its
engines. But pulling it back are the forces of gravity. If the rocket is able to push
far enough, it can enter into orbit. But if it cannot, it will inevitably get pulled
back to earth, right where it started. The implications of Scrum must be pushed
far enough into other parts of the organization so that the entire transition is not
pulled back by organizational gravity.

Gino did a wonderful job of gaining acceptance for Scrum among program-
mers, testers, project managers, database developers, user experience designers,
analysts, and so on. But the use of Scrum by more than 500 developers never

64 Chapter 2 ADAPTing to Sc rum

led to changes in human resources, sales, marketing, or other groups. The same
individual-oriented bonus and annual review programs existed. Salespeople could
still promise one-off enhancements to customers without first discussing such
promises with teams.

It is impossible for a development team to remain agile on its own perma-
nently. If the implications of using Scrum are not transferred to other departments,
organizational gravity from those departments will eventually stall and kill the
transition effort. By this, I do not mean that the rest of the organization needs to
start using Scrum. What I mean is that the rest of the organization must become
at least compatible with Scrum.

SEE ALSO
T h e n e w role of p rod-
uc t o w n e r Is desc r i bed
In Chap te r 7, " N e w
Ro les . " Changes to
t h e role of t e s t e r are
desc r i bed In Chap te r 8,
" C h a n g e d Ro les . "

Sources of Organizational Gravity
Previous sections in this chapter provided a list of tools you could use to help
move your organization forward in ADAPTing to Scrum. There is really only
one tool for transferring agile to other departments: communicating with those
departments. So, rather than provide a list of tools, let's look instead at the depart-
ments or groups most likely to possess a lot of organizational gravity. These are
the groups that deserve attention during the transfer part of the ADAPT cycle.
In working with these groups, maintain a goal of educating, not evangelizing.
You want other groups to understand how the development organization benefits
from Scrum. You do not need to convert them into staunch supporters of your
process. Rather, you want them to understand some of its unique principles and
how those might lead to friction between your group and theirs.

The following is a list of groups to whom you must transfer the implications
of using Scrum. Notice that I have not included testing and product management.
These groups are fundamental participants in Scrum rather than groups to which
the effects of Scrum are transferred. Involvement of product owners and testers
in Scrum is critical and needs to be established at the beginning of the transition
effort.

SEE ALSO
Imp l i ca t ions of
S c r u m on t h e h u m a n
resou rces g roup are
d i s cussed f u r t he r In
Chap te r 20, " H u m a n
Resources , Faci l i t ies,
and t h e P M O . "

SEE ALSO
Imp l i ca t ions of S c r u m
on t he fac i l i t ies g roup
are d i s cussed f u r t he r In
Chap te r 20.

Human resources. A development organization using Scrum and the human re-
sources (HR) group are likely to clash in a number of ways. Many organizations
have human resources policies that work against the successful adoption of Scrum.
A periodic review process that forces managers to rank employees from most to
least valuable will undermine efforts to encourage teamwork. Equally damaging
is a review process that values individual contributions while ignoring teamwork.

Facilities. Tales of meddling from the "Furniture Police" are common (DeMarco
and Lister 1999). Many teams are told they cannot hang index cards, burndown
charts, or others signs of progress or work on the walls. Few teams are allowed
to adjust their own cubicles; many have learned that the best way around this is

Transfer

to tear down or move cubicles over the weekend in the vein of "it's better to ask
forgiveness than permission." Benoit Houle ofBioWare has a more encouraging
story of successfully transferring the implications of Scrum to his facilities group.

Facilities redesigned our floors to support agile team rooms. They
built us bigger rooms to support teams of six to eight people. Our
facilities team has a web application that catalogues everyone's
location and allows us to easily submit a move through our in-
tranet. We all have the same desks, so most of the time the only
items we are moving are the computer and accessories. It is quick
and painless.

Marketing. In many organizations, development groups are so bad at projecting
ship dates that the marketing group stops asking and just makes them up. This also
happens in organizations where the marketing group is much more powerful than
the development group and can therefore dictate desired dates. In transferring the
effects of Scrum to the marketing group, a key focus should be on educating them
about the transparency provided by Scrum.

Most marketing groups don't like having to lock down plans a year in advance
any more than development teams do.The marketing group may need to schedule
an ad campaign nine months in advance. But, just like development teams, they
usually prefer to have a little flexibility. Rather than specify the exact contents of
the ad now, they'd prefer to commit today to running an ad but specify the exact
contents of the ad closer to publication date. A Scrum team's progressive refine-
ment of plans combined with its strict adherence to dates should prove beneficial
to marketing groups that are open to it.

Finance. The finance group often intersects with Scrum projects in two areas.
First is the forecasting of project schedules and budgets. It will be important to
get the finance group to understand that—regardless of the development process
employed—a team cannot create an estimate that is accurate within 5% from a
new product description written on a napkin. Such unrealistic requests usually
come from a finance department that has been burned in the past by bad estimates
from development teams. It will take time to restore the finance group's confi-
dence and trust in developers.

After a few Scrum teams have started to demonstrate success with the new
approach, it is usually helpful to meet with your finance department. In that
meeting, acknowledge past project-planning sins, but also show that while Scrum
still cannot guarantee on-time delivery, it can provide early exposure to possible
schedule slips.

64 Chapter 2 ADAPTing to Sc rum

THINGSTO
TRY NOW

The second area in which development and finance often intersect is in the
tracking or reporting of hours. Although Scrum does not require a team to track
hours worked, the team should be willing to do so if the finance department
needs this information. This would be the case, for example, in a contract develop-
ment company that bills customers by the hour.

Related to the tracking of hours can be a finance department's desire to capi-
talize the cost of the project. Capitalizing a project refers to spreading the develop-
ment cost over the projected useful life of the project rather than accounting for
those costs in the month they occurred. Capitalization guidelines vary from coun-
try to country, and many of them are based on outdated concepts, including that
a project cannot be capitalized until technical feasibility has been demonstrated.
From past exposure to development processes, we've trained finance departments
to think that technical feasibility is achieved after analysis and design are done.
Without distinct analysis and design phases on a Scrum project, the finance group
may find it hard to determine when technical feasibility has been achieved.

I've discussed this with many finance departments and have always been able
to make the case that technical feasibility is achieved after no more than a few
sprints. After all, if the team has produced working software that includes one
feature from the finished product, then it must be technically feasible. While I can
understand the counterarguments to this position, those arguments could also be
applied to considering something technically feasible after analysis and design are
done but when nothing has been coded.

There are groups beyond these to whom you will need to eventually also
transfer the implications of Scrum. For example, you may work with a project
management office, sales, information technology, operations, hardware develop-
ment, and other groups with organizational gravity. Transferring the implications
of Scrum to them will be important to your long-term success.

• Ident i fy the A D A P T act iv i ty that m o s t c losely descr ibes you. Do
th is for your t eam, your depa r tmen t , and your organizat ion. Ident i fy
th ree th ings you cou ld do to m o v e one of t hese to the next level of
adaptat ion. Choose one (or w o r k w i t h your t e a m to nar row d o w n
the list, if applicable) and begin to i m p l e m e n t it.

• If you have already begun to adopt Scrum, th ink about p romot ion .
Ident i fy w a y s to p romo te your early successes so that o thers be-
c o m e int r igued by the process.

Putting It All Together
Like Scrum itself, ADAPTing to Scrum is iterative. It begins when some in the
organization develop an awareness that the current way of working is no longer

Addi t ional Reading

producing acceptable results. As awareness spreads, some individuals develop the
desire to try Scrum in an attempt to improve the situation. Through trial-and-
error, these early adopters within the organization develop the ability to be suc-
cessful with Scrum. A new status quo may emerge with a small number of teams
successfully using Scrum within a broader organization that does not.

As these initial Scrum teams continue to improve their use of Scrum, they be-
gin to promote their successes—sometimes informally as might occur over lunch
with friends on another team, other times more formally as in a department-wide
presentation. This helps individuals on other teams begin their own progressions
from awareness to desire to ability. And then soon these other teams begin to pro-
mote their successes as well.

All of this early success is nice, but it is jeopardized if adopting Scrum is
viewed as something that occurs entirely within the development organization.
For continued long-term success, it will be necessary to transfer the implica-
tions of using Scrum to other departments that will be affected, including sales,
marketing, operations, human resources, and facilities. These groups do not need
to use Scrum—we don't need salespeople drawing burndown charts or facilities
doing daily scrums. But, unless these groups make small but important changes in
how they interact with the development group, they will affect the development
group's ability to be agile.

In the next chapter, we'll explore choices among patterns you can emulate as
you become able to transition to Scrum. We'll consider whether it's best to start
small or go all in and how much promotion should occur at the beginning of the
transition effort. We'11 also discuss several ways to spread Scrum beyond your initial
project or projects. Understanding the ADAPT process laid out in this chapter will
inform the decisions you will be asked to make in the next.

Additional Reading
Derby, Esther. 2006. A manager's guide to supporting organizational change. Crosstalk,
January, 17—19.

In this article, Esther Derby, coauthor wi th Diana Larsen of Agile Retrospectives (2006),
presents ten insights on what a manager can do to support a change initiative. Most of
the insights are focused on the awareness and desire phases.

Hiatt, Jeffrey. 2006. ADKAR:A model for change in business, government and our community.
Prosci Research.

A D K A R , which is an acronym for Awareness, Desire, Knowledge, Ability, and
Reinforcement , is a generic model for personal and organizational change. It served
as an inspiration in creating the A D A P T model. This book offers excellent, al though
general, advice on awareness, desire, and ability.

Chapter

P a t t e r n s f o r A d o p t i n g S c r u m

here are many different routes an organization can take to adopt Scrum. For-
tunately, f rom looking at companies that have already transitioned, we are able to
identify some common patterns of how to do it successfully. In this chapter, we
look at the strengths and weaknesses of four patterns, as well as when each may be
appropriate. The four patterns fo rm a pair of questions that must be addressed at
the start of any Scrum adoption effort. These questions are as follows:

• Should we start with one or two teams, or should we convert all teams
at the same time?

• Should we announce our intent (perhaps just to others in the company
but perhaps publicly as well), or should we keep the change quiet for
now?

In addition to providing guidance for answering those two questions, we ex-
plore three options for spreading Scrum after the initial effort is underway. Finally,
the chapter concludes by considering how soon a new Scrum team should begin
focusing on adopting agile technical practices.

Start Small or Go All In
Conventional, long-standing advice regarding transitioning to Scrum or any agile
process has been to start with a pilot project, learn from it, and then spread agile
throughout the organization. This approach is the frequently used start-small pat-
tern in which an organization selects typically one to three teams (of five to nine
people each), gets them successful, and then expands Scrum from there. As Scrum
spreads through the organization, new teams benefit f rom the lessons learned by
the teams that have gone before. There are many variations of start small, depend-
ing on how many people the organization wants to transition and how quickly
they want to do it. Start small can also be applied differently based on how risk-
averse or uncertain about the transition the organization is. For example, in some
cases the first team or teams will finish their projects before a second set of teams

4 3

72 Chapter 3 Pat terns for Adop t i ng Scrum

even begins. Other organizations will take an overlapping approach, where the
second set of teams starts only one or two sprints after the first.

The start-small pattern, while popular, is not for everyone. Salesforce.com,
for example, followed the opposite pattern (Fry and Greene 2006). I remember
answering my phone on October 3, 2006, and hearing Chris and Steve from
Salesforce.com tell me that they had just converted 35 teams to Scrum overnight.
They asked if Fd like to help. My initial thought was that they needed a psychia-
trist more than a Scrum consultant. Not one to shrink from a challenge, though,
I agreed to help, packed a copy of Freud alongside my laptop, and set off for their
office in San Francisco. Part of what I saw there wasn't entirely unexpected—
teams and individuals in an uproar over such a sudden, far-reaching change—but
I also saw other things that helped this large-scale, rapid adoption succeed.

Salesforce.com was pursuing the all-in pattern, which draws its name from a
poker player who bets all of his chips on one hand. Salesforce.com has a hard-
driving, aggressive, achievement-driven culture that would not have been a good
fit for a cautious start-small approach.When key executives were presented with a
proposal to adopt Scrum, they were convinced. They felt that if Scrum was worth
doing for one team, it was worth doing for all teams, so they chose to go all in.

Surprisingly, the all-in and start-small patterns can be combined. An increas-
ingly common approach is a one- to three-team pilot project followed immedi-
ately by going all in. The pilot in this case serves the typical purpose of allowing
the organization to learn about Scrum and how it will function there. However,
the pilot in this scenario also serves the more important purpose of increasing
organizational awareness about Scrum. If you're going to transition 200 or more
people all at once, it is extremely helpful to be able to point to one team who has
already done it and say, "We're all going to do what they did."

Reasons to Prefer Starting Small
The start-small approach offers several advantages.

• Starting small is less expensive. An all-in transition will almost certainly
cost more than starting small. Because of the greater number of people
learning a new way of working all at the same time, all-in transitions
generally rely more heavily on outside coaches, ScrumMasters, and train-
ers. The slower pace of a start-small adoption allows the organization
to build internal expertise and then use that to help the teams that start
later. Starting small also saves money because early mistakes affect only a
subset of the organization. Tom Gilb, who was perhaps the original agilist,
has written, "If you don't know what you're doing, don't do it on a large
scale" (1988, 11).

• Early success is almost guaranteed. By carefully selecting the initial proj-
ect and team members, you can almost guarantee the success of your first

Start Small or Go All In

Scrum project. You may consider this cheating; I don't. When starting
small, a goal of the first few projects is to generate the knowledge that
will enable the successful rollout of Scrum. There may be value in starting
with a project and team that make success easy and then learning from its
experiences. Additionally, an early success can be vital to gaining buy-in
from skeptics or fence-sitters.

• Starting small avoids the big risk of going all in. An all-at-once transi-
tion can be very risky. Small mistakes will be magnified across the entire
transition effort. Perhaps the most significant risk to an all-in approach is
that you will be unlikely to get a second chance. If you start to transition
the entire organization, make a mistake that increases resistance, and then
revert to your pre-Scrum process while figuring out how to overcome
the newly discovered issues, it is unlikely that team members will give you
a second chance to start the transition. Resistance by that point will likely
be so entrenched that the transition effort will have failed. By contrast, if
you start small and find a fatal flaw in how you've started, you can keep
the next round the same size as the current one, rather than expanding,
effectively restarting the transition process.

• Starting small is less stressful. Twenty-first century organizations and
their employees are under constant stress. An announcement that the
whole development organization is adopting Scrum, which affects so
many aspects of everyday work, could be the proverbial straw that breaks
the camel's back. The stress of transitioning is reduced by starting small
because early adopters become coaches and ambassadors.They encourage
other groups to make the transition with stories of their successes and
honest discussions of the challenges they faced and overcame.

• Starting small can be done without reorganizing. Most organizations that
fully adopt Scrum will eventually undergo some degree of reorganizing.
This can create further stress and can increase resistance from some in-
dividuals. By starting small, the need to reorganize can be put off longer,
ideally until valuable experience with Scrum has been gained.

Reasons to Prefer Going All In
Just as there are reasons to prefer starting small, there are reasons to prefer an all-in
transition:

• Going all in can reduce resistance. In anything less than an all-at-once
transition, there will always be some skeptics who will hold out hope
that the whole effort is a pilot that will soon be abandoned. Like Cortez
burning his boats at Vera Cruz to prove his resolve to his soldiers, an or-
ganization that goes all in is demonstrating both its commitment to the

4 6 Chapter 3 Pat terns for Adop t i ng Scrum

SEE ALSO
A d v i c e on h o w a
S c r u m t e a m can bes t
w o r k in con junc t i on
w i t h a t rad i t iona l t e a m
is o f f e r e d in Chap te r 19,
" C o e x i s t i n g w i t h O t h e r
A p p r o a c h e s . "

new process and also that it will not turn back. This level of visible com-
mitment to the change can be beneficial in helping the change succeed.
It avoids problems created by having Scrum and traditional teams work
together. If you transition anything short of the entire company all at
once, you run the risk of having some teams using Scrum and others not.
This means there will be times when a Scrum team needs to coordinate
work with a traditional team, which creates challenges because of the
different attitudes Scrum and traditional teams bring to things like plan-
ning, deadlines, and communication. These problems go away when the
entire organization adopts Scrum at the same time. Chris Fry and Steve
Greene ofSalesforce.com report that "the key factor driving us toward a
big-bang rollout was to avoid organizational dissonance and a desire for
decisive action. Everyone would be doing the same thing at the same
time" (2007, 137).
An all-in transition wi l l be over more quickly. One of the central tenets
of this book is that an organization is never "done" becoming agile; there
are always improvements to be made. However, there is definitely a time
when employees can look back and say of the transition that the worst is
over. An organization that goes all in can reach this point more quickly.

SEE ALSO
W e exp lo re w a y s to
sp read S c r u m to o the r
t e a m s later in th is
chapter .

Choosing Between Going All In and Starting Small
As I mentioned at the start of this chapter, starting small has been the default ap-
proach recommended by most agile authors and used in most agile adoptions.
The combination of this approach's low risk and high likelihood of success make
it hard to find fault with. Always choose to start small when there is a reluctance
by leaders in the organization to fully commit to Scrum. Success, even on a small
scale, can be the best way to convince the skeptics. Always start small when there is
a high cost associated with failure. If the cost of failure is too high for those lead-
ing the transition, starting small is the way to go, even if it may not be best for the
organization as a whole. Start small is probably not the best approach when your
organization urgently needs the benefits of Scrum. (But if you do choose to start
small, scale quickly.) Starting small is safe, but it's slow.

Going all in should be used in limited cases. Consider going all in if time is
critical. Although an all-in approach may cost more money, it will cost less time. If
time is your primary concern, all in may be the best solution. Consider going all
in if you, like Salesforce.com, want to send a clear message to a small number of
critics and stakeholders that Scrum is here to stay. Never go all in without enough
experienced ScrumMasters to serve each team. It doesn't matter in the short term
whether these ScrumMasters are internal or external; but remember that eventu-
ally you'll want all of your ScrumMasters to be internal employees. Finally, size

Publ ic D isp lay of Ag i l i t y or S tea l th

matters. If there are only ten of you, you might as well go all in. But for teams of
more than perhaps 400, going all in may not be logistically possible.

Whichever route you choose for adopting Scrum, remember that choosing
this pattern is only the first of the many decisions you'll need to make when tran-
sitioning. You will next need to decide whether to make your transition public.

Public Display of Agility or Stealth
The next choice to make is whether or not to publicize your transition. One op-
tion is to make a public display of agility. In this approach, the team or organization
announces with great fanfare that it is adopting Scrum. Depending on the scope
and significance of the transition, the announcements may range f rom lunchroom
comments to other teams all the way up to press releases in the national media.
N o matter the extent of the publicity, with a public display of agility, teams make
an effort to inform others that something agile is going on.

In contrast to a public display of agility is a stealth transition. In a stealth tran-
sition, only the team members know they are using Scrum until the project is
complete. I found a group doing a stealth transition at one of my clients. O n my
first visit to this client, I spoke with Sarah, the director of the company's project
management office. She told me that the transition to Scrum was well underway.
It had begun shortly after I delivered a two-day training class to many developers
in its headquarters office. Sarah shared with me a well-thought-out plan she had
outlined to introduce Scrum across her company's more than 200 developers.

Sarah's plan showed four initial pilot teams, each of which had been selected
for specific reasons. One team was chosen for its willingness to relocate into a
shared team space very different f rom the dedicated cubicle environment in use at
the time. Another team was chosen because it would be one of the first to use a
new technology in which the company was making a significant investment. The
other two teams were selected to be part of the pilot for equally good reasons.
Sarah's plan was great because it would enable teams to maximize the learning
right f rom the outset of this transition effort.

I left Sarah's office planning to visit each of the four teams so that I could
get their perspective on how things were going. Strangely, though, I didn't find
four teams—I found five. W h e n I figured out which of the five wasn't one that
Sarah had told me about, I went back and talked with that team some more. I
discovered that it was not an officially sanctioned part of Sarah's pilot effort. The
members had noticed the goings on of one of the official teams, liked what they
had seen, and decided to try it themselves.They had a vague sense that they prob-
ably shouldn't be doing what they were doing and had placed their wall-hanging
task board and burndown chart well inside a labyrinth of cube walls. I had only

76 Chapter 3 Pat terns for Adop t i ng Scrum

stumbled across it because I was unfamiliar with the building and had gotten lost
looking for one of the official teams.

This team was doing a stealth transition. Members were using Scrum but
were keeping their activities to themselves until the project was complete. There
are varying degrees of stealth—some teams may actively try to keep what they're
doing quiet while others merely don't publicize the change.

Reasons to Favor a Public Display of Agility
There are many good reasons for making a public display of agility. Among them
are the following:

• Everyone knows you're doing it, so you're more likely to stick with it.
Standard advice to anyone attempting to adopt or abandon a habit is to
solicit the help of your friends. Whether you are starting a diet, quitting
smoking, or starting an exercise program, telling your friends about the
change is a good idea. You'll likely feel an unspoken pressure to succeed
because you've announced your intentions; your friends will also be able
to support and encourage you. The same is true when transitioning to
Scrum.

• A public display establishes a vision to work toward. Publicly proclaim-
ing your intent provides an opportunity to create thought and discus-
sion around the goal. With the intent out in the open, team members
will feel comfortable talking about the transition with those outside the
team. They'll be able to share successes and failures. Those interested in
the transition (perhaps wishing they could be part of it) will offer advice;
those opposed will offer resistance. A public display can provide the op-
portunity to engage both groups, providing the opportunities to encour-
age the former group and to overcome the objections of the latter.

• Operating in the open is a firm statement of your commitment. A stealth
transition can be perceived as a bit wishy-washy. It is as though the team
or organization is saying, "We believe in this but we want to hedge our
bets by having the chance to back away if it doesn't go well." There's no
backing away from a public display. It makes a powerful statement that not
only does the organization plan to initiate the transition, but it also plans
to be successful at it.

• You can solicit organizational support. If you're trying to keep the use
of Scrum quiet, you'll have limited ability to reach outside the team for
assistance. There are many obstacles you may encounter as you transition;
before abandoning the assistance of possible allies in overcoming them,
make sure the advantages to stealth are compelling.

• Stating your goal and then achieving it sends a powerful message. An-
nouncing at the end of a project that the project was successful because

Public Display of Agi l i ty or Stealth

it secretly used Scrum is much less compelling to skeptics than telling
them up front. Baseball player Babe Ruth's most famous home run was
the 1932 "called shot." With a count of two balls and two strikes, Ruth
pointed to the centerfield fence and hit the next pitch into the centerfield
bleachers. Saying what you'll do and then doing it is more powerful than
announcing your goal after it has been achieved.

Reasons to Favor a Stealth Transition
Stealth transitions may seem a bit sneaky, but there are actually quite a few advan-
tages to keeping a low profile. These include

• You have a chance to make progress before resistance starts. A public
announcement about the transition will bring resistors and naysayers out
of the woodwork. Their best chance to avert the change is before it gains
much momentum, and so they will argue strongly against it after it is
announced.

• A stealth transition keeps additional pressure off. If adopting Scrum is
a high-publicity affair with proclamations in company newsletters, the
intranet, and so on, the team can feel a great deal of pressure to succeed—
both at the project and at the transition. For teams that thrive under pres-
sure this might be good. However, when the project is finished you won't
know if it had been successful because of Scrum or because of the ad-
ditional pressure the team was under. Bob Schatz and Ibrahim Abdelshafi
did not announce a grand change of process when they led Primavera's
successful transition to Scrum.

One of the first things we didn't do was start telling every-
one that we planned to use a new process. We didn't want
to make people apprehensive, and we wanted to give them
time to adjust to the changes. Plus, when you run around
announcing your new process and all its benefits, you can
quickly set unrealistic expectations. (2005, 37-38)

• No one knows about it until you tell them. When Operating in stealth mode,
you can wait until the project is successful before indicating that the proj-
ect was run in a different way. Or, if the project fails, you can adjust how
you are doing Scrum, try again, and only tell people after you've figured
out the nuances of doing so that lead to success in your environment.

• If no one knows you're doing Scrum, no one can tell you to stop. If you
start so quietly that no one but the individuals involved know, there's
no one who can tell you to stop. I've seen individual teams choose the
stealth approach under the premise of it being easier to ask forgiveness
than permission. I've also seen vice presidents of development or project

78 C h a p t e r 3 Pa t te rns fo r A d o p t i n g S c r u m

management offices choose to introduce Scrum in stealth mode so that
they could prove tangible benefits before having to debate the merits of
Scrum with groups they knew would resist.

Choosing Between a Public Display and Stealth
I find that organizations willing to make a public display of agility are more
likely to enjoy a successful transition than those that try a stealth approach. Always
choose to make the transition publicly known when you are confident in Scrum
and committed to the transition. Similarly, strongly consider a public display if you
expect there will be stiff resistance to the change but want to overcome it quickly.

In contrast, choose a quieter approach when you want to experiment either
with all of Scrum or just parts of it. For example, maybe you introduce daily
meetings—don't call them daily scrums in this case—and see how that works.
Then introduce the idea of working in timeboxed sprints. If these go well, maybe
start calling what you're doing agile or Scrum and proceed from there. Additionally,
always choose a stealth approach when it is your only option. If you don't have
the political clout to say, "We're doing Scrum," or if doing so will create too much
resistance, start quietly.

Patterns for Spreading Scrum
Getting started with Scrum is one thing; spreading it across the organization is
another. Unless you have chosen an all-in transition, you will need to build upon
the successes of the first few teams as you move Scrum into other teams. There are
three general patterns you can use for spreading Scrum beyond the initial teams.
The first two patterns involve taking a team that has begun to be successful with
Scrum and then using its members to seed new teams. The third pattern takes a
different approach and involves spreading Scrum using internal coaches.

Split and Seed
The split-ami-seed pattern is typically put into use after the first couple of teams
have adopted Scrum and run at least a handful of sprints. By that point, team
members are beginning to understand what it is like to work on a Scrum team.
They certainly won't have figured everything out, but sprints should be ending
with working software, and team members should be working together well. In
short, the team probably has a long way to go to get good, but Scrum is starting
to feel natural.

It is at this unlikely point that we split the team up.

Patterns for Spreading Scrum 51

In the split-and-seed pattern, one functioning Scrum team is split in two, with
each half of the original team forming the basis of a new team. New people are
then added to these splinter teams to form new Scrum teams. This pattern is
shown in Figure 3.1, which shows the creation of two teams from one original
team. A large initial team could be used to seed as many as four new teams, espe-
cially if the initial team included some members with previous Scrum experience
or a natural aptitude for it.

The new team members can be either newly hired employees or existing
employees moving onto their first Scrum projects. The idea behind the split-
and-seed pattern is that newly formed, second-generation Scrum teams will have
an easier time learning the mechanics and practices of Scrum because they will
have guidance from the experienced members of the team. The new teams are
left together for a few sprints until that team begins to jell and its new members
have developed a feel for Scrum.Then, again, the functioning teams are broken up
into smaller teams and new members are added to fill out the teams. This cycle is
repeated until Scrum has been fully introduced.

In a large, enterprise rollout of Scrum, you do not need to leave each genera-
tion of teams together for the same number of sprints. You can instead split each
team whenever it's ready.

Grow and Split
The grow-and-split pattern is a variation of the split-and-seed approach. It involves
adding team members until the team is large enough that it can be comfortably
split in two, as shown in Figure 3.2. Immediately after splitting, each of the new
teams will probably be on the small end of the desirable size range of five to nine
members. After allowing the new teams one sprint at this reduced size, new mem-
bers are added until each team becomes large enough that it can also be split. This
pattern repeats until the entire project or organization has transitioned.

FIGURE 3.1
T h e s p l i t - a n d - s e e d
p a t t e r n a p p l i e d t o
t w o i n i t i a l t e a m s .

52 Chapter 3 Pat terns for Adop t i ng Scrum

FIGURE 3.2
T h e g r o w - a n d - s p l i t
p a t t e r n u s e d t o cre-
a te t w o t e a m s .

O O

Internal Coaching
Philips Research's Scrum adoption is an example of the third pattern for spread-
ing Scrum: internal coaching. Philips had begun adopting Scrum and was facing a
problem. Like many organizations, it had some teams that were excelling with
their new agile approach and others that were struggling. Philips' Christ Vriens
solved the problem by using internal coaching. On each team that was doing well,
he identified one person who truly understood what it meant to be agile and
designated that person as a coach to another team that had not yet progressed as
far in its understanding and use of Scrum.

Coaches were given specific responsibilities, such as attend sprint planning,
review, and retrospective meetings; attend one daily scrum each week; and be
available for two hours each week to provide other assistance to the mentored
team as needed. Coaches were not excused from their responsibilities on their
original teams, but it was acknowledged that each coach would have fewer hours
to contribute to those teams.

Reasons to Prefer Split and Seed
The split-and-seed pattern's advantages are rooted in its quick-spreading nature.

• You can add teams more quickly than with most other approaches. Each
new team should ideally include at least 2 members of the previous team.
This means that possibly as soon as after 2 or 3 sprints, a team of 8 people
could conceivably be split into four 2-person groups used to seed a sec-
ond set of teams. If each of those 4 teams had 8 people you would have 32
Scrum team members. A few sprints later these 32 people could be used
to seed 16 more teams, each with 8 team members for a total of over 100
Scrum-experienced people after only 5 or 6 sprints.

• Each team has someone with Scrum experience to help guide them. Only
the very first teams to transition will be forced to do so without someone

Patterns for Spreading Scrum 81

on the team with Scrum experience. All subsequent teams will benefit
from having at least two (and hopefully three or four) team members
with at least a couple of sprints of experience under their belts. This can
help reduce the discomfort some people will feel about transitioning to
something new and unfamiliar.

Reasons to Prefer Grow and Split
The grow-and-split pattern spreads Scrum a bit more slowly than does the split-
and-seed approach but comes with some key advantages.

• You don't have to destroy any existing teams. The primary problem with
the split-and-seed strategy is that teams who are just starting to jell and
get a handle on Scrum are demolished to form the basis of new teams.
Breaking up a good team is always something that should be done with
caution. Growing the team before splitting it overcomes this shortcoming
because the team is kept together until it is large enough to form two
complete teams, each with agile experience.

• Team members feel more continuity from sprint to sprint. When using the
split-and-seed pattern, teams are constantly being split and reformed be-
fore a true sense of team camaraderie is established. Because the grow-
and-split approach divides a team only when it has gotten too big, mem-
bers can stay together longer, and there is less feeling of disruption.

Reasons to Prefer Internal Coaching
The internal coaching approach is generally my preferred approach. Not surpris-
ingly, there are a strong set of advantages to it, including the following:

• Well-running teams do not need to be split. A drawback to the prior pat-
terns is that functioning teams are split to form the foundations of new
teams.When using internal coaches, teams stay intact with only the minor
disruption of an occasional outsider (the coach) joining the team.

• Coaches can be hand-selected for new teams. An approach like the split-
and-seed pattern takes a whole-team approach to coaching: The new
team is coached collectively by the seeding team members. Some of those
individuals will be good in that role; some will not. With internal coach-
ing, the most appropriate coach can be selected for each new team.

• Coaches can be moved from team to team. After awhile a team and its
coach become stale. A fresh pair of eyes can be helpful in identifying new
ways to improve.When internal coaches move from team to team they act
like bees, pollinating each team with new ideas.

82 Chapter 3 Pat terns for Adop t i ng Scrum

Choosing Your Approach
There are two driving factors in choosing among these three patterns for spreading
Scrum: How quickly do we need to spread Scrum to additional teams, and do we
have good internal coaches who can assist the new teams? The answers to these ques-
tions will be key to helping you choose the pattern that best fits your organization.

In general, consider using split and seed when you are in hurry. The split-
and-seed approach can be one of the fastest ways to spread Scrum through an
organization. The approach can be accelerated in a couple of different ways: First,
you can split teams a bit earlier than might be ideal. Second, you can split teams
into more new teams than might be ideal, perhaps four new teams instead of two,
even if this means that some new teams get some less-than-ideal coaches from the
earlier teams.

Be cautious, though, about using split and seed if the technology and domain
cannot support moving people among teams. Changing team membership is al-
ways detrimental to productivity. That loss can be offset, however, by the benefits
of quickly spreading Scrum through a large project or organization. However, in
some cases, it is just not practical to move people between teams. For example,
seeding a .NET team with Java programmers just because they have three sprints
of Scrum experience would not be a good idea.

The grow-and-split pattern is perhaps the most natural approach, as it mirrors
what would probably happen if no one intervened to help the spread of Scrum. In
most organizations, people move between projects, carrying good practices with
them. The grow-and-split approach is simply a more directed approach than let-
ting this happen naturally, which would take much, much longer.

Consider using grow and split when there is not enough urgency to push you
to the split-and-seed approach. Because growing and splitting a team is a less ag-
gressive (and less risky) approach than splitting and seeding a team, it is often used
in similar situations but when there is a bit less urgency. Also consider using grow
and split when the team size is growing anyway. True to its name, the grow-and-
split approach works best when teams are expanding.

Internal coaching can be used as a spreading strategy on its own, or it can be
used to augment either of the other approaches. This approach works best under
certain conditions:

• When the group is large enough that good practices won't fully spread on
their own. One of the strengths of this pattern is that coaches can move
from one team to another, spreading good practices as they do so. If your
organization is small enough that sharing good practices won't be a prob-
lem, then you may not need this approach.

• When splitting teams is not practical for your projects. If any of the draw-
backs to splitting teams concern you, the internal coaching approach is a
good antidote.

In t roduc ing N e w Technical Pract ices

• When you have enough internal coaches or can bring in outside help. An
ideal coach is someone who fundamentally understands Scrum and has
probably worked in an agile way for years before even hearing the word.
These individuals can be hard to identify in advance; they aren't necessar-
ily the most experienced team members. If you don't have enough good
coaches, consider using one of the other patterns initially. After enough
teams have run a few sprints, you can begin to augment a seeding ap-
proach with internal coaches.You can also spread the coaches you do have
out a bit more by having each coach assist more than one team. If budget
allows, you can also bring in outside consultants until you have built up
your internal coaching corps.

Introducing New Technical Practices
One final decision facing change agents, ScrumMasters, and new Scrum team
members themselves is how soon the team should adopt new technical practices.
One school of thought is that everything should start with the technical practices.
If a team is using the right technical practices—simple design, automated testing,
pair programming, refactoring, and so on—then agility will be the natural result.

The alternative view is that a team should be left alone longer and given time
to discover the technical practices that work best in its environment. ScrumMas-
ters, managers, and coaches may eventually nudge a team toward trying different
practices. "Would this have happened if we had more automated tests?" a Scrum-
Master might ask the team. But in general, the team is given longer at the start to
work without pressure to adopt or even try specific new technical practices.

In this section, we'll consider both the reasons to encourage an early start at
trying new technical practices and the reasons why delaying might be a better
choice.

Reasons to Start Soon
There are three very good reasons for putting an early emphasis on adopting new
technical practices:

• Very rapid improvements are possible. Many of the technical practices
can provide some quick wins to the team and organization. Pair program-
ming, for example, can help cross-train programmers across more areas of
the system. Introducing a continuous build process can reduce integra-
tion hassles to near zero. Other practices—test-driven development, for
example—have steeper learning curves, but even these are measured in
days and weeks rather than months and years.

84 Chapter 3 Pat terns for Adop t i ng Scrum

• If the team doesn't try new technical practices early, it might never try
them. Too many Scrum teams adopt the bare minimum of Scrum and
stop there, deciding that the improvements already achieved through their
new iterative and incremental work style are sufficient. By not consid-
ering or trying new or improved technical practices, these teams forgo
much of the improvement they could have made. I tend to think of such
teams as having learned to work iteratively but having not become ag-
ile. Gabrielle Benefield reports having witnessed this problem at Yahoo!
while she was the company's director of agile product development.

The most visible symptoms of dysfunction in Yahoo! prod-
uct development were at the project and team layer (cen-
tered around issues of planning, project management, re-
lease management, and team interactions), rather than at the
technical practices or tools layer. As a result,Yahoo!'s initial
focus was on the adoption of Scrum. There was active de-
bate about whether agile engineering practices should also
be adopted in parallel; in hindsight, it would have acceler-
ated the benefits had they been. (2008,461)

• It may address the project's most pressing issues. Introducing a team to
the agile technical practices can solve an array of typical project problems,
including poor quality, over-engineered solutions, long delivery cycles,
and so on. There are other problems, though, that are not addressed by in-
troducing these practices. For example, a project with a disengaged prod-
uct owner will experience slow or incorrect decision making. This prob-
lem will not be remedied solely by introducing new technical practices.
The same is true for a project with multiple product owners, each with a
competing agenda, or for a project with strong personality clashes among
team members. If your project's most pressing issues are ones addressed
by one or more of the common agile engineering practices, consider
emphasizing those practices early in the transition.

Reasons to Delay
Just as there are strong reasons for encouraging a team to adopt new engineering
practices early, there are also reasons why it may be better to wait:

• There may be strong resistance to some practices. Introducing certain
technical practices can be one of the most difficult challenges you face
when transitioning. Many individuals are extremely reluctant to try new
things, such as simple design, pair programming, and test-driven develop-
ment. Although you may have good reasons to push the team to try new

One Final Considerat ion

practices close to the outset, they will need to be weighed against the risk
of increased resistance.

• Team members may already have their hands full. Just learning the fun-
damentals of working on a Scrum team can be challenging in many or-
ganizations. The added stress of also learning new technical practices may
simply be too much for some teams, causing them to shut down and
not try. Given enough time, the pressure of delivering working software
within Scrum's strictly timeboxed sprints may bring these same teams to
the realization that they need to try new technical practices.

One Final Consideration
This chapter presented two questions that will confront any organization transi-
tioning to Scrum: Start small or go all in? Public display of agility or stealth? An-
swers do not need to be binary—there is a great deal of middle ground between
starting small and going all in for most organizations. The patterns for spreading
are similar. They can be used on their own or combined as needed to fit your par-
ticular circumstances. Perhaps, for instance, you first decide to split and seed, but as
time passes, and enough teams exist, you can slow down and let teams grow before
splitting them, while also speeding learning through the use of internal coaching.
In addition, no matter what pattern you choose, leaders of the transition effort
(and those participating in it) must address how much to change at any one time
for the team or teams transitioning. Attempt to change too much and teams are
disoriented; change too little and you risk exhausting people through a marathon
of small changes.

Joshua Kerievsky, a senior consultant with the Cutter Consortium, is in favor
of enacting all changes at once. He is opposed to what he calls "piecemeal transi-
tions" because he says they

• Are more painful because the change process is protracted

• Fail to address root problems

• Rarely lead to complete transitions

• Produce changes too slowly for the business to benefit from

• Tend to be done without expert help, resulting in making easily avoided,
costly mistakes (2005)

Although Kerievsky raises some good points, they ultimately derive from
thinking of the transition to agile as a one-time thing that can be completed. On
the contrary, adopting an agile approach such as Scrum is a process of continuous
improvement. There is no predefined end state. Because of this, it is incorrect to
talk about a "complete transition" or a change process that takes too long. Change

86 C h a p t e r 3 Pa t t e rns fo r A d o p t i n g S c r u m

is no longer something organizations "go through." Change is now a perpetual,
ongoing occurrence.

Wri t ing in the Agile Journal, Liz Barnett presents a different view than
Kerievsky's.

Starting slow is the way to go. For the vast majority of compa-
nies interested in agile practices, incremental adoption represents
the most pragmatic way to improve their software development
organizations while managing risk. As they implement organi-
zational, process, and technology changes, teams can continually
reassess their progress and determine the most pragmatic next
steps. It's the agile way to become agile. (2008)

Kent Beck and Cynthia Andres, authors of Extreme Programming Explained,
agree, acknowledging the near necessity of starting with a subset of practices and
new ways of working and then improving one thing at a time.

It's easy to start by changing one thing at a time. I think it's hard
to j u m p in and do all the practices, embrace all the values, and ap-
ply all the principles in novel circumstances by reading this book
and deciding to do i t .The technical skills in X P and the attitudes
behind them take a while to learn. XP works best when it is done
all together, but you need a starting place. (2004, 55)

This brings us to our next chapter. After you've decided to transition to Scrum,
understood the ramifications of change, and made your decisions regarding the
pattern you are most likely to emulate, it's time to begin making the changes
Scrum requires. As Beck and Andres so aptly point out, the best way to do that is
iteratively. We explore how to use the Scrum framework, along with specialized
communities of practice called improvement communities, to adopt and spread
Scrum, bring about continuous improvement, and transfer agile ideas throughout
the organization.

Additional Reading
Beck, Kent, and Cynthia Andres. 2005. Getting started with XP:Toe dipping,
racing dives, and cannonballs. PDF file at Three Rivers Institute websitewww.
threeriversinstitute.org/Toe%20Dipping.pdf.

Beck and Andres use entering a pool to describe three different approaches for adopt-
ing Extreme Programming. Toe dippers enter slowly, adopting one practice at a time.
Cannonballers make a big splash and deal with the sudden chaos it creates but transi-
tion quickly. They describe a racing dive as an "assisted cannonball," referring to doing
a lot of changes quickly but with guidance from an experienced coach.

Addit ional Reading

Benefield, Gabrielle. 2008. Rol l ing out agile in a large enterprise. In Proceedings of the
41st Annual Hawaii International Conference on System Sciences, 461—470. IEEE Compu te r
Society.

This paper provides detailed information on Yahoo! s large Scrum adoption ef-
fort. Details on bo th what was done right and what could have been improved are
included.

Elssamadisy, Amr. 2007. Patterns of agile practice adoption:The technical cluster. C4Media.
This book, which is available as a P D F throughwww.infoq .com, focuses on the tech-
nical practices that should be adopted by agile teams. As such, it is complementary to
the patterns presented in this chapter.

Hodgetts, Paul. 2004. Refactor ing the development process: Experiences wi th the
incremental adoption of agile practices. In Proceedings of the Agile Development Conference,
106-113. IEEE Compu te r Society.

This paper summarizes Scrum trainer Paul Hodgetts ' experiences from transitioning
a handful of teams to agile. H e contrasts the advantages and disadvantages of incre-
mentally adopting agile wi th adopting it all at once based on experiences wi th those
projects.

Striebeck, Mark. 2006. Ssh! We are adding a process In Proceedings of the Agile 2006
conference, ed. Joseph Chao, Mike Cohn , Frank Maurer, Helen Sharp, and James Shore,
185-193. IEEE Compu te r Society.

Mark Striebeck describes h o w agile was introduced to the AdWords f ront-end appli-
cation at Google. H e describes the combination of a start-small and stealth approach,
wi th new practices added incrementally.

http://www.infoq.com

Chapter ^

I t e r a t i n g T o w a r d A g i l i t y

istorically, when an organization needed to change, it undertook a "change
program." The change was designed, had an identifiable beginning and ending,
and was imposed from above. This worked well in an era when change was nec-
essary only once every few years. Christopher Avery has written, "I think in the
1960s and 1970s this approach was probably more frequently successful than it
has been in the 1990s and today because the frequency of change has intensified
as competition has become global, and the model has broken down" (2005, 18).
Avery continues by saying that "if the changes are coming so fast and furious that
programmed change won't work, perhaps we have to arrange ourselves (organiza-
tionally speaking) to digest many more smaller changes on a continual basis" (20).

Whether you are just starting to adopt Scrum or you are at the point where
you are ready to fine-tune your use of Scrum, you should manage the effort in an
agile way. Following an iterative transition process—making small changes on a
continual basis—is a logical way to adopt a development process that is itself itera-
tive. Doing so will be much more likely to result in a successful and sustainable
transition. This is why I believe that the effort of adopting Scrum is best man-
aged using Scrum itself. With its iterative nature, fixed timeboxes, and emphasis
on teamwork and action, it seems best suited to manage the enormous project of
becoming and then growing agile with Scrum.

In 2004, the leaders of Shamrock Foods realized that change was coming too
quickly in their industry. As one of the ten largest food distributors in the United
States, Shamrock had for 20 years used a conventional, top-down strategic plan-
ning process, dedicating months each year to creating a 5-year plan that was out of
date before the ink dried. To address this problem, C E O Kent McClelland aban-
doned the company's 20-year-old approach and began to apply a Scrum-based
iterative strategic planning process.

Shamrock's process revolved around quarterly strategic "scrums"
[sprints]: Team members met at an offsite location for a day to
evaluate the company's performance against the action plans
from the previous quarter. We asked them to identify the most
important things they had learned about the company's strategy

90 Chapter 4 I terat ing Toward Agi l i ty

since the previous meeting and to suggest how those insights
should be integrated in the strategy going forward. The group
created new action plans for the upcoming period. In addition to
the quarterly scrums [sprints], the participants met every year for
three days, during which time people were asked to step further
back and revisit the company's strategic assumptions. (McFarland
2008,71)

Forty-five managers and employees participated in these sprints and were
chosen to represent each division and functional area. At the start of each quarterly
sprint, this group selected up to a handful of key areas in which they agreed the
company should improve. These were referred to as themes. Because Shamrock
was applying Scrum to an organizational improvement effort rather than software
development, the themes represented broad business goals. Examples included
increasing revenue on Shamrock's house brands, improving how it serviced large
customers like Burger King, and improving the company's ability to recruit, retain,
and develop good talent.

Many corporate improvement initiatives fail because plans are not made spe-
cific and actionable. Because they were using Scrum, Shamrock employees went
beyond just identifying themes for improvement: "Planning participants created
and prioritized a handful of specific and measurable strategic initiatives that would
advance each strategic theme. Then they built detailed action plans and set mea-
surable outcomes they thought could be achieved within 90 days" (McFarland
2008,71).

Not only does the Shamrock story illustrate the broad applicability of Scrum,
it serves as an example of how Scrum can be used to manage an organizational im-
provement effort. In this chapter, we look at how to use Scrum first to adopt Scrum
and then to continuously improve by engaging communities of like-minded em-
ployees, such as the 45 people who guided Shamrock's improvement effort.

The Improvement Backlog
Just as Scrum development projects use product backlogs, you should use an im-
provement backlog to track the effort of adopting Scrum in your organization. An
improvement backlog lists everything that the organization could do better in its
use of Scrum. When IBM began to adopt Scrum, its improvement backlog in-
cluded the following items:

• Increase the number of teams using Scrum.

• Increase adoption of test automation.

• Enable teams to implement continuous integration.

The Enterpr ise Transit ion C o m m u n i t y 91

• Figure out how to make sure each team has a product owner.

• Determine how we're going to measure the impact of adopting Scrum.

• Increase the use of unit testing and test-driven development.

Improvement backlogs, such as the one shown in Table 4.1, are dynamic, with
items coming and going as they are thought of, completed, found unnecessary,
and so on. Much of what we discussed in Chapter 2,"ADAPTing to Scrum," will
find its way onto an improvement backlog. If you're just starting with Scrum,
your improvement backlog will emphasize creating awareness and desire. If the
transition is already well underway, your improvement backlog may contain more
items around developing the ability to do Scrum well, to promote successes, or
to transfer it to other groups. Similarly, decisions about which patterns to use, as
described in Chapter 3, "Patterns for Adopting Scrum," can create items on an
improvement backlog.

A small department or single-project transition may involve a single improve-
ment backlog. But when Scrum is being adopted across a large site, department,
or organization, the transition effort becomes large enough that multiple improve-
ment backlogs are used, each of which is created by a community of individuals
who are passionate about improving the organization in a particular way. There
may be, for example, a community and associated improvement backlog for figur-
ing out how best to do automated testing on Scrum projects, another for develop-
ing and becoming great ScrumMasters, and so on.

Additionally, in a large transition effort, there is what might be considered a
master improvement backlog, which is maintained by the group that guides the
organization's overall transition. It is to that group that we turn our attention next.

The Enterprise Transition Community
The small group that initiates, encourages, and supports an organization's effort
to introduce and improve at Scrum is known as the Enterprise Transition Com-
munity, or ETC.1 The Enterprise Transition Community exists to create a culture
and environment where change can be released by those who are passionate about
the success of the organization and where success leads to more passion from more
people. The ETC does this not by imposing changes on the organization but by
guiding groups who are implementing changes, by removing obstacles to doing
Scrum well, and by creating energy and excitement for the change.

The members of the ETC, who usually number no more than a dozen,
come from the highest level involved in the transition to Scrum. If a company is
adopting Scrum organization-wide, the ETC should include senior people from

1 T h e acronym E T C is consistent wi th Ken Schwaber's in The Enterprise in Scrum, al-
though he refers to it as the "Enterprise Transition team" (2007).

6 4 C h a p t e r 4 I t e r a t i n g T o w a r d A g i l i t y

TABLE 4.1
A n i m p r o v e m e n t
b a c k l o g is a l is t o f
c a p a b i l i t i e s t o be
d e v e l o p e d , w o r k
t o be p e r f o r m e d ,
o r i s s u e s t o be ad -
d r e s s e d w i t h i n t h e
o r g a n i z a t i o n .

e n g i n e e r i n g or deve lopmen t plus vice presidents o f g roups such as p roduc t
m a n a g e m e n t , marke t ing , sales, operat ions , h u m a n resources, and so on . For a
depar tmen ta l adop t ion of Sc rum, the E T C may inc lude the vice president o f
e n g i n e e r i n g a long w i t h the heads of Q A , deve lopmen t , archi tecture, in terac t ion
design, database, and so on . T h e key here is that the E T C is m a d e u p of the mos t
senior peop le for the level at w h i c h the t ransi t ion is occu r r ing .

I tem Responsible Note

Create a Scrum Office (like a
Project Management Office) where
teams can get help.

Jim (CTO) to talk this up at
monthly development meet-
ing. Let's see if there's any
interest.

Establish an internal program for
developing ScrumMasters.

H o w do we identify good
internal candidates? H o w do
we develop them?

Collect and disseminate Scrum suc-
cess stories in our company.

SC Savannah has expressed inter-
est in this.

Develop a continuing education
program internally.

Consider quarterly open space
meetings. Identify and contact
industry experts for one-hour
lunch meetings.

Start doing lots of automated unit
testing (even if its not test-first) and
using FitNesse.

The Scrum team that makes
the most progress on this
(as voted on by everyone in
the department) can have
all members attend next
summer's Agile conference.

Help a community form to decide
how much up-front architecture is
enough.

T G Tod to start soliciting volun-
teers but says he can't commit
to any goals for it until next
quarter.

Resolve dispute with facilities over
rearranging second floor cubicles.

JS Jim to talk to Ursula in facili-
ties about budget for this.

Craft message on why we're adopt-
ing Scrum; have Jim discuss it at his
monthly meeting.

JS Next meeting is 25 March.

Some t imes S c r u m is i n t roduced in to an organizat ion in a grassroots manner .
O n e t e a m tries S c r u m and successfully comple tes a projec t , o thers b e c o m e in t e r -
ested, and S c r u m spreads f r o m there. In this si tuation, an E T C is usually f o r m e d

The Enterpr ise Transit ion C o m m u n i t y 65

spontaneously by some of these early Scrum advocates who ask their boss to
be allowed time to help other teams learn Scrum. At some point, impediments
arise that need the help of that boss, who then joins the ETC. Alternatively, in an
enterprise-wide Scrum adoption, the ETC is usually formed more deliberately
when the decision is made to widely adopt Scrum.

As an example of an ETC, consider the case of Farm Credit Services of
America, a lending and financial services cooperative that works with farmers
in the American Midwest. As part of adopting Scrum, Farm Credit formed an
Enterprise Transition Community it calls the Agile Champions Team (ACT).The
16 or so individuals on the ACT participate on the team for between 6 to 24
months depending on their role in the organization and ability to commit time
to the team. Because the transition at Farm Credit covers the organization's en-
tire information services and business departments, ACT members are chosen to
equally represent all functions involved.The Farm Credit ACT meets every other
week for two hours and augments those meetings with occasional longer offsite
meetings.

Comprising both formal and informal leaders, the ACT often works on issues
that arise between the information services department and the broader business.
It has resolved issues related to a lack of stakeholder involvement in projects, the
proper use and meaning of deadlines, and executive leadership misperceptions of
what agile is and can do for the company. Quinn Jones is a software developer at
Farm Credit who served what he calls a six-month "tour of duty" on the ACT. He
says, "One of the best things to come out of the Agile Champions Team is the
wide-open, smack-down brown bag sessions where all are welcome to ask ques-
tions and share knowledge. These meetings have also helped uncover root chal-
lenges in agile, which could then be addressed by the ACT."

• W r i t e a pre l iminary i m p r o v e m e n t backlog by conven ing a 30- or
60-minu te meet ing . Invite ei ther your t e a m m e m b e r s , a f e w people
you k n o w wi l l be in terested, or the w h o l e depar tmen t . Bra ins torm
th ings that y o u ' d like to see improved. Conc lude the m e e t i n g by
ask ing if there is su f f ic ient passion to pursue just one or t w o of the
i tems, and then start w i t h those.

ETC Sprints
Because the ETC uses Scrum, it makes progress in sprints, exactly like a Scrum
development team would. Each ETC sprint begins with a planning meeting and
ends with a review and retrospective. These meetings are completely analogous
to those held by Scrum development teams and often have the same problems.
Thomas Seffernick, of KeyCorp, a large U.S. financial institution, participated in
the first sprint review of his organization's ETC, which it called an Agile Enable-
ment Team. He recalls how that team made a mistake common to many new

THINGSTO
TRY NOW

94 Chapter 4 I terat ing Toward Agi l i ty

Scrum development teams—talking about its plans rather than demonstrating
its progress.

That first Agile Enablement [ETC] sprint review was painful as
leaders stood up and described their plans to remove the im-
pediments they volunteered to address. The message was clear—
plans are good, but results count. The dynamic of those reviews
changed from that point, and results became the focus. (2007,
202)

Some ETCs hold daily scrums, and I think that is a good practice. But, I am
not as insistent upon this as I am with a Scrum development team. The work
being done by members of an ETC is not as tightly interwoven as the work of
a development team, making a daily scrum a great thing to do but not essential.
Similarly, ETC members are rarely full-time. Most have demanding jobs already,
and in many cases it is beneficial for them to remain in their jobs. A development
director who stays in that position, for example, can likely remove more organi-
zational impediments than a development director who steps out of that position
to serve on the ETC.

The length of an ETC sprint is up to its members. However, in my experi-
ence two-week sprints work best. This is also the sprint length recommended by
Ken Schwaber (2007, 10). Elizabeth Woodward, a member of the ETC that is
guiding the large-scale adoption of agile at IBM, describes the company's sprint
length experience.

We've used both two-week and four-week sprints. And, so far,
the greatest success we've seen is with those on two-week sprints.
I believe the reason is that the "deliverables" demonstrate mo-
mentum and visible progress. We capture the efforts from each
community in a brief digest—a nice e-mail message that people
can read in about fifteen minutes.

The Sponsor and Product Owner
Most successful Scrum adoptions have been initiated or driven by an identifiable
sponsor, who is a senior person in the organization responsible for the success of
the transition. Salesforce.corn's highly successful large-scale transition was spon-
sored by company cofounder Parker Harris. As the executive vice president of
technology, Harris was well positioned to champion a change that would dramati-
cally alter how everyone in the Salesforce.com development organization worked.

The transition's sponsor should come from the same level in the organization
at which the transition is being planned. Salesforce.com needed an executive as

T h e En te rp r i se Trans i t ion C o m m u n i t y 95

its sponsor because it was doing an enterprise-wide transition. If you are involved
in a departmental transition, a department-level leader is an appropriate choice.

The sponsor is also the product owner for the ETC. This means that some-
times an E T C will have a product owner with little direct experience with Scrum.
That's OK. Like all product owners, the sponsor of the E T C can fulfill the role by
calling on other E T C members for help. As the ETC's most senior member, the
sponsor will play a significant role in communicating about the transition effort,
but this person does not need to be the sole source of the vision.

Primavera learned the importance of a strong sponsor when it adopted Scrum.
Bob Schatz and Ibrahim Abdelshafi, technology executives within Primavera at
the time, write about the importance of a sponsor's support.

Adopting agile, or implementing any significant change, requires
an executive's sincere support. It can be a bumpy ride until things
settle down, and having executive support lets the learning take
hold despite any problems or failures. (2005, 38)

It is critical that the sponsor demonstrate commitment to the transition effort
by participating on the ETC. Good sponsors do not initiate a transition, proclaim
support for Scrum, and then remove themselves f rom the effort of getting there.
If a sponsor is not committed, others will not be either. Scrum coach and author
of Collaboration Explained, Jean Tabaka considers a checkbook-only commitment
f rom a sponsor to be one of the most likely reasons a Scrum adoption might fail:
"Agile adoption requires a passionately engaged sponsor willing to make tough
organizational changes that serve agile teams and their success" (2007).

Although it would be fair to characterize E T C members as leaders of the
Scrum adoption effort, theirs is not what we think of as conventional leadership.
Wri t ing in Harvard Business Review, internationally respected management author
Henry Mintzberg describes the necessary type of leader.

Communityship requires a more modest fo rm of leadership that
might be called engaged and distributed management. A commu-
nity leader is personally engaged in order to engage others, so
that anyone and everyone can exercise initiative. (2009, 141; em-
phasis his)

Mintzberg goes on to say that during an organizational change like adopting
Scrum, "we need just enough leadership—leadership that intervenes when appropri-
ate while encouraging people in the organization to get on with things."

68 Chapter 4 I terat ing Toward Agi l i ty

" T h e s p o n s o r o f o u r t r a n s i t i o n p ro j ec t says he's c o m m i t t e d , b u t he's
u n a b l e t o c o m e t o a n y m e e t i n g s o r t o p u t a n y t i m e i n to t h e e f f o r t . He
g i v e s us a n y t h i n g e lse w e need , b u t w e can ' t ge t a n y o f h is t i m e . "

You probably have the w r o n g sponsor. A l though his w i l l i ngness to suppor t
the t ransi t ion in other w a y s is admirable, a success fu l Scrum transi t ion
requires s o m e of the sponsor 's t ime. You don ' t w a n t to lose th is power -
ful ally, but you may need to look for a d i f fe ren t sponsor. Al ternat ively,
you may w a n t to negot ia te w i t h your sponsor for a smal l a m o u n t of his
t ime. The ETC can then priori t ize h o w that t i m e shou ld be spent . It could
perhaps be in mee t i ngs or as a public suppor te r of the t ransi t ion in other
f o rums .

Responsibilities of the ETC
An ETC is a working group. It is not a steering committee. During sprint plan-
ning, the ETC commits to completing some amount of work and demonstrating
it at the end of the sprint. However, even more important than the tangible things
the ETC accomplishes is that it ignites the interest of others. Members of the
ETC can only achieve so much themselves.They will need to rely on others in the
company to do most of the work of adopting Scrum and becoming agile. Change
management experts Edwin Olson and Glenda Eoyang concur.

In a self-organizing system, the leader has an important role to
play, but creative and long-lasting change depends on the work
of many individuals at many different levels and places in the
organization. (2001, 5)

One of the most important jobs of the ETC is creating energy around the
adoption of Scrum. Not everyone will be excited by the change, of course. But
the ETC needs to ignite the passion of those who will work to make adopting
Scrum successful. ETC members do this by showing their own enthusiasm and by
participating in constructive dialogue about the changes occurring. To ignite the
passion of others in the organization so that they become involved in the type of
creative and long-lasting change needed to adopt Scrum, the ETC is responsible
for the following:

• Articulate the context. Beyond conveying a vision of the organization's
agile future, the ETC must also help employees both understand the need
to change and develop a desire to change. They do this by articulating the
context of the change: Why? Why now? Why Scrum? Members of the
ETC use their seniority, personal credibility, and more to get others to
understand the answers to these questions.

The Enterpr ise Transit ion C o m m u n i t y 69

Stimulate conversation. All sorts of good things happen when people
talk. Debating the merits of various technical practices, sharing success
stories, probing reasons for failure, and other discussions will generate
ideas.
Provide resources. Adopting Scrum will take time, effort, and money. For
example, individuals who are trying to figure out how to be more agile
(say, learning how to write automated unit tests on a complicated code
base) may need to be granted time away from their development projects.
Because the ETC includes the most senior people involved in the transi-
tion, the ETC is in a position to ensure that both time and money are
available.
Set appropriate aspirations. Change efforts with clearly defined and truly
transformational goals are ten times more likely to succeed (McKinsey &
Company 2008).The ETC is responsible for setting and communicating
appropriate goals for the transition, which may (and probably should)
change over time as the organization improves. The ETC may establish
goals such as moving from one annual release to quarterly releases, a 50%
decrease in post-release defect rate, or so on.
Engage everyone. Scrum has long tentacles and will reach into many areas
of the organization. The ETC makes sure that the transition effort does
not become narrowly focused on just one group. Within the groups that
are affected, broad participation is encouraged.

SEE ALSO
A d v i c e on appropr ia te
m e t r i c s for measur -
ing y o u r p rog ress is
o f f e r e d in Chap te r
21, " S e e i n g H o w Far
You ' ve C o m e . "

Additional Responsibilities
Beyond encouraging people to engage in the transition, the ETC has the follow-
ing additional responsibilities:

• Anticipate and address people issues. The ETC should try to antici-
pate which groups or individuals are going to struggle the most with the
changes brought about by Scrum and proactively work with them. The
cross-functional makeup of the ETC helps in this regard as it allows the
group to see problems from multiple perspectives.

• Anticipate and remove impediments. Members of the ETC are respon-
sible for removing any organizational impediments to adopting Scrum or
doing it well. Beyond merely removing impediments it is informed of,
the ETC should try to anticipate obstacles and remove them before they
cause problems.

• Encourage a simultaneous focus on practices and principles. Adopting
Scrum involves incorporating new practices and valuing new principles.
An organization cannot adopt the practices without the underlying prin-
ciples, nor can it adopt the principles without the practices. An effective
ETC looks for imbalances in how each is being adopted. If one is being

7 0 C h a p t e r 4 I t e ra t ing T o w a r d Ag i l i t y

accepted faster than the other, the E T C can bring them back in line by
directing conversation, attention, and resources toward the laggard.

If an E T C performs these tasks well, not only will it be moving the organiza-
tion forward on its own, but it also will have generated interest and excitement
among others in the organization. To harness that passion, individuals with a com-
m o n interest in improving the organization in a particular way (perhaps its adop-
tion of automated testing) come together, fo rm a community of their own focused
on that improvement, and then run their own sprints. These communities are
known as improvement communities and are the topic of the next section.

" I c a n ' t g e t t h e o r g a n i z a t i o n a l b a c k i n g t o c r e a t e a n ETC. C a n I s t i l l
t r a n s i t i o n t o S c r u m ? "

Yes. Star t w i t h w h a t e v e r s p h e r e of i n f l u e n c e y o u do have. Ge t y o u r t e a m
t o d o S c r u m . If it is s u c c e s s f u l , p e o p l e w i l l no t i ce . Pe rhaps a n o t h e r t e a m
w i l l w a n t t o do S c r u m a n d ask fo r adv ice . Or a m a n a g e r w i l l g e t i n t e res ted .
A s p e o p l e g e t i n t e r e s t e d , s ta r t t h e c o m m u n i t y i n fo rma l l y as j u s t a f e w
p e o p l e w h o g e t t o g e t h e r occas iona l l y to ta lk a b o u t h o w S c r u m is g o i n g
a n d w h a t c o u l d be d o n e bet ter . A g r a s s r o o t s a p p r o a c h is v e r y f eas ib l e bu t
w i l l t ake longer to sp read .

THINGSTO
TRY NOW

• If y o u d o n ' t a l ready have an ETC or e q u i v a l e n t g r o u p , i den t i f y sev -
eral peop le w h o o u g h t t o be on t h e ETC. If y o u are o n e of t h e m ,
beg in f o r m i n g t h i s g roup . If y o u are no t , share t h e idea of an ETC
a n d i m p r o v e m e n t c o m m u n i t i e s w i t h o t h e r s in y o u r o rgan iza t ion
w h o can he lp f o r m t h e s e g roups .

Improvement Communities
An improvement community (IC) is a group of individuals who join together to
work collaboratively to improve the organization's use of Scrum. An IC may form
when individuals notice an item on the ETC's improvement backlog and decide
to work together to achieve that goal. Or an IC may fo rm because individuals see
and are passionate about an improvement opportunity that hasn't made the ETC's
radar yet. IBM, for example, has five ICs, which are focused on test automation,
continuous integration, test-driven development, the role of the product owner,
and the general use of Scrum itself

I m p r o v e m e n t C o m m u n i t i e s 71

The Enterpr ise Transit ion C o m m u n i t y and imp rovemen t c o m m u n i t i e s
I a m referr ing to are special ized t ypes of w h a t are k n o w n as communi-
ties of practice (Wenger, M c D e r m o t t , and Synder 2002). A c o m m u n i t y of
pract ice is a group of l i ke-minded or l ike-skil led individuals w h o volun-
tari ly c o m e toge the r because of their passion and c o m m i t m e n t a round a
technology, approach, or vision. W e wi l l see other t ypes of c o m m u n i t i e s
of pract ice th roughou t th is book. They wi l l be thorough ly d iscussed in
Chapter 17, "Scal ing Scrum."

Graphically, the relationship between an organization's one ETC and its mul-
tiple ICs can be seen in Figure 4.1. The ETC guides the transition process; it does
not direct or manage it. A big part of its role is fostering an environment in which
ICs form and dissolve organically in pursuit of improving how the organization
builds products.

f-nferprice Transition C-ommunif»

improvement
backlog

iuppport, recourse?,
uidan&e, & direction (oooai'iomiii^)

Impediment

improvement OommunWei

improvement
baofdog

FIGURE 4.1
A n E n t e r p r i s e T r a n -
s i t i o n C o m m u n i t y
g u i d e s t h e a d o p -
t i o n o f S c r u m , b u t
m o s t o f t h e w o r k is
d o n e b y m u l t i p l e
i m p r o v e m e n t c o m -
m u n i t i e s .

This approach should be scaled up or down depending on the size of the or-
ganization undertaking the transition. A software development department of 30
people may have an ETC of 5 people and nothing more. A company-wide transi-
tion for a department of 200 developers may have a 10-person ETC (including
representatives from groups outside development) plus a handful of improvement
communities at any time. Things can scale from there as needed; IBM, for ex-
ample, has over 800 people in some of its improvement communities.

Most participants in an IC spend only a small part of their time engaged with
the community. They may read postings to its discussion list, add a comment on

72 Chapter 4 I terat ing Toward Agi l i ty

OBJECTION

a wiki, and nothing more. The amount of time an IC member spends on the
community is determined by each individual, the person's boss, or organizational
culture.

" S c r u m t e a m s are s u p p o s e d t o be s e l f - o r g a n i z i n g . D o e s n ' t an ETC
c o n f l i c t w i t h t h i s? S h o u l d n ' t t e a m s g e t t o d e c i d e w h a t t h e y w a n t t o
i m p r o v e a t ? "

Self-organizat ion occurs in response to a chal lenge taken on by a group
of individuals. For a deve lopmen t project , the company may tel l a t eam,
"Deve lop th is so f tware to run faster and take less m e m o r y than the cur-
rent vers ion and do it t w o m o n t h s faster than w e ' v e done in the past."
Individuals then organize t hemse l ves around h o w to achieve that goal. It
is no d i f ferent w i t h the ETC. A n ETC s ta tes w h a t it w o u l d like to see im-
proved but not necessar i ly h o w to achieve that imp rovemen t . The h o w is
left up to the imp rovemen t c o m m u n i t i e s or Sc rum teams.

Addit ional ly, keep in m i n d that an ETC's b iggest goal is to create an en-
v i r onmen t such that imp rovemen t c o m m u n i t i e s ident i fy their o w n goals
and f o r m spontaneous ly to address t hem. W e wi l l look at sel f -organizat ion
in detai l in Chapter 12, "Lead ing a Sel f -Organiz ingTeam."

Catalysts for Improvement
Communities, when used as part of the effort to adopt and get good at Scrum,
become catalysts for improvement. Consider the case of Google, where improve-
ment communities are called "grouplets." Google's Testing Grouplet was formed
"to drive adoption of developer testing" (Striebeck 2007). Bharat Mediratta
founded the community and describes its activities.

We started with engineers from all over the company meet-
ing every couple of weeks to brainstorm. Slowly, over time, we
started turning into activists, planning to actually start improving
things. We started building better tools and giving informal talks
to different technical groups. (2007)

Notice that although this community met initially to brainstorm, they soon
found themselves as activists with plans for actual improvements. Improvement
communities act. This is why they aren't called task forces, work groups, commit-
tees, or any of the other terms that too often bring to mind ineffective groups.
If the Google Testing Grouplet had merely created presentations on the benefits
of developer testing, or if it had chosen to convince a powerful vice president to
mandate developer testing, its efforts would have been fruitless.

I m p r o v e m e n t C o m m u n i t i e s 101

What the testing community at Google did instead was find direct and im-
mediate ways to help teams. Mediratta recalls how, in addition to building tools,
the community found a unique way of providing concrete, short examples and
advice about testing.

One day, toward the end of a long brainstorming meeting, we
came up with the idea of putting up little one-page stories, called
episodes, in bathroom stalls discussing new and interesting test-
ing techniques. Somebody immediately called it "Testing on the
Toilet," and the idea stuck. (2007)

The most effective communities are usually those that form not in response
to management dictate but because company culture or the ETC has created an
environment in which communities can naturally emerge. J. E Unson, a coach at
Yahoo! during its large-scale Scrum rollout, says this is exactly what happened at
one of Yahoo!'s remote facilities.

At Yahoo!, in our Santa Monica campus, all the entertainment
agüistas started a monthly ScrumMaster lunch. This happened
organically as Scrum started to grow in the organization, without
having the agile group [ETC] pushing it. (2008)

Not all communities will form in such an organic manner, of course. Espe-
cially during the early weeks or months of adopting Scrum, the ETC will need to
encourage an improvement community to form by highlighting the importance
of a goal and then hoping a community forms around that goal. Occasionally, an
ETC may need to go so far as to ask someone to form a community around a
specific goal.

Two Metrics for Effectiveness
Professor Jeffrey Goldstein has written, "Change does not need to be imposed; it
simply needs to be released" (1994,32) You can gauge how well the ETC is doing
at releasing change in two ways:

1. The number of improvement communities that have formed without a
direct request from the ETC

2. The percentage of such improvement communities to the total number
of improvement communities

If the number of spontaneously formed improvement communities is high,
and especially if these represent a majority of the total number of communities,
this indicates strong interest in Scrum and the changes it is creating. If these met-
rics are increasing or remain high over time, the organization is well on its way to
becoming agile. You should, of course, look at other metrics. These are just two
that I like.

102 Chapter 4 I terat ing Toward Agi l i ty

An Improvement Community Sprint
As you might suspect, ICs perform their work in sprints as well. As with the ETC,
each IC can select its own sprint length, but two weeks is the recommended
length. An IC that was formed spontaneously will usually serve as its own product
owner, with members of the community electing to devote their time to the im-
provements they are the most passionate about. An IC that was formed in response
to an ETC-identified goal, on the other hand, will usually work with a member
of the ETC as its product owner to plan a sprint.

That being said, an improvement community does not exist to serve the ETC.
It exists to serve its customers: the Scrum development teams who are building
products or systems. Although an ETC member will act as product owner for
some improvement communities and will serve as the official product owner for
the sprint reviews, you should expect members of interested development teams
to be active participants as well. Additionally, the wise ETC understands that the
best results will be achieved when improvement communities are given broad
latitude in achieving their goals. In practice, this means an IC, even one formed
in response to ETC-identified goals, will be responsible for prioritizing its own
work, while balancing the needs of the organization to improve in particular ways
and its members' passion for working on those issues.

During its sprint planning meeting, each improvement community selects
one or more things it can commit to completing during the sprint. If an improve-
ment community has formed in response to a specific goal of the ETC, sprint
planning begins by taking an item from the ETC's backlog and breaking it down
into smaller items that will be placed on the improvement community's improve-
ment backlog. The best way to see this is with an example.

The ETC improvement backlog shown in Table 4.1 on page 64 includes the
item, "Establish an internal program for developing ScrumMasters." An improve-
ment community formed a month after the ETC put that on the improvement
backlog and made it known to the rest of the company that creating such a pro-
gram would be valuable. There were three people in the community initially, but
that was plenty to make progress toward this goal. In their first sprint planning
meeting, they discussed the ETC's goal ("Establish an internal program for devel-
oping ScrumMasters") and created their own improvement backlog of what they
would do to achieve this goal, which is shown in Table 4.2.

Also during sprint planning, the community members took some of the items
in Table 4.2 and identified the tasks necessary to complete each. For example, for
the final item in Table 4.2 (working with local groups to share the expense of
bringing in speakers), the community identified the following tasks:

• Search web to see what user groups are in our area.

• Create budget of expenses.

I m p r o v e m e n t C o m m u n i t i e s 75

Send e-mail to internal distribution lists to see if anyone here is con-
nected to these groups.

Set up phone calls to introduce ourselves and what we're doing.

Conduct phone calls. See if any groups have previously split the cost
of bringing a speaker into town with another company. See if any will
work with us on this.

Meet with Susan to go over budget and get approval.

What Note

Figure out how to identify good candidates to
become ScrumMasters (in addition to those
who ask to participate in this program).

Establish an internal mentoring program.

Develop some internal classroom training.
Which courses? W h o can teach them? Develop
our material, or can we license it?

Determine which classes we can teach inter-
nally.

Get budget for next year for external coaching.
H o w many days? At what expected daily rate?

James has already asked for rates
from three coaches.

See what we can do with local user groups to
share the expense of bringing in speakers.

Savannah has contact in local
Scrum lunch meetup group.

TABLE 4.2
A n i m p r o v e m e n t
c o m m u n i t y ' s back -
l o g f o r e s t a b l i s h i n g
a n i n t e r n a l p r o -
g r a m t o d e v e l o p
S c r u m M a s t e r s .

As in a development team's sprint planning meeting, the community then
estimated each item and decided they could commit to completing these tasks
during the sprint. Two weeks later at its sprint review, this team showed its product
owner, a member of the ETC, a list of local user groups and a plan to work with
one of them twice a year, sharing the expenses of bringing nationally known
speakers into the area.

•

•

A d d to your i m p r o v e m e n t backlog by looking at the sect ion head-
ings of the chapters in th is book. Many of t h e m w e r e w r i t t en w i t h
th is possibi l i ty speci f ical ly in mind.
Rev iew any notes available f r o m recent spr int re t rospect ives. These
are o f ten an excel lent source of i m p r o v e m e n t backlog i tems.

THINGSTO
TRY NOW

104 Chapter 4 I terat ing Toward Agi l i ty

Focus on Goals with Practical Relevance
For an improvement community to have the most impact, its members must focus
on goals of immediate and practical relevance to the development teams using or
attempting to get started with Scrum. The best way to do this is for improvement
community members to work side by side with development team members on
something important to the development team. This is what Google's "test mer-
cenaries" do. Test mercenaries are members of the testing community who are
experienced engineers with a passion for and expertise in testing. They spend up
to 20% of their time for three months on a project other than their own. During
this time they add tests and refactor code as a direct help to the development team.

I suppose that test mercenaries could instead spend this time creating presen-
tations and spreading the gospel of developer testing. Something tells me, though,
they are better able to achieve their goals by working with a team rather than
preaching to it. A development team that has had the help of a test mercenary
ends up with improved code and more tests. It also witnesses the benefits of an
additional focus on developer testing. This works wonders in motivating those on
the Scrum development team to continue the effort after the mercenary moves
on to another team.

Focusing on providing practical assistance to development teams also helps
keep improvement community members from falling into the habit of preach-
ing to the development teams. A common problem when adopting Scrum is that
the early adopters often become zealots anxious to convert everyone else. What
zealots often forget is that it took them time to get comfortable with the idea of
Scrum and the changes it requires.When others fail to convert instantly, zealots of-
ten perceive the delay as resistance. Because zealotry and pushing others to rapidly
adopt new ideas can cause more harm than good, it is important for improvement
community members to understand that their role is to consult rather than preach
(Allen-Meyer 2000c, 25).

Improvement Community Members
Organizational change expert Glenn Allen-Meyer says that change should be
done "with, not to, the people expected to change" (2000b). Because of this, it
is important that anyone with a passion for an improvement opportunity be en-
couraged to participate in its community. Membership should not, for example, be
restricted to only the organization's most senior employees. Broad participation in
improvement communities helps everyone in the organization feel that change is
occurring with them rather than to them. There should be no limit on the num-
ber of people participating in an improvement community. Communities often
include well over 100 members, with individual participation levels going up and
down over time based on the other demands of each person's job.

I m p r o v e m e n t C o m m u n i t i e s 77

Participating in a community is not meant to be a full-time job; it is some-
thing someone takes on in addition to regular work. Improvement community
leaders at IBM are asked to contribute two hours per week, although many con-
tribute more based on a desire to see more rapid progress. A participant's manager,
product owner, and ScrumMaster, though, are responsible for ensuring that those
passionate enough about a change to work toward it are given sufficient time to
do so. Google accomplishes this by telling each employee to spend 20% of each
week on something of interest. The time could be spent, for example, exploring a
new product idea or participating in a community.

Successful Scrum adopter Salesforce.com has a similarly innovative approach
it calls PTON, pronounced pee-tee-on and meaning "paid time on." Patterned
after the common P T O ("pee-tee-oh") policy for paid time off in many compa-
nies, Salesforce. corn's P T O N program gives employees dedicated time at work
to pursue initiatives of their own choosing. Each employee is given one week of
P T O N for each year with the company. Salesforce.com employees can use the
P T O N time to work on a community initiative, explore new product ideas, or do
just about anything they want.

Google's 20% policy and Salesforce.corn's P T O N programs were not created
specifically to allow people to work in an improvement community. And organi-
zations do not need to make such dramatic changes just to get started adopting
Scrum. An easy starting point is simply for managers to commit to freeing up
some number of hours each week for those who want to work on an improve-
ment community.

" W e ' v e b e e n w o r k i n g o n t h i s n e w p r o d u c t f o r a year . W e s h i p it in
f o u r w e e k s a n d , as t h e p r o d u c t o w n e r , 1 n e e d t h e t e a m ' s f u l l t i m e a n d
a t t e n t i o n f o r t h e nex t f o u r w e e k s . "

OBJECTION
^ à

Absolute ly . Team m e m b e r s probably already k n o w th is and have plans to
scale back part ic ipat ion in any c o m m u n i t i e s to the m i n i m u m possible over
that period. A t e a m m e m b e r w h o general ly fee ls va lued and a l l owed to
devo te t i m e to the longer- term init iat ives of a c o m m u n i t y wi l l w i l l ing ly
min imize c o m m u n i t y part ic ipat ion dur ing a t rue crunch per iod because
she k n o w s she can devo te more t i m e to it later.

78 Chapter 4 I terat ing Toward Agi l i ty

OBJECTION
" T h e s e i m p r o v e m e n t c o m m u n i t i e s s e e m j u s t l ike t h e S o f t w a r e Eng i -
n e e r i n g Process G r o u p s (SEPGs) o u r c o m p a n y c rea ted t o p u s h C M M I .
Isn ' t t h i s j u s t a n e w n a m e f o r an o l d i d e a ? "

Not really, but I can unders tand w h y you m igh t th ink so. Both ICs and
SEPGs are focused on help ing the organizat ion improve h o w people de-
ve lop so f tware . However , wh i l e their goals are the same, an SEPG and an
IC differ in a f e w subt le but impor tan t ways:

An SEPG looks at the process and answers the quest ion, " W h a t
could w e improve?" M e m b e r s of an imp rovemen t c o m m u n i t y
look at their o w n pro jects and ask, " W h a t could w e improve?" and
" W h a t are w e do ing we l l that o thers shou ld k n o w abou t? "
S o m e SEPGs force compl iance w i t h a process; an imp rovemen t
c o m m u n i t y has no author i ty f r o m wh i ch to force compl iance.
S o m e SEPGs are char tered to look only at por t ions of t he overall
deve lopmen t process. ICs are encouraged to look beyond the prod-
uct deve lopmen t process to f ind i m p r o v e m e n t oppor tun i t ies.
Imp rovemen t c o m m u n i t i e s are se l f -mot iva ted and self-organizing.
In general , no one is to ld to join an imp rovemen t commun i t y . (Al-
t hough th is may occasional ly be done to start a n e w communi ty .)
M e m b e r s of an IC are m o r e likely to take an exper imenta l , try-it-
and-see approach to process improvemen t .
Imp rovemen t c o m m u n i t i e s are ad hoc and organic, f o r m e d w h e n -
ever passion for a topic br ings people together . SEPGs are for-
mal ly c reated and o f ten d iscouraged f r o m func t ion ing in an ad hoc
manner.

Disbanding a Community
Most communities will eventually disband. A community formed to promote au-
tomated testing, for example, may exist with members coming and going for years
as long as that is an area in which the organization needs to improve. Eventually
(at least we'd like to think), the organization becomes good enough at automated
testing that those community members can contribute more by devoting time to
other improvement communities and the opportunities they represent.

Regarding the ETC specifically: It should disband once the organization has
realized its transition to Scrum and has entered a phase of continuous improve-
ment. The ETC exists only during the transition period, which may be multiple
years for a large transition.

Look ing Forward 79

THINGSTO
TRY NOW

• Ident i fy an i m p r o v e m e n t you are passionate about . Ask t w o or
th ree coworke rs to help you. Create an i m p r o v e m e n t backlog and
plan a f i rst sprint. Even if you can manage only an hour a w e e k on
it, start. As you begin to make progress, incorporate your improve-
m e n t in the w o r k of your t e a m or o f fer it to another team. Generate
in terest by te l l ing (or, even better, showing) o thers w h a t y o u ' v e
accompl ished.

One Size Does Not Fit All
In this chapter, I've presented a community-driven approach to Scrum adoption.
A guiding community—the Enterprise Transition Community—does some of
the work of the transition, but most important it creates an environment that en-
courages other communities to form. These communities—called improvement
communities—are formed when a group of employees choose to work togeth-
er to improve the organization's use of Scrum. Both types of communitites use
Scrum to drive the organization toward becoming agile.

But one size clearly does not fit all. The approach I am describing in this
chapter works well when transitioning a medium or large department to Scrum.
Scale it down as appropriate. A software department of 20 professionals, for ex-
ample, may benefit from having one group of passionately agile individuals who
help drive change and improvement. They are both an ETC and an IC in that case.

Looking Forward
So far, in the chapters that make up the initial section of the book, we've discussed
why transitioning to Scrum is hard, but worth it. We've talked about the activi-
ties that accompany change and some tools you can use to help people make the
switch to Scrum.We've discussed patterns for adoption that can guide our general
approach to transitioning to Scrum. Finally, we've looked at how to combine all
of that information, and the Scrum process itself, and use it to manage a Scrum
adoption, on any scale. Throughout the first four chapters, I've made a point of
saying that, unlike other change initiatives, with Scrum there is no end state. There
is no point when you're done. Instead, Scrum requires continuous improvement,
which can be managed through improvement communities, using Scrum itself

In our next chapter, we discuss how to pick your first project, your first team,
and get started with the business of becoming agile with Scrum.

108 Chapter 4 I terat ing Toward Agi l i ty

Additional Reading
Conner , Daryl R . 1993. Managing at the speed of change: How resilient managers succeed and
prosper where others fail. R a n d o m House.

In this book, C o n n e r describes eight key patterns of h o w people behave during orga-
nizational change. O n e of the goals of his process for change management is to foster
resilience in people and organizations. His view of resilience is compatible wi th this
b o o k s presentation of change as continuous and agility as something to be iterated
toward.

Katzenbach, Jon. R . 1997. Real change leaders: How you can create groii'th and high perfor-
mance at your company. Three Rivers Press.

Katzenbach's book is based on extensive interviews with individuals w h o he found
to be the true source of change in organizations. These are the "real change leaders"
of the b o o k s title. T h e book contains many engaging stories about individuals w h o
would make good improvement communi ty members.

Kot ter ,John P. 1996. Leading change. Harvard Business School Press.
Kotter's highly respected book is a classic on organizational change. In it, he lays out
an eight-step process for creating change. In his second step, Kotter advocates the cre-
ation of a guiding coalition, which has some similarities to an E T C . Additionally, his
article in Harvard Business Review (1995) offers a concise summary of this book.

Schwaber, Ken. 2007. The enterprise and scrum. Microsoft Press.
In this book, Schwaber, the coinventor of Scrum, describes what is necessary to
transition an entire organization to Scrum. Included is advice on the improvement
backlog and on the Enterprise Transition team, which is similar to the Enterprise
Transition Communi ty as I have presented it.

Wenger, Etienne, Richard M c D e r m o t t , and William M. Snyder. 2002. Cultivating com-
munities of practice. Harvard Business School Press.

Wenger is recognized as the authority on communities of practice. This highly read-
able book describes everything you need to k n o w to begin cultivating communities
wi thin your organization, including a chapter dedicated to advice to communi ty
coordinators.

Woodward, E .V, R . Bowers, V.Thio, K.Johnson, M . Srihari, and C.J. Bracht. For thcom-
ing. Agile methods for software practice transformation. IBM Journal of Research and
Development 54 (2).

Members of IBM's Quality Software Engineer ing organization are using an approach
very similar to the one described in this chapter to spread agile throughout IBM. This
excellent paper describes h o w they funct ion as an Enterprise Transition Community ,
ways in which they encourage improvement communities to form, and h o w they use
the Scrum framework to drive improvements in h o w they use Scrum.

Chapter 5
Y o u r F i rs t P r o j e c t s

u nless you are operating in stealth mode, all eyes will be on the first project to
try Scrum, especially during the first sprints. Selecting the right project and team
is critical.Your initial Scrum project should be one that is considered important
and significant, so that the results are not discounted, yet not so large that it is
ungainly. Team members should be selected with an eye toward not only their
compatibility but also their willingness to try something n e w

As the first sprint starts, expectations about the advantages Scrum will bring
may be sky high. Sometimes this is the result of general optimism; other times it
is the result of zealotry by an organization's early agilists, whose exuberance leads
others to think Scrum will cure all ills. You must correctly set and manage these
expectations; otherwise an initial project that should be viewed as wildly success-
ful will instead be considered a dismal failure when it does not live up to oversized
expectations.

In this chapter we consider the critical topics of selecting the right first project
and assembling the ideal team, and the subtle art of setting realistic expectations.

SEE ALSO
Trans i t ion ing in s tea l th
m o d e w a s i n t roduced
in Chap te r 3, " P a t t e r n s
fo r A d o p t i n g S c r u m . "

Selecting a Pilot Project
I was about to start this section with something like, "Scrum pilot projects have
become more and more rare over the past four years. The benefits of Scrum have
become so recognized that companies are now forgoing pilot projects and j u m p -
ing right in." And then I decided that perhaps I should look up the definition
of pilot project. Perhaps, like inconceivable toVizzini in The Princess Bride, it did not
mean what I thought it meant .What I found was that there are indeed two slightly
different meanings. One is that a pilot project is a test, with the results used to de-
termine if more of whatever is being tested will be done. This is the type of pilot
project that most companies now bypass—they know they want to use Scrum;
they don't need to "pilot it" to verify that.

8 1

82 Chapter 5 Your First Projects

NOTE
I 'm not fo rge t t i ng the
impor tance of the
people involved to the
success of a pilot. The
top ic is d i scussed in its
o w n sect ion, "Se lec t -
ing a Pilot Team, " later
in th is chapter.

The other definition I found is that a pilot project is undertaken to provide
guidance to subsequent projects; it pilots the way in doing something new. It is
this second meaning that I 'm interested in—the pilot that leads the way rather
than the one that is conducted as a test. As an industry we have enough evidence
that Scrum works; what individual organizations need to learn is how to make
Scrum work inside their organizations. So, they often conduct one or more pilots
as learning projects.

Four Attributes of the Ideal Pilot Project
Selecting the right project as a pilot can be challenging. Jeff Honious, vice presi-
dent in charge of innovation at Reed Elsevier, led his company's transition to
Scrum. He and colleague Jonathan Clark wrote of their struggle to select the right
pilot.

Finding the right project was the most critical and challenging
task. We needed a meaty project that people would not dismiss
as being a special case, yet we did not want a project to fill every
possible challenge—too much was riding on its success. (2004)

Not every project is equally suited to be your first.The ideal pilot project sits
at the confluence of project size, project duration, project importance, and the
engagement of the business sponsor, as shown in Figure 5.1. You may find it im-
possible to identify the "perfect" pilot project. That's OK. Consider the projects
you do have and make appropriate trade-offs between the four factors presented
in Figure 5.1. It is far better to pick a project that is close enough and get started
than it is to delay six or more months waiting for the perfect pilot to present itself.

FIGURE 5.1
T h e f o u r a t t r i b u t e s
o f t h e i d e a l p i l o t
p r o j e c t .

Shori

Select ing a Pilot Project 83

Duration. If you select a project that is too short, skeptics will claim that Scrum
works only on short projects. At the same time, if you select a project that is too
long, you risk not being able to claim success until the project is over. Many
traditionally managed projects claim to be on track 9 months in to a 12-month
schedule, yet in the end are over budget and late, so a Scrum project proclaiming
the same may not be very convincing.

What I find best is to select a project whose length is near the middle of what
is normal for an organization. Ideally and frequently this is around three or four
months. This gives a team plenty of time to start getting good at working within
sprints, to enjoy it, and to see the benefits for the team and for the product. A
three- or four-month project is also usually sufficient for claiming that Scrum will
lead to similar success on longer projects.

Size. Select a project that can be started with one team whose members are all
collocated, if at all possible. Start with one team, even if the pilot project will grow
to include more teams.Try to select a pilot project that will not grow to more than
five or so teams, even if such projects will be common in your organization. Not
only is coordinating work among that many Scrum teams more than you want
to bite off initially, but you also probably wouldn't have time to grow from one
team to more than five anyway if you are also looking for a project that can be
completed in three or four months.

Importance. It can be tempting to select a low-importance, low-risk project. If
things go badly, not much will be lost. And people may not even notice a failure
on a low-importance project. Don't give in to this temptation. Instead, pick an im-
portant project. An unimportant project will not get the necessary attention from
the rest of the organization. Additionally, some of the things required of a team
transitioning to Scrum are difficult; if the project isn't important, people may not
do all that is required of them. Early agilist and inventor of the Adaptive Software
Development process Jim Highsmith advises, "Don't start with an initial 'learning
project' that is of marginal importance. Start on a project that is absolutely criti-
cal to your company; otherwise it will be too difficult to implement all the hard
things Scrum will ask of you" (2002,250).

Business sponsor engagement. Adopting Scrum requires changes on the business
side of the development equation, not just the technical side. Having someone
on the business side who has the time and inclination to work with the team is
critical. An engaged business sponsor can help the team if it needs to push against
entrenched business processes, departments, or individuals. Similarly, there is no
one more useful in promoting the success of the project afterward than a sponsor
who got what was expected. One sponsor commenting to another that a recent

NOTE
S c r u m p ro jec ts w o r k
w i t h a p roduc t owner ,
w h o is desc r i bed in de-
tai l in Chap te r 7, " N e w
Roles." The s p o n s o r
re fer red to here may or
may not be t h e p roduc t
owner . M in ima l l y , it is
s o m e o n e on t h e busi-
ness s ide of t he p ro jec t
w h o w i l l recogn ize t h e
p ro jec t as success fu l .

112 Chapter 5 Your First Projects

project tried Scrum and delivered more than past projects did will do wonders in
getting other sponsors to ask their teams to also try the new approach.

Choosing the Right Time to Start
That so many new exercise programs and diets begin on New Year's Day is testa-
ment to the human desire to align change with outside factors, such as the calen-
dar. Just as we may feel that exercise programs should begin on the first day of the
year, we may think that a new software development process should be introduced
on the first day of a new project. Choosing a new project (or restarting a failed
one) for your pilot lets you make a fresh start. Teams who have chosen to start
fresh begin by focusing on the product backlog. Such a team will usually wait to
begin its first sprint until it has created a product backlog that contains all of the
features that are known at the time. Trond Wingard, an agile project manager, has
been successful with this approach.

In one of my first agile projects, our client had already spent
one year and approximately $150,000 to have another contractor
write a classic requirements document. I was able to convince
our client that we should replace this requirements document
with user stories. So the 150-page document was replaced with
a product backlog with 93 user stories. We would not have been
able to do agile if we hadn't done this.

Making a fresh start has only one major disadvantage:Waiting for a new proj-
ect to appear—and then hoping you think it is a suitable first Scrum project—
needlessly delays the benefits Scrum brings.

Resurrecting a failed project can also bring a fresh start feeling to your pilot.
Spending a few days creating its product backlog can help restore focus to the proj-
ect team, reengage stakeholders, and create buy-in throughout the organization.
Remember when starting fresh that you don't want to spend weeks (or months!)
bogged down in creating your preliminary product backlog. Consider the irony of
starting your Scrum transition with a two-month requirements-gathering phase.
When starting fresh, have the discipline to write the backlog quickly and in as
lightweight a manner as possible.

Impending Doom
Sometimes starting fresh is either not possible or not the right choice. If a project
is in midstream and could benefit from Scrum, I see no reason not to switch. My
personal favorite pilot projects are ones that are currently headed toward impend-
ing doom yet still have enough time to recover and succeed. Although this can be
a risky approach, a struggling project has nowhere to go but up. Delivering at all is

Choos ing the Right T ime to Start

often viewed as a success; delivering on time is often viewed as an amazing success.
Because of the focus and intensity created through working in short sprints and
because of the emphasis on creating at least some forward progress, Scrum is often
ideally suited to these types of projects, especially when an experienced Scrum-
Master or consultant is available to the team.

As the chief technology officer of Sammy Studios (now High Moon Studios),
Clinton Keith knew something drastic was needed. His team was developing what
was to be a Triple-A video game for the Sony PlayStation and Microsoft Xbox.
Teams were working hard, but the game was not coming together as quickly as
the development studio's off-site owners had hoped.Without a change the project
would fail.

Fortunately, at about this time Keith learned about Scrum and decided to
introduce it to his teams. Employees of game studios are distinguished by a fierce
amount of individualism, so introducing a process that would require lots of talk-
ing, collaboration, daily scrums, and other similar hallmarks of Scrum was difficult.
Wisely, Keith chose to introduce Scrum at a time when team members were be-
coming aware that the current process and approach was not likely to lead to the
finished product that all desired.

Another common time when you might want to stress the risk of impending
doom is when the company will go out of business, or (in a more diversified com-
pany) cancel the project, if development continues at its current pace. Anytime a
continuation of the status quo has serious repercussions, demonstrating the im-
pending doom of inaction can help fuel Scrum adoption. After all, if doing things
the "old way" will only lead to failure, it's easier to convince team members to try
something new, experiment with different practices, and make a leap to Scrum
they would otherwise resist.

Forecasting impending doom can be powerful but is also dangerous. For it
to work, the peril faced by the project or organization must be real. In one com-
pany where I worked, our CEO was notorious for announcing that the fate of
the company rested on every project we undertook. Cry wolf enough times and
people stop believing. You, too, may be tempted to exaggerate the peril; don't.
However, if a project is on its way to failure unless dramatic action is taken, point
it out. Team members probably know already but are reluctant to acknowledge
it. Additionally, if team members have become apathetic about their project and
their work, I will sometimes point out a likely doom that may occur if things don't
change. I used this recently with a team who knew its company was in merger
talks with a competitor. "So," I asked members, "when this merger finishes and
the big bosses of the combined company are trying to figure out which projects
are redundant and which teams should get the best new projects, how would you
like this project and team to be viewed?" This jolt of awareness is just what some
teams need.

114 Chapter 5 Your First Projects

Selecting a Pilot Team
The intersection of the four factors of Figure 5.1 and the discussion of timing
leave out probably the most important factor in the success of a pilot project—the
individuals involved. I deliberately chose to leave people out of the discussion of
selecting the right pilot project under the assumption that we can select the proj-
ect and team independently. That is, we can select the best project as our Scrum
pilot and can then look around and assemble the right team for that project. I
understand this is an uncommon luxury in many organizations—the project and
the team often come as a package, just like the ham and eggs in a Scrum team's
favorite breakfast. If you cannot separate the decisions of the ideal pilot project
and the ideal pilot team, simply consider all factors together in selecting the best
available pilot.

Put initial teams together with an eye toward compatibility, constructive dis-
sension among team members, willingness and ability to learn and adapt, technical
skills, communication skills, and so on. Of these, the most important consideration
in selecting a pilot team is the willingness of the individuals to try something
different. Ideally, all will have moved through the awareness and desire steps of
the ADAPT acronym presented in Chapter 2,"ADAPTing to Scrum." When pre-
sented the opportunity to influence who will be on the pilot team, I look to create
a combination of the following types of individuals:

• Scrum lobbyists. The project may not be big enough to include everyone
who has been lobbying to adopt Scrum, but I want to be biased toward
including as many of these individuals on the project as I can. It would be
painful for them to have to be on the sidelines even though they'd still be
hopeful for the project's success.

• Wil l ing optimists. These individuals understand that a new development
approach is needed but didn't go so far as to actively argue for a change to
Scrum in the past. Knowing what they now do about Scrum, they believe
it sounds promising and want to see it succeed.

• Fair skeptics. I don't want someone on the project who will work to
sabotage the pilot or the teamwork necessary to become a Scrum team,
but this does not mean I want to avoid all skeptics. It can be very ben-
eficial to include a well-respected, vocal skeptic as long as the skeptic
has demonstrated a past willingness to admit being wrong or change an
opinion. These individuals can become some of the transition's strongest
supporters when convinced of the benefits through hands-on experience.

Of course, all of this must be mixed with an eye toward combining the right
set of skills for the project. If your pilot project's goal is to develop a video game,
you had better put an animator on the team. I also look for individuals who have
a track record of working together successfully. Sometimes you find an existing

Select ing a Pilot Team 87

entire team that can become the pilot team. Other times, you can think back over
the past few years and put together people who worked together well on past
projects.

" A l l t h i s e f f o r t t o w a r d s e l e c t i n g t h e r i gh t t e a m is s t a c k i n g t h e deck in
y o u r f avo r . Of c o u r s e , a t e a m l ike t h i s w i l l succeed . Bu t o n c e w e a d o p t
S c r u m , no t e v e r y p r o j e c t w i l l be ab le t o be s ta f f ed w i t h w i l l i n g p e o p l e
w h o h a v e w o r k e d w e l l t o g e t h e r in t h e p a s t . "

Of course, th is is s tack ing the deck in your favor. I said earlier that a pilot
isn' t under taken as a tes t of "w i l l Sc rum w o r k or no t . " W e k n o w Scrum
works . There is p lenty of anecdota l ev idence (and even s o m e hard data) to
prove this. W h a t w e don ' t k n o w is, h o w wi l l Sc rum w o r k best here? The
pi lot is not s o m e clinical, double-b l ind trial. It is an a t t e m p t to use a n e w
approach to del iver an impor tan t project . So, w e stack the deck in favor of
do ing so and see w h a t w e can learn.

What if a Pilot Isn't a Success?
What if, after all your decision making, planning, and hard work, the pilot project
fails anyway? First, you would be wise to avoid pinning all your hopes on one big
pilot project. Instead, run multiple pilots and keep in mind that the purpose of a
pilot project is to illuminate the way for the Scrum projects that follow The most
successful pilot projects will be able to create advice of two forms: do this and don't
do that. As long as the teams involved in the pilot learn about what is likely to work
or not work, which aspects of Scrum will be easily brought into the organization,
the types and sources of organization-specific resistance, or any other similar in-
formation, then I am reluctant to call the pilot a failure.

But, what if the pilot project fails to deliver the expected results?
In these cases I start by assessing whether the expectations placed on the proj-

ect were realistic. Perhaps before starting the project we agreed they were, but by
the end we've learned otherwise. If that's the case, clearly communicate this to all
stakeholders. Don't do so as an excuse for failing to deliver what was expected.
Stakeholders need to know that the team accepts responsibility for any part it
played in setting or agreeing to overly optimistic plans. But do make sure that
stakeholders understand that although the pilot failed to meet all expectations,
it may, in hindsight, have done as well or better than should have been expected.

At the end of a Scrum pilot, I find that the pilot project is often compared
to the unrealistic assumptions of a perfectly run sequential ("waterfall") project.
There may be an old Gantt chart around showing a project plan that allows for
two months of analysis, a month of design, two months of coding, then concludes

116 Chapter 5 Your First Projects

with a month of testing. This very idealized six months is then compared to the
reality of a first-ever Scrum project that, let's say, also took six months. The op-
ponents of Scrum will say, "See, there are no advantages. It takes the same amount
of time each way. And the old process has better design and is more maintainable
over the long run." The unfair comparison here is between the reality of a Scrum
project that took six months and a plan showing a waterfall project delivering in
the same schedule. Do not allow (or make) comparisons between the reality of
one project and the myth of another.

Setting and Managing Expectations
That brings us to our next topic: setting and managing expectations. In 1994 I
managed a team that delivered a project that any outsider or any project team
member would have considered a success. The product represented a great leap
forward for the company. It included far more features than the product that was
being replaced, was built using new state-of-the-art technologies with which the
company had no prior experience, and included the development of three data
centers that went on to provide 99.99999% uptime over the next six years. How-
ever, the project was almost considered a failure.

The project was to be delivered into multiple call centers with more than
300 nurses on the phones. It was to replace a quirky but familiar system that
the company was rapidly outgrowing. The nurses' expectations of what the new
system would deliver were sky high. In monthly sprint reviews with the nurses,
I was routinely shocked by what they'd come to expect, some of which wasn't
even technically feasible. With about three months left on the year-long project,
I realized my focus had to change. From then on, I spent almost all of my time
on expectations management. I met with nurses in each of the call centers and
described exactly what would and would not be in the delivered system. I toned
down their expectations about the system's impact on world peace, global warm-
ing, and personal weight loss. Without this effort, the product would have been
perceived as a failure.

Since that project, I have been acutely aware of the importance of expecta-
tions management to the overall success of any project. Setting and managing
expectations is perhaps even more important at the start of a major shift such
as adopting Scrum. In initiating a transition to Scrum, I find it helpful to set
and manage expectations about four things: progress, predictability, attitudes, and
involvement.

Set t ing and Manag ing Expectat ions

Expectations About Progress
If peripherally involved stakeholders and outsiders have heard one thing about
Scrum, it is probably that teams will be faster. I witnessed this when I was invited
to speak at a large Silicon Valley company that had been previously visited by a
Scrum consultant who oversold company executives on the benefits of Scrum.
When I presented to the same group, I started by asking what they knew about
Scrum already. All they could recall from the prior session was, "Teams will go
faster, and we can change our minds whenever we want." After recovering from
my stunned silence, I told them that those two things could be true but a lot of
hard work would be required to get there, and there would be a productivity cost
to changing their minds too often.

As for expectations that a team will go faster, Jim Highsmith's advice is much
more conservative and realistic.

In a six-month project, the goal might be to match historic pro-
ductivity levels (down in the beginning, up at the end) while
improving quality and better matching with customer expecta-
tions. Putting too much pressure on early will cause teams to
abandon their newly minted practices and revert to the older
ones in which they still have more confidence. (2005)

Whether a team is more productive or not will largely be a function of how
well the team was doing before adopting Scrum. A team that is already doing rea-
sonably well (having learned to work around the inefficiencies and impediments
of the current organization and process) will likely, as Highsmith says, slow down
at first. In contrast, a team that is really struggling could indeed be faster right
from the start.

There are two things, though, that I have observed to be nearly universally
true of teams right from the start:

• Most teams wi l l overestimate how much they wi l l achieve in the first
sprint. Unless a team has significant prior experience working in truly
timeboxed iterations, team members will probably think they can get
more done in a few weeks than will be realistic. A team, for example,
may collectively commit to completing 850 hours of planned work in
the coming four-week sprint. In the end, the team finds that due to in-
terruptions, unplanned work, corporate overhead and other factors, they
complete only 725 hours of that planned work. They worked just as hard
as they had planned to; they were able to complete less planned work,
though, because they underestimated all other demands on their time.

• Most teams wi l l be more useful. I 'm using the term "useful" here for
what we probably mean by "productive." But "productive" carries with
it connotations of how much product was produced; and usually in a

90 Chapter 5 Your First Projects

software project it isn't far from that connotation to measuring lines of
code. While I 'm not completely opposed to measuring lines of code (and
do it myself for some purposes), I don't want to say that Scrum teams start
out writing more code per period of time, especially because more code
may or may not be a good thing. What I do want to claim is that right
from the start, most teams begin to do more useful work shortly after
adopting Scrum. This is because sprints focus their attention on "what
can we do in the next such-and-such weeks." Many traditional projects
stall trying to find "the best" or "the right" or "the complete" solution. A
Scrum team will be more likely to find a good-enough solution, try it,
learn, and change as needed.

SEE ALSO

Expectations About Predictability
When I was running development organizations, rather than consulting to them
as I do today, keeping my teams productive was not my only concern. I was
equally concerned with whether I could make predictions about how long a
team would take to finish a project. In many ways, I preferred a team that went at
a reasonably consistent (and therefore predictable) pace to a team that sometimes
went amazingly fast but that also sometimes went very slow. When piloting an
organization's first Scrum projects, you should be clear with stakeholders that the
pace will initially be less predictable than with the organization's prior approach
to software development.

Scrum teams measure progress using a metric known as velocity, which is a
measure of the work completed (or planned to be completed) in a given sprint.
It is expressed in units such as story points or ideal days. Velocity is particularly
volatile during a team's or an organization's first few sprints. After all, the team is

Veloc i t y is desc r i bed in , , . , r , , , ,
m o r e detai l in Chap te r learning to work m a new way, and many of the team members may be learning
15, " P l a n n i n g . " to work with each other for the first time.

It is important to communicate to stakeholders that early calculations using
velocity will be particularly suspect. For example, after a team has established some
historical data, it will be useful to say things like, "This team has an average veloc-
ity of 20, with a likely range of 15 to 25."These numbers can then be compared
to a total estimate of project size to arrive at a likely duration range for a project.
A project comprising a total of 150 story points, for example, may be thought of
as taking from 6 to 10 sprints if velocity historically ranges from 15 to 25.

Until a team has sufficient historical data, though, projections like this can be
very risky. This means that a high-risk contract with large penalties for late deliv-
ery is probably not an ideal Scrum pilot. (Nor is it an ideal pilot for any process
change.) So how much data do you need before you can make projections like
this? The easy answer is the more, the better.You can start making predictions after
a team has completed its first sprint, but you should do so with a wide margin of

Set t ing and Manag ing Expectat ions

assumed error around that first observed velocity. Perhaps more helpfully, I'll say
that the velocity of most teams will stabilize sufficiently after the third or fourth
sprint. Don't take this as a rule; if there are a lot of other things changing in a proj-
ect's environment (such as new technologies, team members coming and going,
and so on), velocity may very well bounce around longer.

Expectations About Attitudes Toward Scrum
After having been given time to adjust to working in a new way, most developers
prefer Scrum. A survey at Yahoo! found, for example, that 85% of all team mem-
bers would continue using the Scrum approach they'd adopted if the decision
were left solely to them (Deemer et al. 2008,16). But this usually won't be where
attitudes start. Those initiating the transition need to be prepared for lots of objec-
tions and complaining at first. Common complaints include the following:

• All the time wasted in daily scrums

• The time wasted in making sure the product is well tested at the end of
each sprint, even though it won't ship that often

• Managers not being able to assess me well enough to write my annual
review because they can't tell which work is mine

• The system falling apart six months after release because we're not pro-
ducing adequate maintenance and support documentation

At the first sign of trouble, there will be a temptation to give in and fall back
to the old way of doing things. As Daryl Conner, author of Managing at the Speed
of Change, has written, "It is relatively easy to get your people to acknowledge that
a change is to be made and to get started on it. The really tough job is to get them
to stick with it when the going gets tough" (1993, 116). One of the best ways to
head off a slide back to old habits is to anticipate it and talk about it in advance
and for team members to agree that when obstacles arise, they will stick to Scrum
despite the discomfort and worry.

Expectations About Involvement
One of the most important expectations to set early on is about involvement in
the process. Many project stakeholders accustomed to traditional-style develop-
ment view their role in a software development project as akin to dropping a car
off for service: You tell someone what you need done and come back at an ap-
pointed time to pick up the finished work. Stakeholders, especially anyone in a
product owner role, will need to understand that this is not the right way to build
software-intensive products.

Be sure to discuss expectations with the product owner and with other stake-
holders whose input and feedback you will solicit either during the sprints or

120 Chapter 5 Your First Projects

during sprint reviews. Make sure that each stakeholder knows what level of com-
mitment the team expects and needs.

Scrum is not a silver bullet that will eliminate a development organization's
problems.You should work right from the start to make sure that expectations do
not rise to unrealistic levels. Managing expectations will be perhaps one of the
most important things you can do early on. If you don't, you run the risk of an
otherwise successful Scrum transition being viewed as a failure.

It's Just a Pilot
Pete Deemer, an independent Scrum consultant, was the chief product officer at
Yahoo! when he initiated a program there to pilot Scrum. He recognized that
a pilot project is an experiment, and the purpose of that experiment is to gain
knowledge that will help later projects succeed. Deemer also recognized that by
calling them pilot projects, he was acknowledging that he knew things would
not always go smoothly. He said his hope was that "when difficulties cropped up,
people would be more likely to just roll up their sleeves and try to find a solu-
tion." Deemer was using the label pilot to create some safety around the execution
of the process.

Deemer recognized this safety as the valuable thing it was. It created the com-
fort zone teams needed in which to experiment so that they could be successful
in finding the right ways to do Scrum. A year into the company's transition effort,
though, and with well over one hundred Scrum teams, Deemer was still calling
every project a pilot. I asked him when he would stop calling them pilots. He told
me that until every project at Yahoo! had adopted Scrum and until they knew
everything there was to know, he would continue to call them pilots.

Whether you view every project as a perpetual pilot, the first few sprints will
be tremendously important. You can help ensure these initial sprints start your
teams on the right path by carefully selecting the right first project and team
members and by accurately setting and managing expectations.

Additional Reading
Karten, Naomi . 1994. Managing expectations. Dorset House.

A good, easy-to-read book wi th solid advice. The b o o k is focused on customer
communicat ion but almost all of its advice is applicable to other workplace relation-
ships. Advice is provided on topics such as listening, clarifying perceptions, avoiding
conflicting messages, and creating w i n / w i n solutions.

Addit ional Reading

Little,Todd. 2005. Context-adaptive agility: Managing complexity and uncertainty. IEEE
Software, May—June, 28—35.

Author Todd Little, a board member of the Agile Alliance and cofounder of the Agile
Project Leadership Network , presents a framework for categorizing projects as Bulls,
Colts, Cows, or Skunks based on the amount of uncertainty and complexity inherent
in the project. T h e framework could be applied to choosing an initial Scrum project,
where you avoid selecting the type of projects that Little calls Bulls (high-uncertainty,
high-complexity projects).

PART I I
Individuals

We have come to value...
Individuals and Interactions

over Process and Tools.

—The Agile Manifesto

Chapter

O v e r c o m i n g R e s i s t a n c e

n a 1969 article in the Harvard Business Review, Paul Lawrence noted that change
"has both a technical and a social aspect. The technical aspect of the change is the
making of a measurable modification in the physical routines of a job. The social
aspect of the change refers to the way those affected by it think it will alter their
established relationships in the organization." W h e n facing resistance, there is a
tendency to emphasize the benefits of the technical aspect of change. After all, we
are already convinced ourselves, so it's easy to assume that all we need to do now
is to convince others. Lay out the perfect intellectual argument in favor of the
change, we think, and people's resistance will vanish. Lawrence argues against that
flawed logic: "We may sometimes wish that the validity of the technical aspect
of the change were the sole determinant of its acceptability. But the fact remains
that the social aspect is what determines the presence or absence of resistance"
(1969,7).

Although it is the social aspect of change that can create resistance, all resis-
tance comes f rom specific individuals. Teams or departments do not resist chang-
ing to Scrum; individuals do. This chapter, therefore, focuses on effective tech-
niques for overcoming individual resistance. We look first at how to anticipate
their resistance and take preemptive measures against it. Next , we look at how to
communicate about the change and why different messages are best delivered by
different messengers. Finally, in this chapter we look at how and why individuals
resist and then use that information to identify appropriate responses to overcom-
ing their resistance.

Anticipating Resistance
It should not be surprising that some people will resist the change to Scrum. Some
people resist all change. I suspect you could walk into a company, announce that

98 Chapter 6 Ove rcom ing Resistance

everyone will be getting a 20-50% raise, and there still will be resistance. Some
will suspect the boss's ulterior motives—What do you bet there are strings at-
tached? Others will consider the raises unfair—I work harder than he does, why
did he get a bigger percentage raise?

A transition such as the one to Scrum brings great upheaval to the organiza-
tion. Responsibilities broaden, reporting relationships are altered, organizational
power shifts, and expectations change. Some individuals stand to gain personally
or professionally from such changes; others stand to lose. Understanding how
these shifts will affect your organization is vital to anticipating where resistance
will occur.

This is confirmed by a 2007 study of why people resist change, which re-
vealed that managers' number one reason for resistance was a fear of losing control
and authority (Creasey and Hiatt).The top reasons given by employees and man-
agers for resisting change are shown in Table 6.1.

TABLE 6.1
T h e t o p r e a s o n s
f o r r e s i s t i n g
c h a n g e , as g i v e n
b y e m p l o y e e s a n d
m a n a g e r s .

Number Employees Managers

1 Lack of awareness Fear of losing control and authority

2 Fear of the unknown Lack of time

3 Lack of job security Comfort with the status quo

4 Lack of sponsorship N o answer to "What's in it for me?"

5 N o involvement in solution design

Who Will Resist?
In attempting to anticipate where resistance will arise, it can be helpful to consider
the answers to questions such as these:

• Who will lose something (power, prestige, clout, or so on) if the transi-
tion to Scrum is successful?

• What coalitions are likely to form to oppose the transition?

By identifying individuals who will lose from the change and coalitions that
will form to oppose it, you will know where to target initial efforts at reducing
resistance.

Although some individuals resist change, others enjoy it. Musselwhite and
Ingram categorize individuals based on their disposition to change as shown in
Figure 6.1 (Luecke 2003). At one end are conservers, who enjoy predictability;
focus on details and routines; are deliberate, disciplined, and organized; and who

Ant ic ipa t ing Resistance 99

prefer change that maintains the current structure of the organization. Conservers
are estimated to be about 25% of the population.

m
2 5% 2 5%

_ S
C'onÇerverÇ

Prefer ohange thai
maintain? the current
Structure
5-njojj predictability
/+onor tradition and
established practice

Fraqmatiçtç
Prefer practical
¿-liante
Open to toth ÇÎdeÇ
of an argument
More focuÇed on
results than structure

Originators
• Prefer chanae that

challengei ejiktin^
Structure

• Will challenae
accepted assumptions

• L-ittle reaard for
acceptedpolicieS

FIGURE 6.1
I n d i v i d u a l d i s p o s i -
t i o n t o c h a n g e .

At the other end of the range are originators, who also represent about 25%
of the population. Originators may appear disorganized and undisciplined, en-
joy taking risks, have little regard for policies, and prefer change that challenges
the current structure. In between conservers and originators are pragmatists, who
represent the remaining 50% of the population. Pragmatists are usually practical,
agreeable, and flexible; are more focused on results than structure; usually appear
more team-oriented than conservers or originators; are open to both sides of an
argument; and usually make great mediators between conservers and originators.

I've found that being aware of these three dispositions to change is helpful in
identifying who will be likely to resist. Clearly, conservers will resist the transition
to Scrum. The types of changes that Scrum brings to ways of working, team mem-
ber interactions, and expectations are the type of changes that go against the
nature of a conserver.

Categor iz ing people as conservers , pragmat is ts , and or ig inators pres-
ents an incomp le te and over ly s impl is t ic picture. Of course, each person
needs to be cons idered and t rea ted as a un ique individual. Understand-
ing these categor ies, however , can help you to fo rmu la te s t ra teg ies for
ove rcoming resistance. A n individual 's role in the organizat ion can o f fer
addi t ional ins ights into w h y s o m e o n e is resistant. Many of t hese causes
of resistance are descr ibed in Chapter 7, " N e w Roles, " and Chapter 8,
"Changed Roles. "

100 C h a p t e r 6 O v e r c o m i n g R e s i s t a n c e

Conservers will not be alone, however, in resisting Scrum. Some of the prag-
matists will also resist. Because pragmatists are much more open to seeing both
sides of an argument for themselves and then adding their support to the right
side, laying an early groundwork for success can help turn pragmatists into Scrum
advocates. Consider the following activities to help bring pragmatists around to
Scrum:

• R u n a pilot project and include pragmatists on the team.

• Make sure pragmatists who aren't on the pilot team see the results of it.

• Provide training to pragmatists.

• Expose pragmatists to the successes of other companies through confer-
ences, regional agile interest groups, and so on.

• Be open to the drawbacks and challenges of Scrum rather than oversell-
ing it as a silver bullet.

• Involve pragmatists on the improvement communities that were
described in Chapter 4, "Iterating Toward Agility."

Waterfallacies and Agile Phobias
Many of the specific arguments you'll hear against Scrum are predictable and
common across many organizations. Others, of course, will be unique to your or-
ganization.You can often anticipate the arguments you'll hear by thinking through
the challenges presented by your organization, domain, technologies, products,
culture, and people. In doing so, you'll find that many of the objections (both the
universal and the specific ones) can be categorized as either waterfallacies or agile
phobias. A waterfallacy is a mistaken belief or idea about agile or Scrum created
from working too long on waterfall projects. Examples include

• Scrum teams don't plan, so we're unable to make commitments to
customers.

• Scrum requires everyone to be a generalist.

• Our team is spread around the world. Self-organization clashes with
some cultures, so we can't be agile.

• Our team is spread around the world, and Scrum requires face-to-face
communication.

• Scrum ignores architecture, which would be disastrous for the type of
system we build.

• Scrum is O K for simple websites, but our system is too complicated.

Commun ica t i ng A b o u t the Change 129

An agile phobia is a strong fear or dislike of agile practices, usually due to
the uncertainty of change. Some of the agile phobias you are likely to encounter
include the following:

• I 'm afraid I'll have nothing to do.

• I 'm afraid I'll be fired if the decisions we make don't work out.

• I 'm afraid of conflict and of trying to reach consensus.

• I 'm afraid people will see how little I really do.

• It's so much easier and safer when someone tells me exactly what to do.

• It's so much easier and safer when I can tell people exactly what to do.

Although a waterfallacy can often be countered with rational arguments, an-
ecdotes, and evidence, an agile phobia is usually much more personal and emo-
tional. Sometimes people just need to know that their objections have been heard.

Throughout this book I have tried to preempt as many waterfallacies and ag-
ile phobias as possible. Many chapters include "Objection" sidebars, which provide
my advice on how to address common questions and misunderstandings about
Scrum.

Communicating About the Change
If you look back at Table 6.1, you'll notice that the number-one reason employees
gave for resisting change was a lack of awareness. I 'm confident, though, that if we
searched the deleted e-mail folders of all who participated in that study, we would
find at least one message explaining the reason for the change. However, having
been told the reason and understanding the reason are not the same. Most of us
need to be given a message multiple times, and usually in multiple ways, before
it finally sinks in and we understand it. In addition to hearing a message multiple
times, there are some messages we hear better when they come from leaders and
others we hear better when they come from our peers.

Hearing from Leaders
Not surprisingly, research has shown that employees prefer to receive different
types of information from different people (Hiatt 2006, 12). Employees prefer to
hear messages about why a change is needed from someone high up in the organi-
zation. The same employees prefer to hear about how the change will affect them
personally from their immediate supervisor. This means that while the president
of the company or the general manager of the division may be best at commu-
nicating the reason for switching to Scrum, individuals need the opportunity to

130 C h a p t e r 6 O v e r c o m i n g R e s i s t a n c e

meet with their own managers to discuss the implications for them personally. Still
other messages are best communicated by peers.

If you are a formal leader in your organization or are informally recognized as
one, you will likely find yourself in a position to communicate about the transi-
tion. W h e n communicating about an uncertain future, there is a good chance you
will be asked questions you do not know how to answer: Will there be layoffs?
W h o will I report to? W h o will write my annual review? If you don't know the
answer to a question, don't guess. And always be honest. A single lie will destroy all
previously established credibility.

Additionally, when communicating about the transition, be sure to listen. As
a formal or informal leader, your role is not only to communicate what needs to
be passed along but also to listen and hear the objections that are being stated (and
the ones that are implied). Look once more at the list of common reasons for re-
sisting shown in Table 6.1. Notice that none of the reasons was "I don't think this
change is a good idea." Yes, of course, there will be some in the organization who
think shifting to Scrum is a bad idea, but there will be more who resist for other,
more personal reasons—the social aspects of change mentioned at the start of this
chapter. In every conversation with others, spend more time listening than talking.
For each person who resists the transition, see if you can complete this sentence
for them:"I can't do Scrum because it means I "There are an infinite number
of ways to complete that sentence. After a recent client engagement, I was able to
finish the sentence this way for some employees I met that day:

• I would have to work harder than I want to right now.

• I would have to stop doing the part of my job I enjoy most.

• I would have to travel more often to work more closely with my
remote team.

• I would not be able hide that I am no longer a good hands-on
programmer.

• I would not have as many people reporting to me.

N o n e of these statements was uttered by the people I met with that day. But,
each was there to be heard when I listened carefully enough. Understanding why
individuals are resisting will be the first step in helping them overcome their
resistance.

Hearing from Peers
Any successful communication plan will include plenty of opportunities for
unconvinced employees to hear f rom their peers. An article in the MIT Sloan
Management Report conveys a similar message.

Commun ica t i ng A b o u t the Change 103

Particularly during a period of uncertainty, the best route to
influence others can be from the side rather than from above.
For leaders, this means allowing employees who have yet to ac-
cept a change to hear from those who have, perhaps through
team meetings. Even just one exposure to the favorable position
of a peer can have a greater impact than multiple exposures to
the similar position of a supervisor. (Griskevicius, Cialdini, and
Goldstein 2008, 86)

An interesting anecdote concerning the power of peer influence involves
Sylvan Goldman, who invented the shopping cart in 1937 after noticing that
shoppers at his market stopped shopping when their hand-carried baskets became
heavy. Surprisingly, Goldman's carts were not immediately popular. The carts sat
unused until Goldman hired male and female actors to push the carts around the
store, pretending to shop. After shoppers saw people they perceived as peers using
the carts, usage took off. Shopping carts are now a ubiquitous part of the grocery
shopping experience.

To make this more personal: Consider a time when you were at a confer-
ence or trade show and saw a throng crowded into one vendor's booth to hear
the pitch. Admit it:You moved closer to hear what had everyone so interested. Or
recall a time you walked through an area with street performers, perhaps a mime,
musician, or juggler.You may have noticed that after a small crowd started to form
around one performer, the crowd got bigger and bigger.

These examples show the power of peer influence. If one's peers proclaim
the benefits, people listen. An effective transition effort will include many oppor-
tunities for peer-to-peer discussion. Many will be informal and spontaneous—
coworkers talking at lunch, for example. But, effective leaders of a transition to
Scrum should also seek to create additional opportunities. This can be done by
encouraging participation in communities of practice or even by occasionally
scheduling more formal peer-to-peer lunchtime presentations. To the extent pos-
sible, try to match the messenger to the audience. Consider this advice from a
study on the impact of peer influence.

When working to ensure that the voices of supportive employees
will be heard, managers often select those who are the most ar-
ticulate when they should instead favor those who are the most
similar in circumstances to the individuals who are still uncon-
vinced. So if resistance to an initiative is strongest among em-
ployees with the longest tenures, then a fellow old-timer who has
genuinely embraced the change could be a better advocate than
someone who might be more eloquent but has only recently
come on board. (Griskevicius, Cialdini, and Goldstein 2008, 86)

104 Chapter 6 Ove rcom ing Resistance

The Hows and Whys of Individual Resistance
People resist changing to Scrum for many different reasons. Some may resist be-
cause they are comfortable with their current work and colleagues. It has taken
years to get to their current levels in the organization, to be on this team, to work
for that manager, or to know exactly how to do their jobs each day. Others may
resist changing to Scrum because of a fear of the unknown. "Better the devil you
know than the devil you don't" is their mantra. Still others may resist due to a
genuine dislike or distrust of the Scrum approach. They may be convinced that
building complex products iteratively without significant up-front design will lead
to disaster.

Just as there are many reasons why some people will resist Scrum, there are
many ways someone might resist. One person may resist with well-reasoned logic
and fierce arguments. Another may resist by quietly sabotaging the change effort.
"You think no documentation is a good idea? I'll show you no documentation,"
the passive resistor may think, proceeding to write nothing down, even bug re-
ports the team has agreed should continue to be stored in the defect tracking
system. Another may resist by quietly ignoring the change, working the old way
as much as possible, and waiting for the next change du jour to come along and
sweep Scrum away.

Each act of resistance carries with it information about how people feel about
adopting Scrum. As a change agent or leader in the organization, your goal should
be to understand the root cause of an individual's resistance, learn from it, and
then help the person overcome it. There are many techniques you can use for
doing this. But unless the technique is carefully chosen, it is unlikely to have the
desired effect. To help select the right technique, I find it useful to think about how
and why someone is resisting. We can group the reasons why someone is resisting
Scrum into two general categories:

• They like the status quo.

• They don't like Scrum.

Reasons for resistance fall into the first category if they are actually a defense
of the current approach.This type of resistance to changing to Scrum would likely
result no matter what type of change was being contemplated. Reasons fall into
the second category if they are arguments against the specific implications of be-
ginning to work in an agile manner.Tables 6.2 and 6.3 provide some examples of
different reasons for resistance and how each would be categorized.

Categorizing hotv individuals resist is even simpler: Is the resistance active or
passive? Active resistance occurs when someone takes a specific action intended
to impede or derail the transition to Scrum. Passive resistance occurs when some-
one fails to take a specific action, usually after saying he will. Combining the two

The H o w s and W h y s of Individual Resistance 105

general reasons people may resist Scrum with the two ways in which they will do
it leads to the standard two-by-two matrix, as shown in Figure 6.2.

Examples of Liking the Status Quo

I like who I work with.

I like the power or prestige that comes with my current role.

This is the way I was trained to do it and the only way I know how.

I don't like change of any sort.

I don't want to start another change initiative because they always fail anyway.

TABLE 6.2
P e o p l e m a y res i s t
S c r u m b e c a u s e
t h e y l i ke h o w
t h i n g s a r e t o d a y .

Examples of Not Liking Scrum

I think S c r u m is a fad and we'll just have to switch back in three years.

Scrum is a bad idea for our products.

I got into this field so that I could put headphones on and not talk to people.

Scrum doesn't work with distributed teams like ours.

TABLE 6.3
P e o p l e m a y res i s t
b e c a u s e t h e y d o n ' t
l i ke S c r u m .

Each quadrant of Figure 6.2 is given a name descriptive of the person who
resists in the way indicated by the labels on the axes. A skeptic is someone who
does not agree with the principles or practices of Scrum but who only passively
resists the transition. Skeptics are the ones who politely argue against Scrum, for-
get to attend the daily scrum a little too often, and so on. I am referring here to
individuals who are truly trying to stop the transition, not people with the healthy
attitude of "this sounds different from anything Eve done before but Em intrigued.
Let's give it a try and see if it works."

Above the skeptics in Figure 6.2 are the saboteurs. Like skeptics, saboteurs re-
sist the transition more from a dislike of Scrum than support for whatever software
development process exists currently. Unlike a skeptic, a saboteur provides active
resistance by trying to undermine the transition effort, perhaps by continuing to
write lengthy up-front design documents, and so on.

On the left side of Figure 6.2 are those who resist because they like the status
quo. They are comfortable with their current activities, prestige, and coworkers.
In principle, these individuals may not be opposed to Scrum; they are, however,
opposed to any change that puts their current situation at risk. Those who like the

106 Chapter 6 Ove rcoming Resistance

status quo and who actively resist changing from it are known as diehards.They
often attempt to prevent the transition by rallying others to their cause.

The bottom left of Figure 6.2 shows the followers, who like the status quo
and resist changing from it passively. Followers are usually not enraged by the
prospect of change, so they do little more than hope it passes like a fad. They need
to be shown that Scrum has become the new status quo.

FIGURE 6.2
F o u r d i f f e r e n t t y p e s
o f r e s i s t o r s b a s e d
o n w h y a n d h o w
t h e y res i s t . p i e h a y d 1 ;

f o l l o w ^ S f c e p H ^

Hfce statu? cjuo Pon't iifce Sorum

Why t h e n r e f a f

Skeptics
Thad had no choice but to adopt Scrum. His company had been acquired and was
being told by the new owners to begin using Scrum immediately. This wasn't a
direction Thad would have chosen himself, and he had serious concerns about it.
Would the daily scrums add value, especially with a product owner who worked
from her home 600 miles away? How could a new product as complicated, large,
and novel as theirs be done without a lengthy up-front design phase? He could
see the value of iterating through the construction phase, but surely an up-front
design was still needed.

Thad was a skeptic. I knew this from his willingness to admit that Scrum was
fine for other domains, technologies, or environments—-just not his.Thad openly
acknowledged the appropriateness of Scrum for web development but questioned
it for his company's scientific applications.

As the most experienced member on his team and one of the longest-tenured
developers in the organization,Thad was an opinion leader. Others looked to him
to see how he would behave under the mandate to adopt Scrum. Thad exhibited

The H o w s and W h y s of Individual Resis tance 135

a healthy amount of doubt; people should not be expected to change how they
work without the opportunity to ask hard questions or be expected to fully em-
brace Scrum until they've worked on a Scrum team and experienced the ben-
efits for themselves. Thad's uncertainty, however, went beyond doubt to the point
where he was resisting the transition in small but important ways.

Because he didn't see the benefit of daily scrums, Thad consistently pushed to
skip them. At the end of one meeting he said, "It sounds like we're all on stuff that
will take at least today to finish. So let's skip tomorrow's daily scrum and just meet
again the day after. Every other day is probably good enough anyway." Sometimes
his ScrumMaster could successfully counter these arguments, but not always. After
all, the ScrumMaster was new to Scrum, too.

Additionally, like many skeptics, Thad would sometimes claim to support a
Scrum practice but would then continue to work as he always had. For instance, he
said that he supported working iteratively and claimed to understand the value of
having a potentially shippable product at the end of each sprint. In truth, though,
Thad didn't believe that all parts of their product could be designed, coded, and
tested within a single sprint. Consequently, he habitually pushed the team to bring
more work than it could handle into each sprint. Overcommitting was his way of
making sure that some features were worked on over at least two sprints.

Some of the tools that are useful in overcoming the resistance presented by
skeptics include

• Let time run its course. If you can keep the transition effort moving for-
ward, evidence of the benefits of Scrum will start to accumulate. Even
if this evidence is merely anecdotal, it lessens the amount of resistance a
skeptic can put up.

• Provide training. Some of a skeptic's resistance is a result of not having
done something or not having seen it done before. Training—whether
formal classroom training or as provided by an external coach brought
in to work with the team—helps by giving the skeptic the experience of
seeing firsthand how it can work.

• Solicit peer anecdotes. If you've never experienced something yourself
but your friends or those you relate to have, their personal stories will
resonate with you. If there are Scrum success stories from other teams in
your organization, make sure the skeptics hear them. If Scrum is new to
your organization, invite experienced agile outsiders in. Inviting a local
software architect to speak at lunch about her company's success with
Scrum will do wonders in persuading your own skeptical architects.

• Appoint a champion skeptic. In their book Fearless Change, Mary Lynn
Manns and Linda Rising suggest designating someone as the company's
"champion skeptic" (2004).The champion skeptic should be influential,
respected, and well connected but should not be openly hostile to the

108 Chapter 6 Ove rcom ing Resistance

change. The champion skeptic is invited to all meetings and is given a
chance to point out problems. Use this information to sincerely address
the concerns the champion skeptic brings up. Doing so demonstrates
open-mindedness and prevents any one concern from escalating into a
crisis.
Push the issue. Put the skeptic in charge of some part of the transition.
Suppose you are struggling with a skeptical tester who does not believe
testing can be done in the same sprint as the design and programming of
a feature. Challenge that tester to identify five ways to help bring the team
closer to the goal of testing within the same sprint. The tester won't be
able to come up empty for fear that the next person who takes on the task
successfully identifies five items. Then, ask the team to either try all five
things or to select the one or two ideas that seem most promising initially.
Build awareness. Presumably you have chosen to do something as diffi-
cult as introduce Scrum because there is a compelling need to do so.
Perhaps a new competitor has entered your space, perhaps your last prod-
uct took a year too long to release, or perhaps you have any of a number
of similar reasons. Make sure that those involved in the transition are
aware of the better future that will follow a successful transition.

M o r e too ls for ove rcoming res is tance wi l l be descr ibed in the sect ions
that fo l l ow on saboteurs , d iehards, and fo l lowers. A l though it is possib le
that any tool may w o r k on any t ype of resistor, I have l isted the too ls
a long w i t h the t ype of resistor for w h o m I have f ound the tool m o s t
useful .

In Thad's case, we were able to overcome his skepticism by pushing the issue.
We put a stop to his passive resistance to iterating by switching to shorter sprints.
The team had been using four-week sprints but was bringing in about six weeks
worth of work in each sprint planning meeting. I told them we were going to try
two-week sprints until they got a handle on how much could actually be com-
pleted in a sprint. Thad didn't like this idea. In the next sprint planning meeting, to
point out the foolishness of working in such short sprints, Thad pushed the team
to commit to what he thought was a ridiculously small amount of work. It turned
out to be the right amount; for the first time the team finished all its work inside
one sprint. As team members came to see the value of completing what they com-
mitted to,Thad's subtle efforts to force the team to overcommit were thwarted by
the team's new insistence that it bring in to the sprint only what it could handle.

The H o w s and W h y s of Individual Resistance 109

Although pushing the issue helped in Thad's case, the biggest factor in eradi-
cating his resistance was time. It just took time (and a mounting pile of anecdotal
evidence that it could be done) to sway Thad.

Saboteurs
It can be easy to mistake a saboteur for a skeptic—after all, some amount of un-
certainty about any change can be a good thing. I made the mistake of confusing
a saboteur with a skeptic while teaching a class at a search engine company. Elena,
a participant in the class, was asking a lot of good, challenging questions. I didn't
know her role in the organization, but because many class participants were defer-
ential to her, I figured she was important in one sense or another, and so I spent a
lot of time answering her questions. If I was right and she was an opinion leader,
and if I could convert her by overcoming her objections one by one, I knew that
would be a big step forward for this company.

At the end of the day, I met with the director who had invited me to teach
that class in her company.We talked about how the class went and I told her how I
hoped I'd made progress helping Elena to see the light.The director said,"I should
have warned you about her. She hates Scrum. She runs a shared user experience
design group and is completely opposed to everything about Scrum. She's been
fighting it since we started six months ago. I was surprised to see that she'd signed
up for your class."

Elena was a saboteur—opposed to Scrum and actively resisting it. Like most
saboteurs, she had been soliciting others to her cause. Despite mounting evidence
within her company that Scrum was helping create better products more quickly,
she continued to argue that it would not. I asked Elena directly why she was so
strongly opposed. She said, "I have the best stateroom on the Titanic and I 'm not
moving!"

In addition to some of the tools offered for overcoming the resistance of skep-
tics, the following tools have proven useful with saboteurs:

• Success. As long as there is any doubt about whether Scrum is the ap-
propriate approach, saboteurs will use those doubts to spread resistance.
"Yes, it worked on our web projects," they may grudgingly offer, "but, it
won't work on our back-end projects." Success on many different types
of projects is a surefire way of weakening those arguments.

• Reiterate and reinforce the commitment. Saboteurs need to know that the
company is committed to the transition. Any sign of weakness and—like
a lion eyeing a tasty-looking antelope—the saboteur will attack. Faced
with a large number of saboteurs, a strong message from as high up the
executive chain as possible will at least let them know resistance is futile.

• Move them. If possible, find another team, project, or division and move
the saboteur there. Unless you are a small organization or are doing an

SEE ALSO
Spr in ts , and espec ia l ly
t h e va lue of p roduc ing
s o m e t h i n g po ten ta i l l y
sh ippab le by t h e end
of each spr in t , are
cove red in Chap te r 14,
" S p r i n t s . "

138 Chapter 6 Ove rcom ing Resistance

all-in transition, it is quite likely that a saboteur can continue to be a
productive team member elsewhere—until Scrum starts to permeate that
team, project, or division, that is.

• Fire them. This is the extreme end of moving someone. But if someone
is opposed to a stated corporate direction and is actively resisting it, then
this is quite possibly the appropriate action.

• Be sure the right people are talking. Chapter 4 introduced the idea of
forming improvement communities as a way of identifying and spreading
good practices and enthusiasm for Scrum through the organization. A
thriving set of communities focused around topics of special interest can
be invaluable in producing enough momentum to overcome resistance.
Hearing how others within a community of practice are succeeding with
Scrum can lessen a saboteur's resolve to continue resisting.

Elena was fortunate to work in a large organization in which she could be
moved to a different department that was still taking a wait-and-see attitude to-
ward Scrum. She eventually came around to the point where she is again a pro-
ductive team member, though even today she will admit she is secretly waiting for
a change back to the old way of working.

Diehards
Katherine worked as the director of metrics and measurement for a large division
of a financial data provider. I had been told she was a supporter of the division's
shift toward Scrum but that she had a few questions for me so that she could
more effectively do her job of collecting process and product metrics. I have a
natural interest in this subject, and such discussions are usually a great chance for
me to learn something new I was looking forward to meeting with Katherine as
a chance to discuss some creative, innovative metrics.

Was I ever wrong! Katherine had mastered the art of appearing to support the
transition to Scrum while trying to hold onto the status quo. Three years prior to
our meeting, software development within this organization had been character-
ized by missed deadlines and buggy software that didn't meet customer expecta-
tions. At that time, Katherine was the newly hired test manager. She instituted
some new procedures that dramatically improved things. As a result, teams seemed
to be meeting their deadlines (mainly because schedules were padded by what I
considered astounding amounts) and quality improved (by creating a separate test
group that would spend months testing after a product was handed over to them).

For her efforts in solving these problems, Katherine had been promoted and
was now running what was essentially a project management office (PMO).As she
told me more about her background and about how she had previously helped
her company by introducing various process improvements, I was sure I had found
an ally in transitioning her division to Scrum. Instead, what I found was someone

The H o w s and W h y s of Individual Resis tance 111

who had built herself a very nice empire (through good effort directed at earlier
company goals). She was now so enamored of her current status, the number of
people reporting to her, and her level of prestige that she was unwilling to con-
sider further changes. Moses could have come down from the mountaintop with
the ideal process engraved on stone tablets, and Katherine would have resisted.

Katherine, like other diehards, was opposed to Scrum not because of anything
inherent in it but because she did not want to let go of the current state. She was
very actively resisting the change but always in ways that allowed her to claim to
be supporting it.

A common technique of diehards, and one Katherine employed, is to stall
the transition by controlling resources. This is possible because diehards are often
found at the middle and upper levels of management where they have enough
status to want to keep it. In Katherine's case, she controlled a shared pool of testers.
This allowed her to harm the transition by profligately moving testers between
projects. There were always plausible reasons: A critical project needed an ad-
ditional tester, another project needed the expertise of a specific tester, and so
on. Katherine's tactics had the effect of ensuring that no team retained the same
personnel from start to finish and that many Scrum teams didn't have a tester for
the first few sprints.

Many of the tools appropriate for overcoming the resistance of the saboteur
will work with the diehard as well. Some additional tools you may want to employ
with diehards include

• Align incentives. Diehards are tied to the status quo because of the ben-
efits (either tangible or intangible) that it brings them. If you find a lot of
resistance from diehards, consider all incentives that exist in the organiza-
tion and make sure each aligns well with being agile. I am not referring
solely to financial incentives. Nonfmancial incentives such as who gets
promoted or otherwise recognized should also be reviewed. If having a
large number of people reporting to you creates clout in your organiza-
tion, for example, you shouldn't be surprised when people resist losing
their direct reports.

• Create dissatisfaction with the status quo. Diehards like the status quo.
They are not opposed to Scrum because of what it is; they are opposed
to it because they like how things are. So, try to create dissatisfaction
with the current state. I don't mean to go create a crisis, but if one looms,
point it out. If market share is declining, make sure people know. If calls
to tech support are on the rise, show people. If an industry newsletter
recently heaped praise on a competitor's product, hang copies of the ar-
ticle where everyone can see them. This is consistent with the advice of
Stewart Tubbs, author of a textbook on small-group interaction: "A pre-
scient manager is always looking for ways for the organization to improve

SEE ALSO
C h a p t e r 2 0 , " H u m a n Re-
sources , Faci l i t ies, and
t he PMO," p rov ides
adv ice on m a n y h u m a n
r e s o u r c e s - r e l a t e d
issues.

140 Chapter 6 Ove rcom ing Resistance

continuously. She or he is constantly on the lookout for ways to make the
organization more effective, and looks to communicate these ideas as a
way to generate dissatisfaction with the status quo" (2004, 352).

• Acknowledge and confront fear. Diehards resist in part because of the
uncertainty of what their jobs will look like with Scrum. They are usually
very happy with their current positions. Fear of an uncertain future can
be very powerful. How will my role change? How will I be evaluated?
What will come next in my career? These are all powerful questions often
in the mind of the diehard. If you know the answers and are in a position
to give them, do so. If the answers are unknown, say so but commit—if
you can and if you value the work of the diehard—to working with him
to find the answers.You can also help calm these fears by clarifying what
is expected not just of the diehard but of others with whom he may work.

In Katherine's case, her vice president (Christine) and I sought to find the
right role for her in the new organization. We talked with her about our confi-
dence that her past experience in guiding the company toward dramatic process
improvements put her in a key position for helping the company again. Chris-
tine clarified Katherine's role in the new organization. Unfortunately, Katherine's
sense of identity and self-worth were so tightly coupled to the process that she
had helped put in place that she could not help the company move beyond it. In
the end, she left the company.

Followers
Fike diehards, followers are more opposed to changing the status quo than they
are opposed to adopting Scrum in particular. Unlike diehards, however, followers
present passive resistance to the change. Dexter, a mid-level programmer at an e-
commerce company was a follower. He asked questions like a skeptic but always
with an undercurrent implying that he knew Scrum was a bad thing. Where a
skeptic would ask, "How does Scrum work on projects where getting the user
experience perfect is absolutely critical?" Dexter would ask, "Scrum doesn't work
when getting the user experience perfect is critical, does it?"

I remember one conversation with Dexter in which he asked how many
times I would be back to visit his company. "I 'm scheduled back in July and
October," I said. This was June.

"Nothing after that?" he asked.
"Maybe, but we haven't scheduled anything past October."
"Good. This will be done by the end of the year, then."
I was impressed by his enthusiasm, but I thought his timeline for adopting

Scrum was a little aggressive considering the size of his company. "Well, probably
not," I cautioned. "There will probably still be some work next year. Not everyone
has even started running sprints. But you probably won't need me next year."

The H o w s and W h y s of Individual Resis tance 141

"Oh," Dexter replied, "I didn't mean it that way. I meant we'll be onto our
next new process by then. After the Christmas shopping season is over, we always
change our process."

N o one had told me about these annual process changes prior to my first
visit with this company, but considering the company's history of adopting a new
process every January, it wasn't surprising that Dexter would take a wait-it-out
approach to Scrum. In fact, many followers adopt this approach, reasoning that
this change will be followed by some later change and they might as well skip a
few along the way.

On his own Dexter didn't present a significant hurdle to a successful transi-
tion. But, have enough Dexters in your organization, and they can impede a suc-
cessful transition. Fortunately, followers are not usually very vigorous in their re-
sistance. They will put up minor, passive resistance, mostly hoping that the change
goes away. In addition to some of the tools described already, there are a few more
tools that can be useful in dealing with followers:

• Change the composition of the team. Some coworkers bring out the best
in us; others bring out the worst. Changing the composition of the team
will undoubtedly change the nature of resistance. Replacing a grumbling,
always-negative saboteur with a skeptic may remove a follower's motiva-
tion for resisting.

• Praise the right behavior. Rather than focusing on changing the behavior
of the followers, praise some aspects of appropriate behavior whether you
observe it in a detractor or supporter. Followers will notice and resistance
in some will weaken.

• Involve them. A great way to reduce the resistance of a fence-sitting fol-
lower is to involve her in the design of the new process. For example, you
might ask a follower to join an improvement community figuring out
how to do automated unit testing on your challenging legacy application
or to work with others putting together a presentation for the sales group
on how Scrum impacts your ability to put dates in contracts.

• Model the right behaviors yourself. Followers need someone to follow.
Increase the odds that they follow someone who is exhibiting the right
agile behavior by modeling those behaviors yourself. For example, given
that collaboration is an essential part of Scrum, strive to demonstrate this
in your interactions with others.

• Identify the true barrier. Following the model described in Chapter 2,
"ADAPTing to Scrum," determine whether a follower is resisting because
she lacks the awareness, desire, or ability to use Scrum. Then provide the
appropriate support to break through that barrier. If she isn't aware of the
reasons for transitioning to Scrum, have a private conversation in which
you share them. If she currently lacks the ability to be agile, look for an
opportunity to pair her with someone who can help her learn those skills.

114 Chapter 6 Ove rcom ing Resistance

THINGSTO
TRY NOW

• Ident i fy the f ive f ie rcest res istors in your organizat ion.

• For each of the f ive f ie rces t resistors, dec ide w h e t h e r each is m o s t
l ikely a skept ic , saboteur, diehard, or fo l lower .

• Ident i fy one act ion you can take to lessen or counter the resistance
of each of the f ive f ie rcest resistors. Look for oppor tun i t ies to f ind
one act ion that wi l l w o r k for mul t ip le resistors.

• Assess w h e t h e r you have correct ly set the s tage for the t ransi t ion
by f i rst bui ld ing awareness and creat ing desire. Revisit t hese activi-
t ies if needed.

Resistance as a Useful Red Flag
When introducing a complex change into a large organization, resistance will
be inevitable. What isn't inevitable is the reaction of an organization's leaders to
that resistance. Paul Lawrence, whom we heard from at the start of this chapter,
describes an appropriate response.

When resistance does appear, it should not be thought of as
something to be overcome. Instead, it can best be thought of as
a useful red flag—a signal that something is going wrong. To use
a rough analogy, signs of resistance in a social organization are
useful in the same way that pain is useful to the body as a signal
that some bodily functions are getting out of adjustment. The re-
sistance, like the pain, does not tell us what is wrong but only that
something is wrong. And it makes no more sense to try to over-
come such resistance than it does to take a pain killer without di-
agnosing the bodily ailment. Therefore, when resistance appears,
it is time to listen carefully to find out what the trouble is. What
is needed is not a long harangue on the logics of the new recom-
mendations but a careful exploration of the difficulty. (1969, 9)

Be careful not to turn the need to handle resistance into an atmosphere of
"us" against "them."The real goal is to create a feeling that the transition to Scrum
is inevitable and that, as the Borg of Star Trek taught us, "resistance is futile." The
need to foster this atmosphere does not give you carte blanche to ignore the feel-
ings and reactions of employees or to steamroll Scrum into an organization. When
an employee resists, an effective leader looks at the employee not as a problem to
be solved but as a person to be understood (Nicholson 2003).

Addit ional Reading 143

Additional Reading
Bridges, William. 2003. Managing transitions: Making the most of change. 2nd ed. Da Capo
Press.

T h e author is a general transition management expert rather than someone well
versed in software development. His b o o k is a standard on h o w individuals deal with
transitions and contains a wealth of information on letting go of the past. There is also
strong coverage of moving through what the author calls the "neutral zone," that t ime
between w h e n the old has been abandoned yet the n e w approach is not established.

Emery, Dale H. 2001. Resistance as a resource. Cutter IT Journal, October.
Emery presents the view that a person's resistance can be viewed as a response to a
change initiative and that the response carries wi th it information. That information
can be used to learn about the person and hopefully get that person engaged in the
change process. T h e article includes an informative list of four factors that influence
whe ther someone resists.

Manns, Mary Lynn, and Linda Rising. 2004. Fearless change: Patterns for introducing new
ideas. Addison-Wesley.

This book presents 48 patterns that can be applied to any change initiative. Patterns
range from the well known ("do food") to the lesser known, such as the value of des-
ignating a "champion skeptic," and many others that can help overcome resistance.

Reale, Richard C. 2005. Making change stick: Twelve principles for transforming organizations.
Positive Impact Associates, Inc.

Some of the 12 suggestions in this short b o o k can be used to help overcome resis-
tance. Sections on catching people doing something right and confronting fear are
particularly useful. O t h e r suggestions, such as align your culture, are too big to be
adequately covered in the few pages devoted to them.

Chapter

N e w R o l e s

s we discussed in the previous chapter, teams and organizations resist Scrum
for many different reasons. One likely source of opposition to adopting Scrum is
confusion over the new roles that exist on a Scrum project. The roles of Scrum-
Master and product owner are new ones without exact corollaries in the pretran-
sition organization. It is common for an organization new to Scrum to struggle
with filling these roles with appropriate individuals. Until people figure out what
the new roles entail and which individuals have those skills, it is hard to put the
right people in place.

In this chapter, I describe the new roles of ScrumMaster and product owner.
For each role, we look at the responsibilities of the role, ideal attributes of can-
didates for the role, and how to overcome some common problems these roles
present.

The Role of the ScrumMaster
Much has already been written about the job of the ScrumMaster in removing
impediments to the team's progress (Schwaber and Beedle 2001, Schwaber 2004).
Most ScrumMasters quickly grasp that part of their job. Where many falter—
especially during the critical first 6 to 12 months of using Scrum—is in their
relationships to their teams, which is why we will focus on that topic here.

Many who are new to the ScrumMaster role struggle with the apparent con-
tradiction of the ScrumMaster as both a servant-leader to the team and also some-
one with no authority. The seeming contradiction disappears when we realize
that although the ScrumMaster has no authority over Scrum team members, the
ScrumMaster does have authority over the process. Although a ScrumMaster may
not be able to say, "You're fired," a ScrumMaster can say, "I've decided we're going
to try two-week sprints for the next month."1

The ScrumMaster is there to help the team in its use of Scrum. Think of
the help from a ScrumMaster as similar to a personal trainer who helps you stick

1 Ideally, the ScrumMaster tries to get team members to decide this on their own. But,
if they do not, the ScrumMasters authority over the process allows for this decision.

118 Chapter 8 Changed Roles

SEE ALSO
For m o r e on t h e
m e a n i n g of po ten t ia l l y
sh ippab le , s e e " D e l i v e r
W o r k i n g S o f t w a r e Each
Sp r i n t , " in Chap te r 14,
" S p r i n t s . "

with an exercise regimen and perform all exercises with the correct form. A good
trainer will provide motivation while at the same time making sure you don't
cheat by skipping a hard exercise. The trainer's authority, however, is limited. The
trainer cannot make you do an exercise you don't want to do. Instead, the trainer
reminds you of your goals and how you've chosen to meet them. To the extent
that the trainer does have authority, it has been granted by the client. Scrum-
Masters are much the same: They have authority, but that authority is granted to
them by the team.

A ScrumMaster can say to a team, "Look, we're supposed to deliver poten-
tially shippable software at the end of each sprint. We didn't do that this time.
What can we do to make sure we do better the next sprint?" This is the Scrum-
Master exerting authority over the process; something has gone wrong with the
process if the team has failed to deliver something potentially shippable. But be-
cause the ScrumMaster's authority does not extend beyond the process, the same
ScrumMaster should not say, "Because we failed to deliver something potentially
shippable the last sprint, I want Tod to review all code before it gets checked in."
Having Tod review the code might be a good idea, but the decision is not the
ScrumMaster's to make. Doing so goes beyond authority over the process and
enters into how the team works.

With authority limited to ensuring the team follows the process, the Scrum-
Master's role can be more difficult than that of a typical project manager. Project
managers often have the fallback position of "do it because I say so." The times
when a ScrumMaster can say that are limited and restricted to ensuring that
Scrum is being followed.

Attributes of a Good ScrumMaster
Today's surgeons are highly trained and skilled individuals who have had years of
formal education followed by extensive internships. This was not always the case.
Pete Moore has written that "the first surgeons had little anatomical knowledge,
but plied their trade because they had sharp instruments and strong arms. They
often did surgery in their spare time while working as the local barber or black-
smith" (2005, 143).

Many organizations choose their first ScrumMasters in much the same way;
but instead of seeking sharp instruments and strong arms, they look for manage-
ment or leadership experience. As they become more experienced with Scrum,
organizations eventually realize there are many more factors to consider in se-
lecting ScrumMasters. To help save you from picking a ScrumMaster whose sole
qualifications are strong arms and sharp instruments, I have listed the six attributes
I have found to be common among the best ScrumMasters I've worked with.

The Role of the S c r u m M a s t e r 119

Responsible
A good ScrumMaster is able and willing to assume responsibility. That is not to
say that ScrumMasters are responsible for the success of the project; that is shared
by the team as a whole. However, the ScrumMaster is responsible for maximizing
the throughput of the team and for assisting team members in adopting and using
Scrum. As noted earlier, the ScrumMaster takes on this responsibility without as-
suming any of the authority that might be useful in achieving it.

Think of the ScrumMaster as similar to an orchestra conductor. Both must
provide real-time guidance and leadership to a talented collection of individuals
who come together to create something that no one of them could create alone.
Boston Pops conductor Keith Lockhart has said of his role, "People assume that
when you become a conductor you're into some sort of a Napoleonic thing—
that you want to stand on that big box and wield your power. I 'm not a power
junkie, I 'm a responsibility junkie" (Mangurian 2006,30). In an identical manner,
a good ScrumMaster thrives on responsibility—that special type of responsibility
that comes without power.

Humble
A good ScrumMaster is not in it for her ego. She may take pride (often immense
pride) in her achievements, but the feeling will be "look what I helped accom-
plish" rather than the more self-centered "look what I accomplished." A humble
ScrumMaster is one who realizes the job does not come with a company car or
parking spot near the building entrance. Rather than putting her own needs first,
a humble ScrumMaster is willing to do whatever is necessary to help the team
achieve its goal. Humble ScrumMasters recognize the value in all team members
and by example lead others to the same opinion.

Collaborative
A good ScrumMaster works to ensure a collaborative culture exists within the
team.The ScrumMaster needs to make sure team members feel able to raise issues
for open discussion and that they feel supported in doing so. The right ScrumMas-
ter helps create a collaborative atmosphere for the team through words and ac-
tions. When disputes arise, collaborative ScrumMasters encourage teams to think
in terms of solutions that benefit all involved rather than in terms of winners and
losers. A good ScrumMaster models this type of behavior by working with other
ScrumMasters in the organization. However, beyond modeling a collaborative at-
titude, a good ScrumMaster establishes collaboration as the team norm and will
call out inappropriate behavior (if the other team members don't do it themselves).

SEE ALSO
For m o r e on w h o l e -
t e a m respons ib i l -
ity, s e e Chap te r 11,
" T e a m w o r k . "

120 Chapter 8 Changed Roles

Committed
Although being a ScrumMaster is not always a full-time job, it does require some-
one who is fully committed to doing it. The ScrumMaster must feel the same
high level of commitment to the project and the goals of the current sprint as the
team members do. As part of that commitment, a good ScrumMaster does not
end very many days with impediments left unaddressed. There will, of course, be
times when this is inevitable, as not all impediments can be removed in a day. For
example, convincing a manager to dedicate a full-time resource to the team may
take a series of discussions over several days. On the whole, however, if a team finds
that impediments are often not cleared quickly, team members should remind
their ScrumMaster about the importance of being committed to the team.

One way a ScrumMaster can demonstrate commitment is by remaining in
that role for the full duration of the project. It is disruptive for a team to change
ScrumMasters mid-project.

Influential
A successful ScrumMaster influences others, both on the team and outside it. Ini-
tially, team members might need to be persuaded to give Scrum a fair trial or to
behave more collaboratively; later, a ScrumMaster may need to convince a team
to try a new technical practice, such as test-driven development or pair program-
ming. A ScrumMaster should know how to exert influence without resorting to
a dictatorial "because I say so" style.

Most ScrumMasters will also be called upon to influence those outside the
team. For example, a ScrumMaster might need to convince a traditional team to
provide a partial implementation to the Scrum team. Or, a ScrumMaster might
need to prevail upon a QA director to dedicate full-time testers to the project.

Although all ScrumMasters should know how to use their personal influence,
the ideal one will come with a degree of corporate political skill. The term "cor-
porate politics" is often used pejoratively; however, a ScrumMaster who knows
who makes decisions in the organization, how those decisions are made, which
coalitions exist, and so on can be an asset to a team.

Knowledgeable
Beyond having a solid understanding of and experience with Scrum, the best
ScrumMasters also have the technical, market, or other specialized knowledge to
help the team pursue its goal. LaFasto and Larson have studied successful teams
and their leaders and have concluded that "an intimate and detailed knowledge of
how something works increases the chance of the leader helping the team surface
the more subtle technical issues that must be addressed" (2001, 133). Although
ScrumMasters do not necessarily need to be marketing gurus or programming
experts, they should know enough about both to be effective in leading the team.

T h e Role of t h e S c r u m M a s t e r 1 2 1

Tech Leads as ScrumMasters
That we'd like ScrumMasters to have solid technical knowledge does not mean,
however, that we simply anoint each team's tech lead as its ScrumMaster. In
fact, because Scrum teams are self-organizing, there should not be a company-
designated role such as "tech lead." However, when adopting Scrum it can be
very tempting to take the former tech leads and search for equivalent roles where
they can exert similar influence on the team and the product. Often this leads to
designating tech leads as ScrumMasters. Although some tech leads make great
ScrumMasters, never select someone as a ScrumMaster solely because of this, or
any other, past role.

A few years ago I provided some initial training to a company, with the goal of
helping its leaders decide whether they would adopt Scrum. Two weeks later, one
of them called me and said that my training had convinced them, and they were
proceeding with Scrum. In fact, she and a few others were in a meeting that m o -
ment discussing who their initial ScrumMasters should be, and they wanted my
advice. She then said, "We don't have time for a lot of discussion on this. We have
only one question: Can the tech lead on each team become the ScrumMaster for
that team? Just give a yes or no answer." I began to reply, "Yes, they can, b u t . . . "
and was about to explain the risks of this when she thanked me for my answer
and hung up.

W h e n I visited this client two months later, I was confronted with, "Why did
you say we should make our tech leads our ScrumMasters?" Uh , I hadn't. Appar-
ently they had encountered some of the problems I had tried to warn them about
and had since found that having solid technical knowledge was only one of the
desirable attributes of a ScrumMaster.

One of the risks in using a former tech lead as the ScrumMaster is that tech
leads are used to providing direction to their teammates. And worse, team m e m -
bers are used to looking to their tech leads for decisions. Because a good Scrum-
Master does not make decisions for the team, the former tech lead's history as a
decision maker can work against the transition.

A second risk of converting tech leads into ScrumMasters is that they often
do not have the requisite people skills. Although technical leads must have some
interpersonal skills, ScrumMasters must be facilitators who can guide and lead
self-organizing teams over which they have no authority. Author of Collaboration
Explained,JeanTabaka., shares similar concerns.

I work primarily with Scrum teams, and those that struggle the
most typically have a command-and-control project manager
or a decision-oriented technical lead as ScrumMaster. Without
a facilitative, servant-leader mode of team guidance, the agile
adoption will be only a thin veneer over nonempowered, de-
moralized teams. (2007, 7)

122 Chapter 8 Changed Roles

All of this is not to say that tech leads should never be considered as possible
ScrumMasters. Rather, the point is to be aware of these issues and not cavalierly
decide that all tech leads in your organization will make great ScrumMasters.
Perhaps the best way to assess a tech lead as a candidate for the ScrumMaster role
is to look at how that person has used the leadership authority that came with
the tech lead designation. Tech leads who took an "it's-my-way-or-the-highway"
approach in the past will not make good ScrumMasters. On the other hand, tech
leads who could have dictated decisions but instead worked to rally supporters to
their viewpoint will probably do well.

Internal or External ScrumMasters
A common question is whether teams should use ScrumMasters from within the
company or whether outside experts should be brought in. The long-term answer
is easy: Having skilled ScrumMasters is a critical requirement and as such they
should reside within the organization.You should not use contract ScrumMasters
over the long-term.

But it is hard to learn a new skill until you've seen someone else demonstrate
it. Learning how to lead without authority, when and how to nudge a team to-
ward adopting new engineering practices, when it's OK to intervene, and so on
can be difficult. Therefore, many organizations benefit from bringing in an outside
consultant as a ScrumMaster initially.This outsider may act as the ScrumMaster to
the team, but he should also serve as a mentor to prospective ScrumMasters within
the team so that the organization can develop its own cadre of ScrumMasters.

Rotating the ScrumMaster
Some teams that struggle with choosing the best ScrumMaster decide that an ap-
propriate strategy is to rotate the role among all team members. I don't advocate
this, as I don't think it demonstrates an appropriate respect for the challenges and
significance of the role. In my family, we rotate who cleans the table and loads
the dishwasher. Any of us can do that job. We do not, however, rotate who cooks
dinner. My wife is a far better cook than anyone else in the family. We want the
cooking to be the best it can be, so we don't rotate that job. If you want your
Scrum team to be the best it can be, I do not recommend that you make a habit
of rotating the job of ScrumMaster.

However, there are some occasions when you may want to rotate. The most
common is when you want to create learning opportunities. For example, if team
members are struggling to understand the duties of the ScrumMaster, they may
want to consider rotating each team member through the role. This may allow
each to develop an understanding of what it means to be a ScrumMaster. Similarly,
if a team identifies four or five good ScrumMaster candidates among its ranks, it
may want to rotate among them, giving each a chance to try the role. Then by

The Role of the S c r u m M a s t e r 123

considering the performance of each, the team will hopefully be able to choose
the most appropriate ScrumMaster.

Bob Schatz and Ibrahim Abdelshafi of Primavera Systems point out another
reason why rotating might be useful.

With time the team can begin to treat this position as their man-
ager. And the person in that position typically detects and duti-
fully fills the apparent need. The result is a breakdown in the
team's self-management practice. By rotating the responsibility at
the start of each sprint, it diffuses the role and makes it a shared
team responsibility and establishes abalance of power. (2006,145)

So, although it is possible to rotate the job of ScrumMaster, I recommend
doing it only for specific reasons, such as those just given, and only temporarily.
Rotating should not be a permanent practice. There are simply too many prob-
lems with it, including the following:

• Someone who has rotated into the role usually has other, non-
ScrumMaster tasks to perform during the sprint, and these often take
priority.

• It's hard to train enough people to do the role well.

• Some people will use their time as ScrumMaster to try to push through
changes to the process.

• Designating someone as ScrumMaster for a sprint or two does not auto-
matically make someone value the job, which can lead to ScrumMasters
who think Scrum is a mistake.

Overcoming Common Problems
Some of the common problems you may face in making sure that each team has
the appropriate ScrumMaster and what you can do to address them include

Someone inappropriate takes the role. Sometimes the decision of who should be
the ScrumMaster is made for you: someone just says, "I'll do it," and takes on the
role. Often this is great—after all, good ScrumMasters are likely to be the ones
who take on additional responsibility before being asked. But what if the person
who volunteers is inappropriate for the role?Your response to this will depend on
your role in the organization.

If you have some authority over the inappropriate ScrumMaster, the team,
or the adoption of Scrum, meet with the volunteer and explain why you need
someone different in the role. If appropriate, give the volunteer specific things
you would like him to do to be considered as a ScrumMaster candidate later. And
if the inappropriate person is already in the role of ScrumMaster? Even though
it will be a bit more difficult, I still suggest removing the person from the role if

124 Chapter 8 Changed Roles

you are convinced the person is truly inappropriate. In either case, act swiftly. An
inappropriate ScrumMaster should be changed as soon as possible; I haven't met a
team yet who felt an inappropriate ScrumMaster was removed too soon.

If you do not have authority over the ScrumMaster, team, or process, I still
suggest you pursue a conversation with the person who has inappropriately as-
sumed the ScrumMaster role. Approach the discussion from the perspective of
having the team's best interests in mind. Try to accentuate the ScrumMaster's
strengths and suggest that he might be able to find a better way of applying them
to the project if he steps out of the ScrumMaster role.

The ScrumMaster is also a programmer/tester/other on the team. When it is im-
practical to have a dedicated ScrumMaster for a team, a decision must be made
between a ScrumMaster who splits time between two or more teams and a
ScrumMaster who is both a ScrumMaster and a programmer, tester, or other on
the same team. Although either of these approaches can work suitably well, I tend
to prefer that when necessary a ScrumMaster's time is split between two teams.
Having a ScrumMaster who is also an individual contributor on the team carries
many risks.

One risk is that the person may not have adequate time to devote to both
roles. Another is that someone in a combined role will probably need to stay
away from critical path activities because the person could be interrupted with
ScrumMaster duties at any time. A more subtle risk is that other team members
will not easily know whether they are talking to their ScrumMaster or to another
individual contributor. Yet another risk is the ScrumMaster will have less cred-
ibility when protecting the team from outsiders. A dedicated ScrumMaster will
have more credibility when saying, "We can't help. The team is busy," than will the
ScrumMaster/individual contributor whose same message can be interpreted as
"We can't help. I 'm busy."

As risky as it can be for someone to be both ScrumMaster and a technical
contributor on the project, it is a common situation. Awareness of these issues and
a willingness to work through them as they arise is often the best solution.

The ScrumMaster is making decisions for the team. This problem can arise for
two completely different reasons: it could be because the ScrumMaster misun-
derstands or is uncomfortable in the new role, or it could be because the team is
used to someone else making decisions. In either case, the solution is the same.
The ScrumMaster should be taken aside and reminded that being a ScrumMaster
is about providing guidance, not answers.

As a new ScrumMaster, one of the first things I had to learn was how to
count. When we'd be in a meeting, struggling with some vexing problem, the
team would look to me to tell them the solution. Having previously been the

T h e P roduc t O w n e r 125

team leader I was tempted to blurt out "the answer." But I needed the team to
learn how to find the right answers themselves, and so I sat there quietly counting
to myself. 1,2, 3 I counted well into the hundreds on a few occasions,but this
helped me learn to keep my mouth shut. And it helped the team learn not only
how to make those decisions but also that I wouldn't do it for them.

The Product Owner
I think of the ScrumMaster as the person who ensures that the team is working
well together, that impediments to progress are quickly removed, and that the
team is moving efficiently toward its goal. I think of the product owner as the
person who makes sure the team is aimed at the right goal. A good team needs
both roles to succeed. The product owner points the team at the right target; the
ScrumMaster helps the team get to that target as efficiently as possible.

R o m a n Pichler, author of Agile Product Management with Scrum: Creating Prod-
ucts that Customers Love, stresses the importance of the product owner: "The prod-
uct owner has the authority to set a goal and shape the vision. The product owner
is not just a project manager who now also writes requirements and does a little
bit of prioritization." Thinking of the product owner as the provider of a team's
goal helps make certain aspects of the product owner's job clear. For example,
the product owner is clearly responsible for defining and prioritizing the product
backlog that expresses the goal. Similarly, the product owner is responsible for
making sure the project earns a good return on the investment made in it.

Responsibilities of the Product Owner
Compiling an exhaustive list of the responsibilities of the product owner would
be difficult. Every application exists within its own context of company culture,
individual and team competencies, competitive forces, and so on. This context
strongly influences how the product owner role is performed in different compa-
nies. So instead of providing a checklist of product owner responsibilities ("must
attend sprint planning meeting"), I find it more helpful to think in terms of two
things that a product owner provides the team: a vision and boundaries.

Providing Vision
Many of the product owner's responsibilities involve establishing and commu-
nicating the vision for the product. The best teams are those whose passion has
been ignited by a compelling vision shared by the product owner .Who will we be
selling to? What is unique about our product? What are our competitors doing?
H o w will our product evolve over time? O f course, the questions are different for
an application or service that is being delivered to a group of in-house users, but

SEE ALSO
See Agile Product Man-
agement with Scrum:
Creating Products that
Customers Love by
Roman Pichler fo r a
t h o r o u g h d i scuss ion of
t he p roduc t o w n e r role.

126 Chapter 8 Changed Roles

SEE ALSO
T h e p roduc t back log
Is a pr ior i t ized list of
f ea tu res to be added
t o a p roduc t . It Is fu l ly
desc r i bed In Chap te r
13, " T h e Produc t
Back log . "

having a shared vision is important for motivating a team and creating a long-term
connection between those developing the product and those using it.

Beyond having a clear vision in mind, the product owner must elucidate that
vision for the team. The product owner does this through creating, maintaining,
and prioritizing the product backlog. There is a lot of dissension among Scrum-
Masters and teams as to whether the product owner is the one who actually writes
the product backlog. I am firmly in the camp of I-don't-care. It doesn't matter to
me who performs the physical act of writing the product backlog; what does mat-
ter is that the product owner is the one who makes sure it happens. If the product
owner delegates this to a business analyst and the analyst gets sidetracked and fails
to write the product backlog, it is still the product owner who is responsible.

Beyond ensuring that the product backlog exists, the product owner adds
detail to the vision by answering questions team members will have: Do you want
it to work this way? What did you mean when you said such-and-such? Although
the product owner can delegate or distribute the responsibility for answering
these questions, the product owner cannot delegate the responsibility that they in-
deed get answered. A product owner can say, "Talk to Nirav if you have questions
about how the shopping cart and checkout features should work," but if Nirav
isn't responsive or helpful, a good product owner will step in and answer questions
personally, find out why Nirav is unable to do so, designate a different person, or
find some other solution.

Providing Boundaries
Vision and boundaries can be thought of as competing aspects of the project. The
vision shows what the product can become. The boundaries describe the realities
within which the vision must be realized. Boundaries are provided by the product
owner and often come in the form of constraints, such as

• I need it by June.

• We need to reduce the per-unit cost by half.

• It needs to run at twice the speed.

• It can use only half the memory of the current version.

Often when I tell groups that the product owner is allowed to dictate things
such as this—especially the date—I am met with angry responses. "No," they tell
me, "estimates are up to the team. All the product owner does is prioritize the
work." Although those statements are true, the product owner is also responsible
for defining the boundaries that will determine the success of the product.

Most experienced Scrum team members will readily agree that it is within
the product owner's purview to say, "We need to develop at least this much of
the product backlog or the product won't be worth shipping." But many of these
same experienced people resist when similar statements are made about deadlines.

The Product O w n e r 127

But, let's see what Takeuchi and Nonaka had to say in their study of the six teams
that formed the foundation of Scrum and that were the subject of the first paper
on Scrum back in 1986.

Fuji-Xerox's top management asked for a radically different copi-
er and gave the FX-3500 project team two years to come up with
a machine that could be produced at half the cost of its high-end
line and still perform as well. (139)

Here, we clearly have a team that is given a challenging problem—match the
performance of the company's best current copiers but at half the cost—and a
deadline for solving the problem. There is nothing wrong with this. Product own-
ers go wrong when they overly constrain a problem or when they make a solution
impossible. Had Fuji-Xerox's management given that team the same problem but
only one month to solve it, the team would have seen the futility in the situation
and not even tried. The problem as presented to that team presumably left the
team plenty of operating room in which to find a solution. A part of the product
owner's job that is more art than science is providing just enough of a boundary
around the project so that the team is motivated to solve the difficult problem
before them but not providing so many boundaries that solving the problem be-
comes impossible.

When brainstorming solutions to a challenging problem, common advice
is to think "outside the box." However, there is evidence that better solutions
emerge more easily from thinking that is done "inside the box" as long as the box
has been properly framed (Coyne, Clifford, and Dye 2007). When we're told to
think outside the box, they say, the total lack of constraints can be unsettling.

Imagine a random product you are trying to improve in a typical
facilitated brainstorming session. Outside-the-box possibilities
could include making the product bigger or smaller, lighter or
heavier, prettier or more rugged (or changing its appearance in
any of a hundred ways). Further ideas could involve making the
product more expensive or less or maybe breaking it into parts
or bundling it with other products. They could involve chang-
ing the product's functionality, durability, ease of use, or the way
it fits with other products. Or its availability, affordability, or re-
pairability. How do you know which dimensions are fruitful to
explore? Without some guidance, people cannot judge whether
they should continue in the direction of their first notion or
change course altogether. They cannot handle the uncertainty,
and they shut down. (2007, 71)

The product owner's job is to create the new box—the boundaries—in
which the team will think. This new box prevents the team from getting lost in

128 Chapter 8 Changed Roles

SEE ALSO
Schedu le Is one s ide of
t h e In famous Iron t r ian-
gle of scope , schedu le ,
and r e s o u r c e s . T h e Iron
t r iang le Is d i s cussed in
Chap te r 15, "P lann ing. "

SEE ALSO
Sel f -organ izat ion is
d i s cussed in deta i l in
Chap te r 12, " L e a d i n g a
S e l f - 0 rga n iz i n g Tea m."

the infinitude of possible solutions and gives team members a basis for making
and comparing choices. Boundaries for that new box are determined by the most
important constraints for the business, which may involve things like minimum
guaranteed functionality, dramatically faster performance, reduced resource con-
sumption, and, yes, in some cases the date.

Each Team Needs Exactly One Product Owner
On a team that is new to Scrum, the ScrumMaster job can be very time consum-
ing. The ScrumMaster will be busy training team members on Scrum itself, en-
couraging them to think in different ways about the problems they encounter,
removing impediments to the team's progress, and more. Early on, this might even
be a full-time job, depending on the newness of the team and the types of im-
pediments team members face. Over time, however, things improve. Eventually
the ScrumMaster has removed many recurring impediments, and the team itself
has begun to master Scrum and has embraced its self-organizing nature. As these
changes occur, the team needs less and less of their ScrumMaster's time. If we were
to graph a team's demands on its ScrumMaster's time, it would look something
like Figure 7.1.

FIGURE 7.1
A t e a m ' s t i m e
d e m a n d s o n t h e i r
p r o d u c t o w n e r
a n d S c r u m M a s t e r
m o v e in d i f f e r e n t
d i r e c t i o n s .

T i m e needed

Froduof
owner

SorumMaÇ-ter

T i m e

Contrast this with the team's need for its product owner.When the team first
adopts Scrum, it will not be very good at it. It will struggle with how much detail
to put on the product backlog, how much work can be completed in a sprint,
how to work well together within the sprint, and so on. Team members will be
learning new practices and new ways of working together. The team will not be
very fast—at least not compared to how fast it will be after it gets good at Scrum.
As the team speeds up (through its own improvements and from the ScrumMaster
gradually removing impediments), it will be completing more work each sprint.
This means members will have more questions for their product owner. Therefore,

T h e P r o d u c t O w n e r 129

as the team's efficiency increases, so will its demands on the product owner's time.
This is likely the case even as team members learn the domain and take on more
responsibility themselves.

This inverse relationship between a team's demands on the product owner's
and the ScrumMasters time is shown in Figure 7 .1 .The lines in this figure show
that although it may be acceptable to have an experienced ScrumMaster work
with two or possibly even three teams (depending on how much help each team
needs at the time), it is not advisable to share one product owner across more
than two teams. Instead, each team should ideally have its own dedicated product
owner. The product owner job is very challenging. Part of the job is outward-
facing: talking to customers and following market trends. Another part of the job
is inward-facing: working with the team to build the product. W h e n a job involves
both inward- and outward-facing duties, the outward, customer-facing duties al-
ways seem to win. Any developer who is responsible for both new development
and customer support can confirm that customer-facing issues almost always win.

Just as a product owner should work only with one team, each team should
work only with one product owner. I have seen occasions where having two
product owners assigned to a team works, but this is usually a result of someone
in the organization not wanting to make the hard call of saying, "Your product
owner is so-and-so." Find someone to make the hard call, designate one product
owner for the team, and then encourage that person to solicit all sorts of helpful
input and feedback from those who also could have been the product owner.

A team with two product owners will inevitably fall into the trap of " M o m
said no; let's go ask Dad." Of course, only the most dysfunctional (or perhaps des-
perate) teams will get the "wrong" answer f rom one product owner and go ask the
same question of the other. Even they know they will eventually be found out and
will be called on their behavior. However, most teams with two product owners
will go so far as to think about which product owner will give the most satisfying
answer before they choose which one to ask.

SEE ALSO
T h e top i c of sca l ing
t h e p roduc t o w n e r
role fo r large p ro jec ts
is desc r i bed in detai l
in Chap te r 17, "Sca l i ng
S c r u m . "

A Product Owner Team
In some cases, the product owner role can be too much for one person. Research-
ers Angela Martin, Rober t Biddle, and James Noble found that the product owner
role is "consistently under more pressure than the developers and other partici-
pants in the project" (2004, 51). R o n Jeffries, one of the inventors of the Extreme
Programming process and a Scrum trainer, agrees: "It was only after the first book
or two on XP came out that we fully realized the load a single XP Customer/
Scrum product owner is taking on. It's clear that they'll need to be a group."

A common solution is the use of a product owner team. Splitting the du-
ties of the product owner across a product owner team is fine as long as there
remains one person on that team who can be singled out as the person with

130 Chapter 8 Changed Roles

ultimate responsibility and authority, a "the-buck-stops-here" individual. Even
with a product owner team, each development team needs to have one identifi-
able, consistent person they can go to for answers. As Ken Schwaber and Mike
Beedle have written, "The product owner is one person, not a committee" (2001,
34). Make sure each team can identify one person people can go to for decisions.
A good Scrum team moves far too quickly to wait for all questions to be answered
by committee. A product owner will never be able to instantly answer all ques-
tions the team may have; occasionally telling the team, "I need to run this by my
colleagues," is fine. But, well-founded caution should not be replaced by de facto
decision-by-committee.

NOTE
R e m e m b e r i n g t h e s e
f i ve a t t r ibu tes is easy.
Put t ing t o g e t h e r t h e
f i rs t let ter of each
spe l ls A B C D E .

Attributes of a Good Product Owner
As when describing what to look for in selecting or hiring a good ScrumMaster,
I've culled the long list of desirable product owner traits down to five must-have
attributes.

Available. By far the most frequent complaint I hear from teams about their
product owners is that they are unavailable when needed. When a fast-moving
team needs an answer to a question, waiting three days for an answer is completely
disruptive to the rhythm it has established. By being available to the team, a prod-
uct owner demonstrates commitment to the project. The best product owners
demonstrate their commitment by doing whatever is necessary to build the best
product possible. On some projects this includes doing things like assisting in test
planning, performing manual tests, and being actively engaged with other team
members.

Business -savvy. It is essential that the product owner understand the business. As
the decision maker regarding what is in or out of the product, the product owner
must have a deep understanding of the business, market conditions, customers,
and users. Usually this type of understanding is built over years of working in the
domain, perhaps as a past user of the type of product being developed. This is why
many successful product owners come from product manager, marketing, or busi-
ness analyst roles.

Communicative. Product owners must be good communicators and must be able
to work well with a diverse set of stakeholders. Product owners routinely interact
with users, customers, management within the organization, partners, and, natu-
rally, others on the team. Skilled product owners will be able to deliver the same
information to each of these different audiences while at the same time tailoring
their message to best match the audience.

The Product O w n e r 159

A good product owner must also listen to users, customers, and perhaps most
important the team. Especially as team members learn more about the product
and market (as they should over time, especially on a Scrum project), they will be
able to offer valuable suggestions about the product. Additionally, all teams will
have much to say to the product owner about the technical risks and challenges of
the project. Although it is true that the product owner prioritizes all work for the
team, the wise product owner will listen to her team when it recommends some
adjustments in those priorities based on technical factors.

Decisive. Another common complaint teams make about their product owners
is their lack of decisiveness. When team members go to the product owner with
an issue, they want a resolution. Scrum puts a lot of pressure on teams to produce
functionality as quickly as possible. Teams are frustrated when a product owner
responds to a question with, "Let me call a meeting or convene a task force to
work on that." A good team will understand that this is sometimes necessary, but
teams are very perceptive at knowing when a product owner is actually just trying
to avoid making a hard decision. Just as bad as a product owner who won't make
a decision is the product owner who makes the same decision over and over but
with different answers. A good product owner will not reverse prior decisions
without a good reason.

Empowered. A good product owner must be someone empowered with the au-
thority to make decisions and one who is held accountable for those decisions.
The product owner must be sufficiently high up in the organization to be given
this level of responsibility. If a product owner is consistently overruled by others
in the organization, team members will learn to go to those others with their
important questions.

The ScrumMaster as Product Owner
One common consideration is whether the ScrumMaster and product owner
roles should be combined. No. In the vast majority of times I've seen this done, the
results have been disappointing. Not only does combining these roles put a lot of
power in one person's hands, but it also creates confusion for both team members
and the ScrumMaster/product owner hybrid. A certain amount of tension should
exist between these roles. Product owners continually want more, more, more
features. ScrumMasters protect their teams by pushing back against the product
owner when they feel that pushing their teams harder would be detrimental.
When the roles are combined, this tension is removed.

With an eye toward full disclosure, I feel compelled to add that two of the
most successful Scrum projects I've participated in or witnessed had a combina-
tion ScrumMaster/product owner. There are tremendous advantages to having a

132 Chapter 8 Changed Roles

single person who has a deep understanding of the market, has the technical and
collaborative skills of a ScrumMaster, and can effectively balance them. Toyota es-
sentially combines the ScrumMaster and product owner roles into its single chief
engineer role. The Toyota chief engineer is someone who is most definitely an
engineer and could likely engineer any part of a new vehicle but who also has
a deep understanding of the market and likely purchasers of the vehicle being
engineered.

So, the combined ScrumMaster/product owner model can be successful.
However, I suspect that there are very few individuals who are good at both jobs
and who are good at doing them both at the same time. Even if you suspect you
are one of them or can identify these people within your organization at the start
of the transition to Scrum, I still recommend using separate individuals in these
roles, at least at the start.

Overcoming Common Problems
There are many potential pitfalls when selecting the initial product owner. Some
of the most common early-stage problems and what you can do to address them
include

SEE ALSO
Estab l ish ing a p roduc t
o w n e r h ierarchy like
th is is a c o m m o n scal-
ing t e c h n i q u e and is
desc r i bed in Chap te r 17.

The product owner delegates decision making but then overrules the decision
maker. To fit the new duties of the product owner into their schedules, some
product owners delegate decisions about specific parts of the product. Other
product owners enlist a business analyst to be a "feature owner" over some part
of the system. This can work well because the product owner has more time to
dedicate to areas that are not as easy to delegate.

Problems arise when the product owner says that decision-making authority
has been delegated but then continues to approve or sometimes reverses deci-
sions. Before delegating, product owners should be sure they are really willing
to delegate without later second-guessing. Because of the pressure of the short,
timeboxed sprints, Scrum teams often move much more quickly than they did
before transitioning. It is inevitable that some decisions that the product owner
delegates will turn out to be wrong, and these should be revisited. What we want
to avoid, however, are situations where the product owner says,"Get your answers
from Dave; he owns this part of the system," and then consistently overrules Dave's
answers.

My advice to a new and overloaded product owner is to free some time by
delegating just beyond the point at which you're comfortable. You may be pleas-
antly surprised and find no important decisions to reverse. But you'll occasionally
find some decisions you would have made differently. Often the best thing to do
in this case is the same thing we're all taught when learning to drive: If the car
starts to slide, steer into the slide. Rather than pull against the decision (assuming

The Product O w n e r 133

it is not a horrendous one), allow that decision to persist through the end of the
sprint; then decide if it should be changed. When the cost of reversing a decision
is compared against all the other valuable work on the product backlog, you may
find that the decision wasn't so bad after all.

The product owner pushes the team too hard. Product owners are often under
pressure to deliver financial results to the company; more features delivered sooner
is one way for them to achieve it. As I've said, I have no objection to a product
owner who announces at the start of a project, "We need to build a product that is
smaller, better-performing, and cheaper than our competitor's, and we need to do
it in three months less than we spent on the last product." As long as a challenging
goal like that is accompanied by appropriate freedom in how the goal is achieved,
the team will do its best. The problems arise when the team is kept under constant
and changing pressure from sprint to sprint. One difficult goal of "do this amaz-
ing thing in 6 months" is in many ways less stressful for the team than 13 succes-
sive two-week sprints of "I need more, more, more!" If you have product owners
who are pushing teams this way, the ScrumMasters should first push back and then
work with the product owners to set longer-term goals for the teams while ensur-
ing teams have commensurate degrees of freedom in how those goals are achieved.

The product owner wants to cut quality. Cutting quality is an oh-so-tempting
decision when trying to deliver a challenging set of features by a difficult date. It
can lead to the short-term appearance of having met the objectives established at
the start of the project. Eventually, however, the cost of having cut quality becomes
apparent as more post-release bugs than usual are reported, the team's velocity de-
creases, and customers clamor for the product to behave as they thought it would.

Ken Schwaber has called quality a "corporate asset" (2006). As such, no one
except the chief executive has the authority to sacrifice quality in exchange for
achieving a short-term goal such as making a release date. A decision to cut quality
may be the appropriate one; I can't tell you otherwise without knowing the full
context of a situation. But, that decision is one that needs to be made sufficiently
high up in the organization and with such openness that no one is surprised by
the negative impacts that will almost certainly follow

Selecting product owners who understand this is sometimes challenging in
organizations that are consistently focused on this quarter's numbers. Pushing back
against attempts to reduce quality is the job of the ScrumMaster. The ScrumMas-
ter does not need to prevail in these early disagreements. The ScrumMaster does,
however, have to succeed in making the decision visible.

Time is on the ScrumMaster's side. If the ScrumMaster successfully raises
the visibility of decisions to cut quality, he should eventually be able to win later

134 Chapter 8 Changed Roles

arguments against reducing quality. "Remember on the Gouda project how I told
you that cutting quality on version one would hurt us during version two?" the
ScrumMaster can say. "Well, here are the graphs of velocity on the two projects.
Note that version two had a lower velocity even though we added two experi-
enced people. That was because we left bugs behind during version one (here's
a graph showing that) and because the team didn't feel it had the time to do a
good job of keeping its code clean. We even skipped the automated unit tests on a
few modules. Here's a comparison of the number of defects found during the six
months following release, broken down by whether the module had automated
unit tests. It's up to you if we do this again on this project, but I think you know
my opinion."

Our product owner is in a different city than the development team. With more
projects being developed by remote teams, this is an increasingly common situ-
ation. Both the team and product owner in this situation should assume some
of the burden of overcommunicating with the other. I have worked with many
remote product owners, and it can work very successfully as long as the product
owner does the following:

• Remains engaged in the project

• Establishes a rapport with the team

• Performs all usual duties of the role

• Is available to the team for phone calls for at least some part of the day,
even if it is after the usual workday for the product owner

• Responds by e-mail or phone when not available in person

New Roles, Old Responsibilities
The roles of product owner and ScrumMaster are critical for becoming a high-
performing Scrum team. In this chapter we've looked at the responsibilities of the
people in these jobs, attributes we'd like our product owners and ScrumMasters
to possess, and how to overcome some common problems that occur when intro-
ducing these roles into an organization.

Although the roles of product owner and ScrumMaster are new, the respon-
sibilities are not. High-performance teams have always known they needed to do
the things described in this chapter. On a Scrum team, individuals are asked to
look beyond their explicit roles to find ways to help the team accomplish its goals.
In the next chapter, we look at what this new emphasis on teamwork and shared
responsibility means for existing roles in the organization.

SEE ALSO
For m o r e on t he
cha l lenges of d is t r ib-
u ted d e v e l o p m e n t , see
Chap te r 18, " D i s t r i b u t e d
Teams."

Addit ional Reading 135

Additional Reading
Davies, Rachel , and Liz Sedley. 2009. Agile coaching. T h e Pragmatic Bookshelf.

This book is full of practical, immediately useful advice for any ScrumMaster. It cov-
ers everything from how to help the team improve to h o w to help yourself improve.

Fisher, Kimball. 1999. Leading self-directed work teams. McGraw-Hil l .
T h e self-directed work teams of Fisher's b o o k are the self-organizing teams of an
agile project. His b o o k offers guidance appropriate to ScrumMasters.

James, Michael. 2007. A ScrumMasters checklist, August 13. Michael James 'blog on
Danube 's websi te .ht tp: / /danube.com/blog/michaeljames/a_scrummasters_checklis t .

In making his argument that a great team needs a full-time ScrumMaster, rather than
one w h o works wi th two or more teams, Michae l james presents a rather exhaustive
list of work to be per formed by the ScrumMaster.

Kelly, James, and Scott Nadler. 2007. Leading from below. MIT Sloan Management
Review, March 3.ht tp: / /s loanreview.mit .edu/business- insight /ar t ic les/2007/1/4917/
leading-from-below.

This article presents useful information for those not in authority positions w h o
nonetheless realize they can still influence the direction of the organization.

Pichler, R o m a n . Forthcoming. Agile product management with Scrum: Creating products that
customers love. Addison-Wesley Professional.

T h e most complete coverage available of the role of the product owner. Pichler
clarifies the key differences between traditional and agile product management while
providing useful tips to product owners.

Schwaber, Ken. 2004. Agile project management with Scrum. Microsoft Press.
Schwaber's second book is full of anecdotes about teams using Scrum both suc-
cessfully and unsuccessfully. In addition to chapters dedicated to the product owner
and ScrumMaster roles, other valuable advice on performing those roles is spread
throughout the book.

Spann, David. 2006. Agile manager behaviors: What to look for and develop. Cutter Consortium
Executive Report, September.

In this extensive report, Cut te r consultant David Spann addresses the question of
what attributes to look for in what he calls an "agile manager," but which corre-
sponds closely to the ScrumMaster role of this chapter. H e starts wi th a list of 22
candidate behaviors but reduces this to a list of 8 preferred behaviors to look for
w h e n hiring an agile manager.

http://danube.com/blog/michaeljames/a_scrummasters_checklist
http://sloanreview.mit.edu/business-insight/articles/2007/1/4917/

Chapter

C h a n g e d Ro les

he previous chapter focused on the two new roles on a Scrum project—Scrum-
Master and product owner. But changes to a Scrum project's team members go
beyond the introduction of two new roles. For example, the self-organizing nature
of a Scrum team eliminates the role of the technical team leader, individuals are
asked to look beyond their specialties and help the team in any way possible, em-
phasis is shifted from writing about requirements to talking about them, and teams
are required to produce something tangible by the end of each sprint. Because
these changes alter the roles and relationships within the team and organization,
they often contribute to some of the challenges organizations face when adopting
Scrum.

This chapter will describe the primary adjustments individuals must make as
they transition from traditional roles to Scrum. The focus will be on how these
roles change, rather than on a thorough description of each role. I won't, for ex-
ample, describe everything a tester does as part of testing an application. I will
instead focus on changes in how a tester works on a Scrum project. I will discuss
the roles of analyst, project manager, architect, functional manager, programmer,
database administrator, tester, and user experience designer.

W h i l e reading about these roles, keep in m ind that any t e a m m e m b e r
w h o is involved in deve lop ing a product or so f twa re sys tem is f i rst and
f o r e m o s t a developer. W h e n I use a t e r m like tester, I mean a developer
w i t h speci f ic skil ls or an in terest in tes t ing . Similarly, analyst is used to
refer to a developer w h o prefers to w o r k on analysis tasks but w h o wi l l
w o r k on any high-pr ior i ty task needed by the team.

Analysts
With an intimate knowledge of the product and strong communication skills,
some analysts will tend to shift into product owner roles. This is especially com-
mon on large projects that make use of a hierarchy of product owners. Someone
with product manager on her business card, for example, may act as the chief

8

NOTE

137

138 Chapter 8 Changed Roles

SEE ALSO
Scal ing t h e p roduc t
o w n e r role is d i s cussed
in Chap te r 17, "Sca l i ng
S c r u m . "

SEE ALSO
Sh i f t i ng t he e m p h a s i s
f r o m d o c u m e n t s to dis-
cuss ions is desc r i bed
i n C h a p t e r l 3, " T h e P r o d -
uct Back log . "

SEE ALSO
User s to r ies are an
agi le w a y of descr ib -
ing fea tu res . T h e y are
desc r i bed in Chap te r 13.

product owner for the overall product, spending most of her time looking out-
ward at users and the market. An individual with analyst on her business card, on
the other hand, may act as product owner for the various teams, working with the
chief product owner to translate her vision into product backlogs for her teams.

Many teams find that having an analyst on the team continues to be very ben-
eficial, although the ways in which the analyst works will change. On traditionally
managed projects, the analyst's mission seemed to be to get as far ahead of the team
as possible. On a Scrum project, just-in-time analysis becomes the goal. The ana-
lyst's new aim is to stay as slightly ahead of the team as possible while still being able
to provide useful information to the team about current and near-term features.

Analysts can be instrumental in achieving the goal of shifting the emphasis
from writing about requirements to talking about them. Because analysts are not
working as far ahead of the team as they may be used to, they need to become
more comfortable sharing information with the team more informally, rather than
through a large document. As much information as possible should be shared
through verbal discussion, but analysts will still need to document some require-
ments, especially when working on a distributed team. Often though, what the
analyst writes will be less formal—more often a wiki than a document with a
signature page.

On traditional projects, analysts often become intermediaries through whom
other team members and the product owner communicate. On a Scrum project
the analyst should become more a facilitator of team-product owner discussion
than an intermediary. Team members and product owners need to talk. Rather
than be the conduit for all conversation, the good agile analyst focuses on making
sure those conversations are as productive as possible given the time constraints
the team or product owner may be under. This may mean that the analyst steers
the product owner and team toward talking about one user story rather than an-
other because that is where there is more risk of going astray. Or it may mean that
the analyst conveys a top-level understanding of a new feature to the team before
bringing the team and product owner together to discuss the details.

On a traditional project, an analyst may say to the team,"I've talked to our key
stakeholder, understand what he wants, and have written this document describ-
ing it in detail." By contrast, on a Scrum project, the same analyst should say, "I've
spoken to our product owner and have a feeling for what he's after. I wrote these
six user stories to give you a start, and I've got a bunch of additional questions to
ask the product owner. But I want to make sure that I bring along a couple of you
when we have those discussions."

With all this talk of analysts looking ahead, it can be tempting to think that
analysts work a sprint ahead of the team. They don't. Gregory Topp, an analyst with
Farm Credit Services of America, describes how using Scrum has allowed him to
concentrate on the current sprint: "Before Scrum, I had to focus on requirements

Project Managers 139

that were not going to be developed for several weeks, if not months. Now, I focus
on the current sprint (two weeks for us), so more time can be spent on user story
details, development, and testing." An analyst's first priority is to achieve the goals
of the current sprint. An analyst on a Scrum team will assist in testing, will answer
questions (or track down answers to questions) about features being developed,
will participate fully in all regular sprint meetings, and so on.

However, it is quite possible that these activities will not fully consume the
analyst's time. Time that is not needed to complete the work of the current sprint
can be used to look ahead. However, being a part of the team on this sprint and
spending some time looking ahead is not the same as working a sprint ahead of
the team. Topp explains how jumping too far ahead actually put him behind: "I
tried working ahead a sprint or two, defining user story details. I found that this
caused the current sprint to suffer. I also found that many times the details of a
user story changed by the time the team actually started working on the story."

A common question is whether the effort analysts spend looking ahead
should be included on the sprint backlog. My recommendation is to include on
the sprint backlog any specific analysis tasks that can be identified during sprint
planning. For example, suppose the team is working on an application that ap-
proves or rejects loan applications. If the product owner and team agree that the
next sprint will include work on calculating the applicant's credit score, then pre-
liminary analysis tasks related to that should be identified, estimated, and included
in the sprint backlog. On the other hand, if the next sprint's work is unknown, no
specific tasks related to the next sprint should be included on the sprint backlog.

Overall, many analysts enjoy the change to Scrum even though they relin-
quish the role of sole interpreter of customer desires. Two years after adopting
Scrum, Topp commented on how his relationship with others on the team had
changed.

Because we are all on the same team and all work on the same
user stories at the same time, the team seems to have more unity.
Before using Scrum, it seemed each function (analyst, program-
mer, tester, DBA) was done in a silo. There was more finger-
pointing when in that mode. Now using Scrum, the team is all
focused on a small set of stories. The finger-pointing has been
eliminated with an "as a team" mindset.

Project Managers
On a project using a sequential development process, the project manager has
the difficult job of ensuring that the product a customer wants is the one that is
developed. To do this, the project manager must try to manage everything about

140 Chapter 8 Changed Roles

the project, including scope, cost, quality, personnel, communication, risk, pro-
curement, and more. Some of these responsibilities really belong to others. Scope
control, for example, rightfully belongs with the customer. No one else is in the
position to make the necessary trade-off decisions that will arise during product
development, as priorities, team velocity, and market conditions shift. Prioritiza-
tion is not a static, one-time, all-at-the-start activity that can be managed by a
project manager.Yet time and again, sequential projects demand that project man-
agers make educated guesses to deliver the right product.

On Scrum projects we acknowledge the untenable role of the project man-
ager and eliminate it. Eliminating the role, though, does not mean we can do away
with the work and responsibilities. As you might guess, since self-organizing teams
are a core tenet of Scrum, a great deal of the responsibility previously shouldered
by the project manager is transferred to the Scrum team. For example, without a
project manager to assign tasks to individuals, team members assume the responsi-
bility of selecting tasks themselves. Other responsibilities shift to the ScrumMaster
or product owner.

Former project managers often assume one of the roles that have taken on
some part of their past responsibilities—the project manager becomes either a
ScrumMaster, product owner, or team member, depending on experience, skills,
knowledge, and interests.

Some people became project managers because they considered it the next
step in a desirable career path, yet they don't enjoy project management.These in-
dividuals miss the technical challenge of working as a programmer, tester, database
engineer, designer, analyst, architect, or so on. Many of these individuals will take
advantage of the elimination of the project manager role to return to work they
found more satisfying.

Other project managers have used their roles to become knowledgeable about
the business and its customers. A project manager in this situation will leverage
that knowledge into a role as a product owner. This can be an excellent fit, espe-
cially for the project manager who is having a hard time completely relinquishing
the ability to tell the team what to do. As part of their role, product owners are
allowed to tell the team a bit of the "what to do" as long as they stay largely away
from telling them how to do it. This can satisfy a former project manager whose
nature makes it hard to stop occasionally directing the team.

If a project manager can overcome the old habits of directing the team and
making decisions for it, it is likely such a project manager can become a good
ScrumMaster. This is the most common new role for project managers in organi-
zations adopting Scrum. The new role will likely be difficult at first for the former
project manager as she learns to bite her tongue and let the team learn how to
work through its own issues and make decisions. Often, new ScrumMasters are
put in the challenging position of coaching teams at something that they are not

Project Managers 141

yet good at themselves—being agile. The best strategies for a ScrumMaster in this
situation include the following:

• Stick as close as possible to doing Scrum by the book. Initially follow the
advice of this or another Scrum book closely. Or engage an on-site trainer
or coach and follow her advice to the letter. Only begin customizing the
process after you have real, hands-on experience with it.

• Talk to other ScrumMasters as much as possible. If there are multiple
ScrumMasters in your organization, form a community of practice with

7 5 . SEE ALSO
the other ScrumMasters and share good and bad experiences. Look to

. . C o m m u n i t i e s of
learn by extracting lessons from commonalities among these experiences, p rac t i ce are desc r i bed
If you are the only one in your organization, find outside ScrumMasters f u r t he r in Chap te r 17.

with whom you can share stories and compare approaches.
• Learn as much as you can as quickly as you can. Read books, articles,

blogs, and websites. Look into local agile interest groups and attend their
meetings. Try to attend one or more of the major agile or Scrum confer-
ences.

Doris Ford, a software engineering manager with Motorola, was a classically
trained project manager and a Project Management Professional (PMP). However,
despite having a traditional background in project management, Doris's approach
has always been about supporting and enabling her teams. Because of that, she was
able to easily move from project manager to ScrumMaster. She writes of how her
job has changed with Scrum.

Over the years in managing agile development I have learned
not to sweat the task details. As a traditional project manager,
I always needed to stay on top of who was doing which tasks,
what were their dependencies, and would they be done on time.
I spent countless number of hours just asking these questions to
get the answers in attempt to meet the scope/schedule/budget/
quality constraints and reporting upwards on the progress (some-
times using earned value). In an agile environment I had to learn
to trust the team members that they would identify and do the
tasks necessary to complete the scope for each sprint. It was hard
letting go at first, but I quickly learned that the team could do
this. I now spend the majority of my time supporting the team
members by addressing impediments that they raise and keeping
external noise from diverting their focus.

Why the Title Change?
If it's possible for a project manager to become a team's ScrumMaster or prod-
uct owner, why do we need to change the person's title? Let's consider the term

142 C h a p t e r 8 C h a n g e d Ro les

ScrumMaster. Years ago, when I first started running Scrum projects, the te rm
ScrumMaster didn't exist, and it never dawned on me to call the role anything but
project manager. This worked well enough. But, I was hiring new individuals into
these roles; I was clear with these new hires about my expectations for how they'd
interact with the team. I avoided domineering, command-and-control-style in-
dividuals. Also, these new project managers reported to me, which allowed me a
lot of influence over how they interacted with their teams. Calling them project
managers worked fine.

As our company continued to succeed and grow, we began to acquire other
companies. In those companies I would inherit project managers who sometimes
did have very traditional mindsets about the role of the project manager. I was
confronted with helping them shift that mindset to one more compatible with
agile development. I found this much harder than just hiring project managers
with a collaborative approach suitable to self-organizing teams.

Years later in a discussion with Ken Schwaber, he helped me understand
why transitioning existing project managers had been more difficult than I had
anticipated. Schwaber informed me that by allowing the project managers to
retain their titles, I was allowing them to think that the changes were less all-
encompassing than they were. He invented the word ScrumMaster in 1997 in part
because it would remind everyone that this was not just the project manager role
with a few additional responsibilities removed or added. Schwaber told me that
"the vocabulary of Scrum is a vocabulary of change. The words are often inten-
tionally ugly—burndown, backlog, ScrumMaster—because they remind us that
change is occurring."

Although I recommend it, you do not necessarily need to banish the title
project manager. If you or your organization is enamored of it, continue to use it.
But be mindful of Ken Schwaber's advice and my experience that using the old
words will slow or prevent the adoption of the new approach. Retaining an old
title discourages thinking in the new way. Further, if people are unwilling to relin-
quish something as insignificant as a job title, they will probably also be unwilling
to make the far harder changes necessary to adopt Scrum.

Architects
Many architects have worked for years to deserve the august title architect.They are
rightfully proud of their knowledge, experience, and ability to propose elegant so-
lutions to technical and business challenges. I find that many of the concerns raised
by architects faced with adopting Scrum can be put into these two categories:

• Will people still implement the architectures I tell them to?

Arch i tec ts 143

• How can I ensure we build an architecturally sound product without an
up-front architecture phase?

The answer to the first of these concerns depends entirely on the architect in
question. Many architects may find that very little about their jobs changes. Solu-
tions recommended by these architects are implemented because other developers
respect them and know their advice is likely to be good. For example, if one of
my coworkers has a reputation for having made sound architectural decisions in
the past, and I observe her making good architectural decisions on this project, I
will be inclined to go to her with architectural questions. I'll do that even if we're
a self-organizing team and no one is forcing me to get a second opinion on my
decisions.

The second concern is largely unfounded. As we will see in the section,
"Work Together Throughout the Sprint," of Chapter 14, "Sprints," and in the sec-
tion, "Design: Intentional yet Emergent," of Chapter 9, "Technical Practices," the
architectural needs of a product are used in conjunction with business objectives
to drive the prioritization of the product backlog. This allows an architect the abil-
ity to focus attention and effort on architectural uncertainties within the applica-
tion. On an architecturally complicated or risky product, the architect will need
to work closely with the product owner to educate the product owner about the
architectural implications of items on the product backlog. All product owners are
aware that they need to listen to the marketplace, users, or customers for input into
product decisions. Good product owners also know to solicit the opinion of the
technical team about the priorities. Although the ultimate decision is the product
owner's, good product owners consider all viewpoints when prioritizing work.

Andrew Johnston ofAgileArchitect.org has written, "In an agile development
the architect has the main responsibility to consider change and complexity while
the other developers focus on the next delivery" (2009). Judicious sequencing of
work into sprints can help a team gain key knowledge sooner, avoid or discover
risks with sufficient time to react, and minimize the total cost of development.

The Non-Coding Architect
Non-coding architects are likely to see the biggest shift in what they do. These
are the ones that Scott Ambler calls "ivory tower architects" (2008b). The mere
presence of a non-coding architect is a well-known harbinger of trouble; Scrum
projects are well rid of them. Some non-coding architects will look on Scrum as
a chance to again do some of the programming they hopefully enjoyed earlier in
their careers.These architects will be welcome contributors to Scrum teams.They
will be respected for the depth of their knowledge and experience and their abil-
ity to roll up their sleeves and get into the code.

Beware of the architect who resists a revised role that requires hands-on
contributions to projects. In many cases these non-coding architects took their

144 Chapter 8 Changed Roles

careers in that direction as a way to get out of hands-on programming. One such
architect,Tom, confounded me when I first met him. He talked a good game and
sounded knowledgeable about all the right technologies. However, he was the
first developer I had ever met who enjoyed meetings. He was always looking to
schedule more meetings. As I got to know Tom better, I realized that his technical
knowledge was very superficial—he wasn't as good as I had thought. I soon real-
ized why he liked the team to spend so much time in meetings: in an unnecessary
meeting all attendees are equally productive and valuable. It's when team members
return to their desks and start doing real work that the often dramatic differences
between developers start to show up. Tom's preference for unnecessary meetings
was a self-preservation technique—the more time the team spent in meetings, the
longer it would take everyone to realize that Tom wasn't very good.

To be a valued contributor, someone with a business card reading architect does
not need to code full-time. In fact, it's quite possible for a sprint or two to pass
without an architect writing any production code. The distinction I want to draw
is between architects who can still code and those whose coding skills are behind
them. Software architect Johannes Brodwall says that "the biggest changes to my
role as an architect have been that, formally, the architect no longer has the power
to dictate technical solutions. Instead, an architect has to be an advisor and a fa-
cilitator. As an advisor, I better still be able to do the job I 'm giving advice about."

Functional Managers
Functional managers, such as development managers, QA directors, and so on,
who are used to working in a matrixed manner will continue to work that way on
Scrum projects. A typical functional manager will likely experience some diminu-
tion in power after the transition, but this will depend greatly on how the role was
defined in the organization prior to transitioning.

Functional managers usually retain the job of assigning individuals to projects.
They will be expected to continue to make these decisions based on the com-
peting needs of all projects, project locations, developmental needs and career
aspirations of individuals, and so on. In some organizations, functional managers
are accustomed to going beyond assigning individuals to projects and have been
involved in the assignment of tasks to individuals within their groups. They will
no longer do this after transitioning to Scrum. Individual selection of work is a
fundamental aspect of how the members of a team self-organize and must be left
to the team.

Funct ional Managers 145

The Leadership Role of the Functional Manager
Functional managers have always been leaders. Broad leadership trends over the
years have affected individual style. While I was growing up, for example, my fa-
ther managed Sears stores. This was back in the era when Sears was the world's
largest retailer. My father's management style was very much top-down. He would
establish goals, quotas, and other measurements; communicate them to store em-
ployees; and then measure each employee against those targets. This was also an era
when prevailing wisdom was that a good manager could manage anything. My
father should presumably have been able to take his experience managing a retail
store and manage a bank or manufacturing operation with equal skill. My father
was operating in the bottom-left quadrant of Figure 8.1, which is from The Toyota
Way by Jeffrey Liker (2003, 181).

VA

i

o
SO

w> «j
s «J

5 £ i

£

roup " f a c i l i t a t o r

"You're empowered!"

Builder of learning
Organizations

"H'ere is our purpose and
direction — 1 will auide and

c-oac-h.*

Bureaucratic^ Manager

"follow the rulei!"

T a s f c M a n a g e r

"Here k what to do and
how to do it1*

(General management In-depth understanding
expertise of work.

Knowledge

FIGURE 8.1
D i f f e r e n t t y p e s o f
f u n c t i o n a l m a n a g -
e r s as d e t e r m i n e d
b y t y p e o f e x p e r t i s e
a n d m a n a g e m e n t
s t y l e . A d a p t e d f r o m
The Toyota Way,
J e f f r e y L i ke r , c o p y -
r i g h t T h e M c G r a w -
H i l l C o m p a n i e s ,
Inc .

A different type of manager, or perhaps one working in a different era than
my father, might have applied her general management skills in a bottom-up man-
ner. This manager would be in the top left of Figure 8.1. In the bottom right of
that figure we see a manager with a deep understanding of the work and a top-
down style. This manager—who is quite common on software projects—tells his
team both what to do and how to do it.

In an organization using Scrum, functional managers should operate in the
top-right quadrant, where they combine a deep understanding of the work with
a bottom-up style. A functional manager is responsible for providing guidance

146 Chapter 8 Changed Roles

SEE ALSO
I m p r o v e m e n t c o m m u -
ni t ies w e r e In t roduced
in Chap te r 4, " I t e ra t i ng
Toward Agil i ty." C o m -
m u n i t i e s of p rac t ice
are m o r e genera l ly
desc r i bed in Chap te r 17.

and coaching to members of the group. ScrumMasters and product owners also
provide guidance and coaching, but their views are limited to a single project or
product. A functional manager will have a broader perspective, including the abil-
ity to establish cross-project standards and set expectations for quality, maintain-
ability, reusability, and many of the other -ilities or nonfunctional requirements.

Functional managers also retain responsibility for developing the people in
their groups. Securing the budget and time to send them to conferences, chal-
lenging them with appropriate projects, and encouraging them to join or form
communities of practice are all part of the functional manager's role.

SEE ALSO
Periodic p e r f o r m a n c e
r e v i e w s are d i s cussed
in Chap te r 20, " H u m a n
Resources , Faci l i t ies,
and t h e PMO."

Personnel Responsibilities
In most organizations, functional managers will retain responsibility for writing
periodic reviews of the personnel in their departments. Although the functional
manager has hopefully always incorporated input from each employee's coworkers
and customers into the review, the need to do so is greater in a Scrum environ-
ment because the employee will likely be working less closely with the functional
manager on a day-to-day basis.

In many organizations, functional managers also retain responsibility for mak-
ing hiring and firing decisions. Neither the ScrumMaster nor the product owner
has this level of authority over individuals on the product development teams.

After the organization adopts Scrum, most functional managers find them-
selves with more time available than they had before. This time is most often used
to stay in closer touch with their direct reports, to know more about each project
the group's employees are working on (by attending various sprint reviews and
so on), and to pay more attention to cross-project standards and future directions.

SEE ALSO
T h e sub jec t of specia l -
ists is cons ide red in
deta i l in Chap te r 11,
" T e a m w o r k . "

Programmers
What do programmers do on a Scrum team? They program. They test. They ana-
lyze. They design. They do anything necessary to help the team complete the
work committed to for a sprint. Although it is OK to have specialists on a Scrum
team, specialists need to be willing to work outside their specialties whenever
needed for the greater good of the team. There are exceptions. A game develop-
ment project may, for example, benefit from specialists in artificial intelligence
programming. Because of the highly specialized nature of their product, these
specialists may do nothing outside their specialty. The majority of programmers
on a Scrum team, however, should be willing to contribute in any number of ways
to optimize the throughput of the overall team. This means they will test when
necessary, sometimes program in a nonpreferred language, and so on.

Programmers 147

One of the most striking changes for programmers on a Scrum team is that
they can no longer sit in their cubicles and wait to be told exactly what to pro-
gram. They need to become active participants in understanding product require-
ments. Surprisingly, there are many people who simply want to be told what to
work on. I've heard this expressed as "if they tell me what to work on and I do
it, then I can't be fired." Programmers on a Scrum team—like all others on the
team—are expected to share in the responsibility for the overall success of the
product. When this responsibility is fully felt, it is easier to do the things that go
beyond one's normal job description.

Programmers will also be expected to talk to customers and users.The amount
of this can be adjusted up or down based on the programmer, the organization, the
strengths of other team members, and the nature of the project. Programmers do
not need to develop the personalities of gregarious, glad-handing salespeople. But
they do need to be comfortable occasionally talking to a user or customer, even if
it's just over the phone.

Similarly, programmers can expect to spend more time interacting with their
coworkers. A programmer may not be allowed to come in at 11 and clamp head-
phones on until quietly leaving at 7. Instead, programmers may be expected to sit
in a group space, engage in discussions, help others with problems, and participate
in pair programming.

These changes can be quite unsettling for the many programmers (includ-
ing myself) who got into this field because we thought we could sit alone in
our cubicles all day. Prior to my first programming job, I worked in a six-foot
by four-foot totally enclosed dark room developing photos all day. I would pop
out for regularly scheduled breaks and lunch; otherwise I was alone in the dark
all day and loved it. Moving to the lighted world of cubicles was a big change.
Moving from quiet cubicles to an energetic, talkative culture is an even bigger
change. Programmers on a Scrum team will be expected to make this transition.
Fortunately, though, the change isn't that hard for most of us. We may like to be
alone, but we find participating in structured conversations (as in the meetings and
decision-making discussions on a Scrum project) much easier than unstructured
conversations as at a cocktail party.

Beyond the communication and interaction changes, programmers will al-
most certainly experience changes in how they do their work. Many of the tech-
nical practices described in Chapter 9 will be new to them. The team may not
choose to adopt all of these practices at first (or ever in some cases), but I suggest
all be considered and tried.

SEE ALSO
Pair p r o g r a m m i n g ,
w h i c h enta i ls t w o pro-
g r a m m e r s shar ing one
c o m p u t e r , is d i s cussed
m o r e in Chap te r 9.

148 Chapter 8 Changed Roles

Database Administrators
Data professionals, whether they go by the title of database administrators, data-
base engineers, or something else, can be among the most resistant to adopting
Scrum. Much of what the preceding section said about programmers will also be
true about database administrators. Additionally, data professionals will be faced
with learning how to do incrementally what has traditionally been viewed as a
part of a project's up-front work.

Standard advice in database design has been to do a complete analysis of
the system's needs, create a logical or conceptual database design, and then map
the concepts to the constraints of a real-world database during physical database
design. Success at this series of steps is predicated on a full and accurate analysis
up front. The traditional data professional's view was best summed up to me by a
fellow traveler on a plane from Chicago to Sacramento. He was a vice president of
database development for a relatively large healthcare company. His view on the
world was "applications change; data is forever."

This type of thinking leads to an intense focus on doing a complete analy-
sis up front. This is nice in theory, but while we're taking the time to do that
complete analysis, the world is continuing to evolve. Users' needs are changing.
Competitors are releasing their products. Databases need to evolve to support the
evolving applications built on them.

In Chapter 14,1 am going to make the point that user experience design, ar-
chitecture, and database design are all special cases of the same challenge: working
incrementally on something that is thought about holistically. Much of a DBAs
day-to-day work will not change significantly, but how the DBA approaches and
schedules that work will change dramatically and will be discussed in the "Work
Together Throughout the Sprint" section of that chapter.

Testers
For years the common approach to testing has been based on Philip Crosby's
definition of quality: conformance to requirements (1979, 16). If quality is con-
formance to requirements, then those requirements better be written down. This
has led many testers to an overzealous pursuit of a perfect requirements document
against which they can confirm that the system conforms. However, as nice as
conformance to requirements may be, conformance to users' needs is even better.
In using Scrum we acknowledge that it is impossible to perfectly predict all user
needs.

Just as programmers can no longer say, "Hand me the perfect spec; then go
away while I make the system do exactly what you requested," testers cannot
say, "Hand me the perfect requirements document and I'll make sure the system

Testers 149

does everything in it." Each of these attitudes (and they've been prevalent ones
in traditionally managed projects) leads to an abdication of responsibility. When
statements like these are voiced, the programmer or tester who says them is relin-
quishing accountability for the ultimate success of the project. "Just tell me what
to do and I'll do it," each is saying. Instead, each needs to be thinking about the
product and asking questions about each feature and how it adds to (or detracts
from) the overall product.

Because Scrum teams shift focus during requirements gathering from writing
about requirements to talking about them, conversations with the product owner
become the tester's primary way of finding out how a new feature should behave.
A tester is likely to talk with the product owner about how a feature should work,
how quickly it should perform, what acceptance criteria must be passed, and so
on. Testers are not limited to acquiring this information solely from the product
owners. As appropriate, testers should also talk with users, customers, and other
stakeholders.

As with programmers, working in such an interactive environment can be
uncomfortable for testers who are transitioning to Scrum. Many testers, like their
colleagues, entered software development with the expectation that they could sit
in a cubicle with little human interaction on a daily basis. Not anymore. Testers on
a Scrum team will need to become accustomed to more frequent and meaningful
conversations with their coworkers and, in many cases, people outside the team.

Along with giving up on the myth that a perfect specification can be writ-
ten in advance, one of the biggest changes facing testers is learning how to work
iteratively. Conceptually this shouldn't be a hard thing to do. If we think of each
sprint as its own project, then the testing for each project/sprint is done within
that sprint. It's not as simple though as proclaiming that the last week of each
sprint shall be reserved for testing. This doesn't work and instead creates minia-
ture waterfalls inside each sprint. During the first few sprints, testers will face an
immense challenge. During that time the programmers are also learning how to
work iteratively and probably won't be good at it either. The team will probably
overcommit to what can be done in a sprint, and the programmers will probably
not have any of the planned features fully coded until very near the end of the
sprint. So they will attempt to hand code to testers on the eighteenth day of a 20-
day sprint. After individuals in these roles learn how to work in an agile manner,
these eleventh-hour handoffs will disappear.

An increased emphasis on test automation becomes a hallmark of Scrum
teams. Even teams that have struggled for years to make progress in automating
tests find that the short sprints of Scrum make test automation a necessity. Over
time this reduces the reliance on manual testers: those who read a script, push a
button, and note the results. These testers often find themselves being asked to
learn one or more of the test automation tools used by the team. While some test

SEE ALSO
Shi f t ing f r o m w r i t i n g
abou t r e q u i r e m e n t s to
ta lk ing abou t t h e m is
covered in t h e sec t i on
"Sh i f t f r o m D o c u m e n t s
to D i s c u s s i o n s " in
Chap te r 13.

SEE ALSO
For adv ice on h o w
tes te rs , p r o g r a m m e r s ,
and o the rs shou ld
w o r k toge the r , s e e t h e
sec t i on " D o a Li t t le Bit
of Every th ing Al l t h e
T i m e " in Chap te r 11.

SEE ALSO
For w h y a t e a m may
use m o r e than one tes t
a u t o m a t i o n tool , see
" A u t o m a t e at D i f fe ren t
Leve ls " in Chap te r 16,
"Qual i ty . "

150 C h a p t e r 8 C h a n g e d Ro les

automation tools rely on what might as well be called programming to create the
tests, not all do. I have met only a handful of manual testers who have been unable
to transition to making significant contributions to their teams' test automation
efforts. O n the other hand, I've met many who are afraid of this change. Time,
practice, training, and pairing (including with a programmer) should be sufficient
to overcome the fears.

Lisa Crispin, coauthor with Janet Gregory of the book Agile Testing, recalls that
when she shifted to working on an agile team, the first thing she noticed was that
she needed to be proactive.

Don' t sit and wait for things to come to you. Be proactive! We
testers can't wait for testing tasks to come to us. We have to get
up and get involved and figure out what to do. Collaborating
with programmers is new to a lot of testers. (Although it wasn't
to me, I always elbowed my way in at the start of every project
no matter what our process was.) Collaborating with customers
is also new to a lot of testers. It's way out of the comfort zone for
a lot of people. Programmers are busy people and kind of scary,
sometimes. W h e n I was the only tester on a team of eight pro-
grammers, even though most of them were guys I had worked
with for years at another company, it took a lot of courage to ask
for help.

" I f I w o r k t o o c l o s e l y w i t h o t h e r s o n t h e t e a m , I w i l l d e v e l o p ' p r o -
g r a m m e r e y e s / c a u s i n g m e t o s e e e v e r y t h i n g f r o m t h e i r p e r s p e c t i v e ,
r a t h e r t h a n f r o m t h e v i e w p o i n t o f a t e s t e r . "

I t 's hard t o s e e h o w w o r k i n g m o r e c lose ly w i t h p r o g r a m m e r s w i l l c a u s e
t e s t e r s t o lose so m u c h p e r s p e c t i v e t h a t t h e y can no longer t e s t t h e so f t -
w a r e . Da tabase p ro fess i ona l s have w o r k e d c lose ly w i t h p r o g r a m m e r s fo r
y e a r s w i t h o u t b e c o m i n g so c o n t a m i n a t e d . For d e c a d e s , t e s t e r s have ad-
v o c a t e d d o i n g b o t h w h i t e - b o x t e s t i n g (in w h i c h t h e y can s e e t h e in te rna ls
of t h e s y s t e m) a n d b lack -box t e s t i n g (in w h i c h t h e y cannot) . If w o r k i n g
w i t h a p r o g r a m m e r can lead t o d e v e l o p i n g " p r o g r a m m e r e y e s , " it s e e m s
logical t o be l i eve tha t a t e s t e r w h o has d o n e w h i t e - b o x t e s t i n g w o u l d s im i -
larly lose p e r s p e c t i v e a n d n o t be ab le t o do b lack -box t es t i ng . For tuna te ly ,
t h i s i sn ' t t h e case.

Though many of the changes brought by Scrum will be uncomfortable at
first, most testers will enjoy their new ways of working after getting used to them.
Jyri Partanen is a Q A manager with Sulake, developers of Habbo, a virtual world

User Exper ience Des igners 151

averaging over eight million unique visitors each month. Partanen describes the
transition required of testers.

Testing is a profession where old habits tend to last. In the case
of transitioning to agile, sticking to the old ways of doing things
may lead to a half-hearted implementation of the spirit of agile.
Usually the distress the testing engineers have is related to job se-
curity and the changes the upcoming agile transition may bring
to their day-to-day tasks. This is, however, an unnecessary con-
cern. Based on my own experience and the experience of others
who actually have completed the transition to agile with QA
personnel, I can say with confidence that the change has been
without a doubt a smart move. Testing engineers in agile teams
have more influence in the development process and, what's even
more important, on the end product.

User Experience Designers
User Experience Designers (UEDs) often have a legitimate concern with adopt-
ing Scrum. Although they are accustomed to working iteratively, they prefer to
run their iterations in advance of the rest of the project. On a Scrum project,
however, we don't want to do all of the UED work before beginning other de-
velopment activities.

My favorite descriptions of how agile designers work have come out of
Autodesk in Toronto. Lynn Miller (2005) and Desiree Sy (2007) have written
about the approach they have used to integrate design into an agile process. I have
worked on dozens of projects on which the teams and designers embraced their
advice.

According to Miller and Sy, there should be two parallel tracks of work on the
project: one for development and one for interaction design. Figure 8.2 depicts
these two tracks and the interaction between them. The essential idea here is that
UED work always precedes development work by at least one sprint. UEDs are
given a headstart on the project through a combination of an initial sprint zero
and a focus in sprint one on features with few or no user interface implications.

The approach shown here can work well but brings with it the risk that
UEDs view themselves as a separate team. Lynn Miller sketched the first version
of this diagram and agrees that it must not be interpreted to imply that there are
separate teams.

Whenever I have taught this concept I have always stressed that
the designers should not think of themselves as a separate team

152 Chapter 8 Changed Roles

and that tight and frequent communication is essential to make
the concept work. It has always been a failing of the diagram that
it seems to suggest separation when that never was my intent.

FIGURE 8.2
U E D a n d d e v e l o p -
m e n t c a n o c c u r
i n p a r a l l e l t r acks .
(A d a p t e d c o u r t e s y
o f L y n n M i l l e r .) S p r i n t O

S p r i n t 1 S p r i n t 2 S p r i n t 3

It is essential that UEDs view themselves as part of the team. The idea of
cross-functional teams is fundamental to Scrum; the team needs to include every-
one necessary to go from idea to implementation. What would prevent a testing
group from preparing its own version of Figure 8.2 showing parallel tracks of
programming and testing sprints?

If I were to meet a UED in the hallway of your company and ask, "What do
you do?" I might get a response like this: "I 'm a user experience designer. I work
one sprint in advance of the developers. My job is to make sure that when they
start a sprint I can give them a design for what they'll develop in that sprint."This
answer corresponds with Figure 8.2, but it's not an answer I like. Instead I'd prefer
to hear, "I 'm a user experience designer. I 'm on the development team, and my
primary job is to make sure we finish whatever work we commit to for the sprint.
But that doesn't take up all my time, so I spend a good amount of it looking ahead
at what we're going to build in the next sprint or two. I then gather data, mock
up designs, and do whatever I can so that when we start on a feature in a future
sprint, we're able to finish it in that sprint."

Both of these fictitious quotes describe exactly the same work. In both cases
the UEDs are working with the team during the sprint to resolve issues about that
sprint, but they are also looking ahead. However, the two different answers present
different mindsets about the work. First and foremost, I want UEDs to feel a part
of the team and that their top priority is delivering whatever is committed for
the current sprint. Beyond that, their job is to look ahead in exactly the same way

Addi t ional Reading 153

everyone expects a product owner to be looking ahead at what competitors are
doing, what users will want next, and so on.

I 'm not alone in thinking that an agile mindset is critical for UEDs in making
the transition to Scrum. Well-respected usability expert Jakob Nielsen concurs.

For user experience practitioners who support agile teams, the
main change is in mindset. Having good, general user experience
knowledge will help you understand how to change traditional
design and evaluation methods to meet your agile team's differ-
ent focus. Ultimately, however, you must both believe in yourself
and embrace agile development concepts if you want to suc-
ceed. If you're prepared to change your practices and take on
the responsibility, there are great opportunities to improve your
effectiveness and your impact on the teams you support. (2008)

Three Common Themes
In this chapter we considered the changed roles of analysts, project managers,
architects, functional managers, programmers, database administrators, testers, and
user experience designers. In doing so, three major themes reasserted themselves:

• Work incrementally. Always strive to produce a potentially shippable
product increment within the sprint.

• Work iteratively. Functionality can be revisited in subsequent sprints.
• Work beyond your specialty. To create something potentially shippable by

the end of the sprint, individuals need to be willing to work outside their
specialties occasionally.

As you go forward, you'll find it helpful to keep these themes in mind as gen-
eral heuristics about how individuals should work on a Scrum team.

Additional Reading
Ambler, Scott, n. d. Agile Data H o m e Pagehttp://www.agiledata.org.

A useful website that collects some of prolific author Scott Ambler's writings on agile
development in data-intensive environments.

Crispin, Lisa, and Janet Gregory. 2009. Agile testing: A practical guide for testers and agile
teams. Addison-Wesley Professional.

A comprehensive guide to testing on an agile project. T h e book begins wi th ten pr in-
ciples for what agile testing is and then describes the organizational changes that will
be felt by a testing or Q A group. T h e core of the book is a four-quadrant view for
describing all testing, which many teams have found useful.

SEE ALSO
In Chapter 14 w e wi l l
examine In much
greater detail how user
experience designers
are able to overlap their
work effectively w i th
the work of others on
the team.

http://www.agiledata.org

154 Chapter 8 Changed Roles

Highsmith, Jim. 2009. Agile project management: Creating innovative products. 2nd ed.
Addison-Wesley Professional.

T h e most popular b o o k on agile project management. T h e second edition adds
chapters on release planning, scaling, governance, and measure to an already complete
table of contents.

Jeffries, R o n . 2004. Extreme programming adventures in C#. Microsoft Press.
An intriguing book in which we read along as R o n Jeffries teaches himself C # by
pair programming wi th Che t Hendrickson. T h e book isn't intended specifically to
teach C # programming. Rather , it is an excellent introduction to the type of fast-
feedback programming practiced on Scrum teams.

Johnston, Andrew. 2009. T h e role of the agile architect, June 20. Conten t from Agile
Architect website, ht tp: / /www.agilearchitect .org/agile/role.htm.

This entire site is dedicated to information for agile architects. I found this to be the
most useful article on the site. It describes the five key objectives and seven golden
rules of the agile architect.

Krug, Steve. 2005. Don't make me think:A common sense approach to web usability. 2nd ed.
N e w Riders Press.

This is the best of the books to cover a discount approach to usability. Experienced
user experience designers may find it too simplistic and that it shortcuts too much
research, but many teams have found it helpful.

Marick, Brian. 2007. Everyday scripting with Ruby: For teams, testers, and you. Pragmatic
Bookshelf.

This excellent book is aimed at testers w h o need to learn basic scripting skills using
Ruby, probably as part of working on an agile team. However, the book will appeal to
anyone w h o needs a good introductory book on Ruby.

Sliger, Michele, and Stacia Broderick. 2008. The software project manager's bridge to agility.
Addison-Wesley Professional.

Sliger and Broderick are both Scrum trainers as well as Project Management Profes-
sionals (PMPs).They have targeted this b o o k directly at PMPs like themselves w h o
are making the switch to Scrum or any agile process.

Subramaniam,Venkat, and Andy Hunt . 2006. Practices of an agile developer: Working in the
real world. Pragmatic Bookshelf.

This short book collects nearly 50 tips aimed at programmers on any agile project.
Each tip (such as "Let Design Guide, N o t Dictate") includes a description of the
practice and how it should feel w h e n it is being done well.

http://www.agilearchitect.org/agile/role.htm

Chapter

T e c h n i c a l P rac t i ces

ew titles, roles, and responsibilities aren't the only changes Scrum teams are
asked to make. For a Scrum team to be truly successful, it must go beyond adopt-
ing the basic, highly visible parts of Scrum and commit to real changes in the way
it approaches the actual work of creating a product. Fve observed teams who work
in sprints, conduct good sprint planning and review meetings, never miss a daily
Scrum, and do a retrospective at the end of each sprint. They see solid improve-
ments and may be as much as twice as productive as they were before Scrum. But
they could do so much better.

What these teams are missing—and what stops them from achieving even
more dramatic improvements—are changes to their technical practices. Scrum
doesn't prescribe specific engineering practices. To do so would be inconsistent
with the underlying philosophy of Scrum: Trust the team to solve the problem.
For example, Scrum doesn't explicitly say you need to test. It doesn't say you need
to write all code in pairs in a test-driven manner. What it does do is require teams
to deliver high-quality, potentially shippable code at the end of each sprint. If
teams can do this without changing their technical practices, so be it. Most teams,
however, discover and adopt new technical practices because it makes meeting
their goals so much easier.

In this chapter we look at five common practices that were made popu-
lar by Extreme Programming and have been adopted by many of the highest-
performing Scrum teams. We see how these practices are derived from a quest for
technical excellence. Finally, we look at how the technical practices of a Scrum
team intentionally guide the emergent design of the software system.

Strive for Technical Excellence
Like most kids, when my daughters drew or painted a particularly stunning mas-
terpiece, they would bring it home from school and want it displayed in a place
of prominence—namely the refrigerator. One day at work I coded a particularly
pleasing use of the strategy pattern in some C + + code. Deciding that the re-
frigerator door was suitable for displaying anything we're particularly proud of,

156 Chapter 9 Technical Pract ices

SEE ALSO
For speci f ic recom-
menda t i ons of reading
mater ia l tha t w i l l help
you learn more about
the technica l pract ices
t hemse l ves , see the
"Add i t i ona l Read ing"
sec t ion at t he end of
th is chapter.

SEE ALSO
This c leaning up of t he
code is cal led refactor-
ing. It is d iscussed in
detai l in the next sec-
t ion of th is chapter.

onto the fridge it went! Wouldn't it be nice if we were always so pleased with
the quality of our work that we proudly displayed it on the fridge along with our
kids' artwork? Although you probably won't go as far as taping your code, tests, or
database schema on your fridge, producing fridge-worthy work is a goal shared
by many Scrum teams.

In this section we will look at common technical practices used by Scrum
teams to improve the quality of their work: test-driven development, refactoring,
collective ownership, continuous integration, and pair programming. While I just
referred to these as common practices, the truth is that they are not so common.
These practices are well regarded and lead to higher quality, but because they can
be hard to put into practice, they are used less often than they should be. Each,
however, is a practice that Scrum teams should consider adopting. Because there
are many great books and articles available on each of these practices, I will in-
troduce each only briefly and will reserve the bulk of my comments for ways to
introduce the practice into your organization and to overcome common objec-
tions to it.

Test-Driven Development
If you were to look at how programmers write code on a traditional development
team, you would find that they typically select a portion of the program to tackle,
write the code, attempt to compile it, fix all the compile errors, walk through the
code in a debugger, and then repeat.This is summarized in Figure 9.1.This process
is very different from a test-driven approach, which is also shown in that figure. A
programmer doing test-driven development works in very short cycles of identi-
fying and automating a failing test, writing just enough code to pass that test, and
then cleaning the code up in any necessary ways before starting again. This cycle
is repeated every few minutes, rather than every few hours.

FIGURE 9.1
T h e m i c r o c y c l i c
n a t u r e o f t r a d i t i o n -
al a n d t e s t - d r i v e n
d e v e l o p m e n t .

Traditional
programming

Programming n/hen doim
feST-clriv'eii develop men-

•>gramm\ng n/hen doing
;f-dr\ven development

Str ive for Technical Excel lence 157

I find test-driven development (TDD) invaluable. One of the biggest reasons
is that it ensures that no untested code makes it into the system. If all code must
be written in response to a failing test, then if we do nothing else, we at least
achieve full code coverage with TDD.You might think a test-right-after approach
would achieve the same result. However, I've found that when programmers make
a commitment to write their unit tests "right after" they finish implementing a
feature, they often do not do so. The pressure to get started programming the next
feature can be tremendous. So programmers tend to write tests for only a subset
of the new functionality or put testing on a list of things to get to later, and then
find that later never comes.

It is appropriate to think o f T D D as being as much a design practice as a pro-
gramming practice. After all, the tests a programmer writes and the order in which
they are written guide the design and development of a feature. A programmer
doesn't create a list of 50 small unit tests and then randomly choose which to im-
plement first. Instead each test is selected and sequenced so that the uncertainties
of the feature are addressed early. In this way, the selection and implementation of
tests does indeed drive the development process, resulting in a design that, at least
in part, emerges from the needs of the system.

There is some debate about whether TDD leads to more robust or otherwise
better designs.1 But there is no doubt that TDD is helpful as a practice that helps
programmers think through their designs. A design that is hard to test, for example,
may indicate poorly structured code. My recommendation is to do TDD for its
testing benefits; any potential design improvements it brings are a bonus.

SEE ALSO
T h e idea of dr iv ing de-
v e l o p m e n t w i t h t e s t s
has also b e e n sca led
up to w h a t is k n o w n as
a c c e p t a n c e t e s t - d r i v e n
d e v e l o p m e n t , a t op i c
cove red in Chap te r 16,
" Q u a l i t y . "

" I a m w o r k i n g o n a c o m p l e x s y s t e m . I need t o d o s o m e a r c h i t e c t u r a l
w o r k f i r s t . " OBJECTION

Yes, on a comp lex or large sys tem, you probably do. There is no th ing to
say that TDD as a micro- level pract ice cannot be e f fec t ive ly c o m b i n e d
w i t h a smal l a m o u n t of up- f ront archi tectural th inking. In fact , later in th is
chapter, the sect ion "Des ign : Intent ional ye t E m e r g e n t " in t roduces the
idea that be ing agile is about f ind ing the r ight balance b e t w e e n anticipa-
t ion and adaptat ion. The ques t ion of h o w much , if any, archi tectural th ink-
ing to do up f ron t is best cons idered w i t h ach iev ing that balance in mind.

f For an example, see Abby Fichtner's blog athttp://haxrchick.blogspot.com/2008/07/
tdd-smackdown.html, which includes a link to a video-recorded debate between Jim
Coplien and Rober t Martin.

http://haxrchick.blogspot.com/2008/07/

158 Chapter 9 Technical Pract ices

OBJECTION
" A l w a y s w r i t i n g a t es t f i r s t is b o u n d t o t ake l o n g e r ; I d o n ' t h a v e t i m e
t o w a s t e . "

There is ev idence that do ing TDD takes about 15% longer than not do ing
TDD (George and Wi l l i ams 2003). But the re is also ev idence that TDD
leads to f e w e r defec ts . Two s tud ies at M ic roso f t f ound that the number of
bugs f ound w e n t d o w n by 2 4 % and 3 8 % w i t h the use of TDD (Sanchez,
Wi l l iams, and Max imi l ien 2007, 6). So, yes, TDD may take longer initially,
but the t i m e wi l l c o m e back to the t e a m in the f o r m of reduced bug f ix ing
and ma in tenance t ime.

THINGSTO
TRY NOW

• C o m m i t to spend ing at least one full day in the c o m i n g w e e k do ing
test -dr iven deve lopmen t . If you ' ve never done TDD before, you wi l l
l ikely need to w o r k w i t h another p rog rammer to get the hang of it.
Even if your partner doesn ' t have TDD exper ience either, it w i l l be
easier to learn together .

• Get t ing comfo r tab le w i t h h o w to w r i t e a fai l ing tes t be fore wr i t -
ing the imp lemen ta t i on can be di f f icul t . It's a very d i f fe ren t w a y
of work ing . One w a y to gain a bet ter unders tand ing of it is to t ry
gang programming. Gather four to e ight p rog rammers in a confer-
ence room equ ipped w i t h a laptop and projector. Pick a program-
mer to start cod ing wh i l e everyone else looks at the pro jec ted
source code. Find one fai l ing tes t you can wr i te , and then have
the p rog rammer w r i t e the code that makes the tes t pass. A f t e r 15
m inu tes or so, pass the laptop to another p rogrammer . Cont inue
wr i t i ng code and passing the laptop unti l the task is comp le te .

• If t ry ing TDD on your ful l appl icat ion is too d i f f icu l t r ight now, f ind an
ancil lary project you can try it on. H o w about that data convers ion
program everyone has been put t ing of f? Or the stand-alone pro-
g ram one of the s y s t e m admin is t ra tors asked for last mon th?

Refactoring
Consider the classic definition offered by Fred Brooks in The Mythical Man Month
of what happens as a software system is modified over time.

All repairs tend to destroy the structure, to increase the entropy
and disorder of the system. Less and less effort is spent on fixing
original design flaws; more and more is spent on fixing flaws in-
troduced by earlier fixes. As time passes, the system becomes less
and less well-ordered. Sooner or later the fixing ceases to gain
any ground. Each forward step is matched by a backward one.

Str ive for Technical Excel lence 159

Although in principle usable forever, the system has worn out as
a base for progress. (1995)

Fortunately, since 1975 when Brooks first wrote this, our industry has learned
ways to modify systems such that the system does not decay further with each
modification. The ability to modify without introducing decay is essential to
Scrum because Scrum teams build products incrementally. As Ron Jeffries says,
"In agile, the design simply must start simple and grow up. The way to do this is
refactoring."

Refactoring refers to changing the structure but not the behavior of code. Let
me give you an example. Suppose a programmer has two methods that each con-
tain three identical statements. These three common statements can be extracted
from both methods and put into one new method that is called from both of the
old locations. This refactoring (formally known as extract metlwtf) has slightly im-
proved the readability and maintainability of the program because it is now more
obvious that some code is reused and the duplicated code has been moved to a
single place. The structure of the code has been changed while its behavior has not.

Refactoring is not only crucial to the success ofTDD, but it also helps prevent
code rot. Code rot is the typical syndrome in which a product is released, its code is
allowed to decay for a few years, and then an entire rewrite is needed. By constantly
refactoring and fixing small problems before they become big problems, we can
keep our applications rot free. Robert C. Martin calls this the Boy Scout Rule.

The Boy Scouts of America have a simple rule that we can apply
to our profession: Leave the campground cleaner than you found
it. If we all checked-in our code a little cleaner than when we
checked it out, the code simply could not rot. (2008, 14)

" I f t h e y w r o t e it r i gh t t h e f i r s t t i m e , t h e y w o u l d n ' t need t o re fac to r n o w . "

This is kind of like saying, " I f Toyota buil t bet ter cars, t hey w o u l d n ' t
need oil changes, n e w t i res, or any ma in tenance ever . " Appl icat ions
wi l l need ma in tenance ; refactor ing is choos ing to do it a l itt le at a
t i m e w h e n doing so is cheap. M o s t of t he managers or product o w n -
ers I 've m e t w h o take a " y o u aren ' t a l l owed to re fac tor " s tance do
so because t e a m s have abused the abi l i ty to refactor in the past. A
typical examp le is the t e a m that reserves the last th ree days of every ten-
day spr int for refactor ing. Ano the r is the t e a m that tel ls its p roduct owner ,
" N o , w e can ' t do that impor tan t fea ture th is spr int because w e need to
refactor w h a t w e w r o t e the last spr in t . " If the w h o l e t e a m needs th ree
days to refactor every spr int , that 's a sign of d i f fe ren t t roubles. If the t e a m
has p lanned refactor ings that are so large they have to turn d o w n fea tures
the product o w n e r w o u l d like included, the refactor ing probably be longs
on the product backlog i tself.

160 Chapter 9 Technical Pract ices

THINGSTO
TRY NOW

• Start a refactor ing backlog of all the th ings you w a n t to clean up.
If the t e a m is col located, s imply w r i t e it on a big shee t of paper
hanging s o m e w h e r e . If not, use the e lect ronic equivalent . You w a n t
the list to be as in formal as possible. The goal is to f ix all t he issues
and then des t roy the list. Inst i tut ional iz ing the refactor ing list in a
cus tom-bu i l t database w i t h a c u s t o m w e b cl ient, RSS feeds , and
iPhone suppor t wi l l encourage the list to remain forever.

• Learn the refactor ings that can be pe r f o rmed automat ica l ly by your
in tegrated deve lopmen t env i ronment .

• W h e n a refactor ing oppor tun i ty is ident i f ied, have t e a m m e m b e r s
w r i t e it on an index card. Post the cards in a smal l , de l ineated area
on a wal l in the t e a m room. As the area fil ls, feel moun t i ng pres-
sure to c o m p l e t e one or more refactor ing.

• A t the end of your next two-hour - long p rog ramming sess ion, spend
20 or 30 m inu tes c leaning up some th i ng you not iced as you w e r e
touch ing or looking at ex is t ing code.

• Dur ing your next re t rospect ive , faci l i tate a d iscuss ion about refac-
tor ing w i t h your t e a m m a t e s , inc luding the product owner . A t w h a t
th resho ld shou ld refactor ing s w i t c h f r o m a personal dec is ion to a
w h o l e - t e a m decis ion? Clearly, I can rename a poorly n a m e d variable
I c o m e across w i t h o u t a t e a m discussion. W h a t if the deve lopers
c o m e across a two-day change; can they jus t make it, or does the
product o w n e r need to approve the e f fo r t f i rst?

Collective Ownership
Collective ownership refers to all developers feeling ownership over all artifacts of
the development process, but especially of the code and automated tests. Because
of the fast pace of a Scrum project, the team needs to avoid the trap of saying,
"That's Ted's code.We can't touch it." Collective ownership encourages each team
member to feel responsible for all parts of the program so that any programmer
can work on any module of the program. When modifying a module, the pro-
grammer then shares responsibility for its quality with the module's initial writer.

Collective ownership is not intended to cause a free-for-all in the coding.
Programmers will still tend to have certain areas they specialize in and prefer to
work in, but everyone on the team shares the following responsibilities:

• Ensure that no developer becomes so specialized he can contribute only
in one area.

• Make certain that no area becomes so intricate that it is understood and
worked upon by only one developer.

A natural benefit of fostering a feeling of collective ownership is that it en-
courages developers to learn new parts of the system. In doing so they generally

Str ive for Technical Excel lence 161

also learn new ways of doing things. Good ideas used in one part of the applica-
tion are more quickly propagated to other areas as programmers moving in and
out of parts of the application carry the ideas like pollen.

" I t ' s m y c o d e ; I d o n ' t w a n t t o h a v e t o f i x a n y o n e e lse 's b u g s . "
OBJECTION

I don ' t b lame you, but keep in m i n d they are also f ix ing your bugs. In
fact , f r o m m y exper ience a t e a m pract ic ing col lect ive owne rsh ip wi l l w r i t e
cleaner code (and presumably there fo re have f e w e r bugs). No one w a n t s
to look bad in f ron t of coworke rs . If s o m e code is " m i n e " and no one wi l l
see it, I m igh t be t e m p t e d to get a l itt le s loppy; not so if anyone can see
m y code at any t ime. For proof of th is look no fur ther than your gues t
ba throom. W h i c h do you keep cleaner: the ba th room only you use or the
one that v is i tors are l ikely to see?

" I d o n ' t w a n t a n y o n e e lse l o o k i n g a t m y c o d e a n d m a k i n g j u d g m e n t s
a b o u t m y sk i l l s , cha rac te r , u p b r i n g i n g , a n d so o n . "

This is a natural fear. The best w a y over th is fear is to w r i t e bet ter code. If
you a lways did your best to w r i t e high-qual i ty code, any j u d g m e n t s oth-
ers made w o u l d be posi t ive. If you ' re not con f iden t in your abil i ty to w r i t e
high-qual i ty code, pair as o f ten as you can w i t h other p rog rammers as a
w a y of improv ing.

" D e v e l o p m e n t is f as te r if e a c h p e r s o n o w n s o n e pa r t o f t h e s y s t e m . "

This depends ent i re ly on the t i m e f r ame over w h i c h w e are measur ing. If
you and I are bui ld ing a t h r o w a w a y s y s t e m over the next t w o w e e k s , it w i l l
indeed m o s t l ikely be faster for each of us to o w n one part of t he applica-
t ion. If, however , w e are part of a m u c h larger e f fo r t and are go ing to have
to mainta in the s y s t e m for the long t e rm , the learning, cross-training, and
other benef i ts of col lect ive owne rsh ip w e i g h heavily in its favor.

• Pretend that the o w n e r of any crit ical area is away on vacat ion and
nearly imposs ib le to reach. For a coup le of spr ints, make the delib-
erate decis ion that the "obv ious pe rson" is never a l l owed to take on
tasks related to that area of exper t ise. If the area exper t is needed,
that exper t is available by phone only—li teral ly call the person w h o
is s i t t ing t w o cubic les away.

• The next t i m e you w o r k in code that is d i f f icu l t to w o r k w i t h , f ix
i t—even if it w a s w r i t t e n by s o m e o n e else. If you feel that th is is
overs tepp ing your author i ty, ask the original p rog rammer to w o r k
w i t h you in mak ing the code easier to use.

THINGSTO
TRY NOW

162 Chapter 9 Technical Pract ices

Continuous Integration
Creating an official nightly build of a product has been known as an industry best
practice since at least the early 1990s. Well, if a nightly build is a good idea, build-
ing a product continuously is an even better one. Continuous integration refers to
integrating new or changed code into an application as soon as possible and then
testing the application to make sure that nothing has been broken. Rather than
checking in code perhaps every few days or even every few weeks, each program-
mer on a Scrum team running continuous integration is expected to check in
code a few times each day—and to run a suite of regression tests over the entire
application.

Continuous integration is usually achieved with the help of a tool or script
that notices when code has been checked into the version control system. Cruise
Control was the first product to gain popularity for automating continuous inte-
gration. It could build a product, run as many tests as desired against it, and could
then automatically send a notification to the developer who broke the build (or
to the entire team). Cruise Control could also send build results to additional
feedback devices such as lava lamps, ambient orbs, spare monitors, LED displays,
and more.

Some teams opt for a manual approach, in which developers initiate the build
and test for each check-in. I strongly recommend against this. Although it is pos-
sible to be successful with a manual approach to continuous integration, my ex-
perience is that developers will occasionally skip the build and test. It is just too
tempting to occasionally think, "I changed only two lines and it worked on my
machine." It's also tempting to forgo the build and test when checking in code
after your planned quitting time for the day: "Yikes, it's almost six o'clock," a de-
veloper may think. "I 'm sure this works and I don't want to wait 15 minutes for
the tests to finish...." Given the ease with which a continuous integration tool
can be configured, it is almost always one of the first things I coach teams to do.

For most developers, the first exposure to automated continuous integration
is eye-opening. I know it was for me. I'd become very accustomed to the benefits
of a nightly build but had somehow never made the mental leap that if once a day
is good, many times a day would be better. After working in a continuously inte-
grated environment for a day, I was hooked. Not only could we eliminate all risk
of big integration issues at the end of a project, but also the entire development
team would be receiving near-real-time feedback on the status of the product.

Str ive for Technical Excel lence 163

" M a i n t a i n i n g a b u i l d s e r v e r a n d al l t h o s e t es t s t akes t i m e a w a y f r o m
o t h e r w o r k . "

A Scrum t e a m wi l l require a sui table a u t o m a t e d tes t ing env i ronmen t
regardless of w h e t h e r it also does con t inuous integrat ion. So, the only ad-
dit ional overhead is that of se t t ing up and mainta in ing t he bui ld server en-
v i ronment . For m o s t appl icat ions th is i nves tmen t wi l l be paid back w i t h i n
the f i rst m o n t h by the t i m e saved on integrat ion issues.

" O u r s y s t e m is t o o c o m p l e x ; i t t akes h o u r s t o r u n a f u l l i n t e g r a t i o n
t e s t — w e can ' t b u i l d c o n t i n u o u s l y . "

These days it is not u n c o m m o n to encoun te r a Sc rum t e a m w i t h a tes t
sui te that takes hours to run. The so lut ion is normal ly to part i t ion the tes t
sui te rather than abandon the idea of con t inuous integrat ion. S tephen
Marsh and Stel ios Pantazopoulos w o r k e d on the TransCanada pipel ine
project and did exact ly this.

Several m o n t h s into t he pro ject it became ev ident that run-
ning the full regression tes t in under f i f teen m inu tes w a s not
possible. A s a result the regression tes t w a s spl i t into t w o : a
s m o k e tes t and a ful l test . The f i rst ran af ter every check- in
and inc luded all t es t scr ipts f r o m the current del ivery m i les tone
[sprint] and a subse t of scr ipts f r o m past mi les tones. The sec-
ond ran once an hour and inc luded all t es t scr ipts f r o m all mi le-
s tones. The f i rst p roved to be comp le te enough the major i ty
of the t ime. Only on rare occas ions did the second one fail.
(2008, 241)

• A n off ic ial n ight ly build is a m u s t for any Scrum team. Get t ing at
least th is m u c h in place should be one of the f i rst th ings you do if
you don ' t have it already. The e f fo r t to get a night ly bui ld in place
wi l l be paid back w i t h i n a m o n t h at the mos t , so there 's no excuse
to be w i t h o u t one. Plan th is into your next sprint.

• If you already have a night ly build, take the next s tep and start
bui ld ing cont inuously .

• If you have a con t inuous build, but no tes ts run as part of it, add
some. Chapter 16 in t roduces the tes t au tomat ion pyramid. Get t ing
the f i rst tes t of each type f r o m th is pyramid is a hurdle. But af ter
the f i rst tes t has been in tegrated, the rest c o m e m u c h more easily.

THINGSTO
TRY NOW

164 Chapter 9 Technical Pract ices

Pair Programming
Pair programming is the practice of having two developers work together to write
code. It originated from the idea that if occasional code inspections are good,
constant code inspections are better. Many of the practices just described are
made easier through the use of pair programming. Learning how to do test-driven
development is made easier when working together. Feelings of collective own-
ership are created when code is produced in pairs. And having the discipline to
leave the code cleaner than you found it comes easier when another developer is
sitting beside you.

Clearly, there are some benefits to pair programming. That's why I invented
it. OK, I didn't really invent it, but I like to think I did. I did happen across it out
of true necessity, which is, after all, the mother of invention. In 1986 I was hired
by Andersen Consulting in its Fos Angeles office. On my first day on the job I
completed a skills survey. I marked myself as "proficient" with the C program-
ming language, even though I was very much a beginner at the language. But, I
reasoned, I 'm studying it every night after work, and I will be proficient by the
time they read this skills survey. Unfortunately for me, they read the survey the
next day. And on the day after that I was on a plane from Fos Angeles to the New
York office to a project that desperately needed C programmers.

After arriving in New York, I met another programmer who had also been
transferred because he knew C. I knew I couldn't deceive him, so I came clean
and confessed my exaggeration on the skills survey. "Ugh," he said, "I lied, too."
Our solution was that we would work together—pair programming, although we
didn't call it that.We figured that between us we were as good as one "proficient"
C programmer. And, we reasoned, if we worked together on everything, they
wouldn't know which of us to fire.

It worked like a dream. He and I worked together for much of the next eight
years at three different companies, pairing as much as possible, especially on any-
thing difficult. We wrote some amazing and incredibly complex products, always
with low defect rates W e also felt that even though there were two heads for every
pair of hands on the keyboard, we were highly productive when working this way.

Since those early, positive experiences with pair programming, I've been
hooked. I knew it was a good way to write code. On the other hand, many of
us in this industry (myself included) were first attracted to this work because we
could sit in a cubicle with our Sony Walkman playing (yes, it was that long ago)
and not have to talk with anyone all day. Even now, there are days when I enjoy
nothing more than listening to some loud music on my headphones while code
is flowing from my fingers as fast as I can type. Because I still relish those days, I
have a hard time ever mandating to a team that they must do pair programming
100% of the time.

Str ive for Technical Excel lence 165

Fortunately, most teams have realized that the vast majority of the benefits
of pairing can be achieved even when it is not done all day, every day. So, when
coaching teams, I always push them to adopt pair programming on a part-time
basis; use it for the riskiest parts of the application. I encourage teams to find the
guidelines that help them pair enough, while stressing that enough is somewhere
greater than 0%, but also acknowledging that I can understand the reasons they
may have for wanting it to be less than 100%.

There are many advantages to pair programming, even for teams who do it
less than 100% of the time. Although most studies show a slight increase in the
total number of person-hours used when pairing, this is offset by a decrease in
the total duration of the effort. That is, while pairing takes more person-hours,
fewer hours pass on the clock (Dyba et. al 2007). Although projects are always
under financial pressure, the overriding concern is not so much person-hours as
time to market. Pair programming has also been shown to improve quality. In a
survey of studies, Dyba and colleagues found that each study showed an improve-
ment in quality with pair programming. Additionally, pair programming facilitates
knowledge transfer and is an ideal way to bring new developers up to speed on
the application. It is also an effective practice for working in uncharted territory
or solving difficult problems in known parts of the system.

" I t cos ts m o r e ; I d o n ' t w a n t t o p a y t w o p r o g r a m m e r s t o d o t h e j o b o f
o n e . "

Pair p rog ramming wi l l cost mo re in the shor t t e rm. However , that addit ion-
al initial cost may very l ikely be paid back w i t h shor ter schedu les and w i t h
higher quality, leading to lower ma in tenance cos ts d o w n the road. Rather
than take indust ry s tud ies as your proof ei ther way, prove th is to yoursel f .
Pair on the m o s t d i f f icu l t modu les and see if they have f e w e r de fec ts and
are easier to mainta in later, perhaps in compar ison to simi lar modu les
f r o m other p rograms done w i t h o u t pair p rogramming .

" W e ' r e in a hu r r y . W e can ' t have t w o p r o g r a m m e r s o n o n e t a s k . "

Actual ly, if you ' re in a hurry th is is the t i m e you need pair p rog ramming
the mos t . I 've already m e n t i o n e d that pair ing leads to shor ter pro ject dura-
t ions (whi le increasing overall e f fo r t , or person-hours). Addi t ional ly, there
is even s o m e ev idence (Wi l l iams, Shukla, and A n t o n 2004) that pair ing
is an e f fec t i ve w a y to counter Brooks ' Law ("add ing m a n p o w e r to a late
so f twa re pro ject makes it later") . In other w o r d s , if you have an aggress ive
deadl ine or are t e m p t e d to add people to a late project , t hese are ideal
t i m e s to incorporate pair p rogramming .

166 Chapter 9 Technical Pract ices

" W h e n w o r k i n g o n a t o u g h p r o b l e m , I n e e d s o m e q u i e t t i m e t o t h i n k
t h r o u g h t h e p r o b l e m . "

Talk w i t h your pair ing partner and agree to separate for an hour or wha t -
ever you need to th ink th rough the prob lem. W h e n you resume pairing,
start by shar ing any insights ei ther of you had.

• In your next spr int p lanning mee t ing , c o m m i t to do ing s o m e pair-
ing. Make the c o m m i t m e n t expl ic i t by add ing tasks to the spr int
backlog: " M i k e and Bob pair for t w o hours , " " M i k e and M e h t a pair
for an a f te rnoon , " and so on. This is a good w a y to at least get com-
for tab le w i t h pairing. It is too easy to put of f pair ing w i t h a vague
c o m m i t m e n t to t ry it s o m e t i m e in t he near fu ture. Having tasks in
the spr int backlog, though, acts as a cons tan t nagging reminder,
and, as a result , is m u c h more likely to resul t in act ion.

Design: Intentional yet Emergent
Scrum projects do not have an up-front analysis or design phase; all work occurs
within the repeated cycle of sprints. This does not mean, however, that design on
a Scrum project is not intentional. An intentional design process is one in which
the design is guided through deliberate, conscious decision making. The difference
on a Scrum project is not that intentional design is thrown out, but that it is done
(like everything else on a Scrum project) incrementally. Scrum teams acknowl-
edge that as nice as it might be to make all design decisions up front, doing so
is impossible. This means that on a Scrum project, design is both intentional and
emergent.

A big part of an organization's becoming agile is finding the appropriate bal-
ance between anticipation and adaptation (Highsmith 2002). Figure 9.2 shows this
balance along with activities and artifacts that influence the balance. When doing
up-front analysis or design, we are attempting to anticipate users' needs. Because
we cannot perfectly anticipate these, we will make some mistakes; some work will
need to be redone. When we forgo analysis and design and jump immediately
into coding and testing with no forethought at all, we are trying to adapt to users'
needs. All projects of interest will be positioned somewhere between anticipation
and adaptation based on their own unique characteristics; no application will be
all the way to either extreme. A life-critical, medical safety application may be far
to the anticipation side. A three-person startup company building a website of
information on kayak racing may be far toward the side of adaptation.

Foretelling the agile preference for simplicity, in 1990, was speaker and author
Do-While Jones.

Design: Intent ional ye t Emergen t 167

I ' m not against planning for the future. Some thought should be
given to future expansion of capability. But when the entire de-
sign process gets bogged down in an attempt to satisfy future re-
quirements that may never materialize, then it is time to stop and
see if there isn't a simpler way to solve the immediate problem.2

Scrum teams avoid this "bogging down" by realizing that not all future needs
are worth worrying about today. Many future needs may be best handled by plan-
ning to adapt as they arise.

5-arljj planning
5i<j deign upfront
Testing after
Signed handoffi
E>arljj, complete requirements

K.eal-time planning
E>mer̂ ent deign
Integrated testing
OoHaboraftVe- discussions
Just-in-time, just-enough

requirements

FIGURE 9.2
A c h i e v i n g a b a l -
a n c e b e t w e e n
a n t i c i p a t i o n a n d
a d a p t a t i o n i n v o l v e s
b a l a n c i n g t h e i n f l u -
e n c e o f t h e a c t i v i -
t i e s a n d a r t i f a c t s o n
e a c h s i d e .

Getting Used to Life Without a Big Design
As Scrum teams begin to become adept at the technical practices described in
this chapter, they will naturally begin to shift further away from anticipating users'
needs and more toward adapting to them. This will result in a number of changes
for the agile architect or designer to become accustomed to. The new realities
caused by this shift include the following:

• Planning is harder. Estimating, planning, and committing to deliverables
is already hard; it becomes more difficult in the absence of an up-front
design. A lot of thinking goes into creating an up-front design. Some of
that thinking is helpful in estimating how long things will take and in
combining estimates into plans. The upside to forgoing the big up-front
design, however, is that the work that needs to be estimated is often sim-
pler so that individual features can be estimated more quickly and easily.

• It is harder to partition the work among teams or individuals. Having a
big, up-front design in hand makes it easy to see which features should be
developed simultaneously and which should be developed in sequence.
This makes it easier to allocate work to teams or individuals.

2 Jones' 1990 article, " T h e Breakfast Food Cooker," remains a classic parable of what
can go wrong w h e n software developers over-design a solution. I highly recommended
reading it at ht tp: / /www.ridgecrest .ca .us/~do_while/ toaster .htm.

http://www.ridgecrest.ca.us/~do_while/toaster.htm

168 Chapter 9 Technical Pract ices

• It is uncomfortable not to have design done. Even though we've always
known that no up-front design can be 100% perfect, we took comfort in
its existence. "Surely," we reasoned, "we've thought of all the big things so
any changes will be minor."

• Rework wi l l be inevitable. Without a big up-front design, the team will
certainly hit a point where it needs to undo some part of the design. This
two-steps-forward-one-step-back aspect of iterative development can be
unsettling to professionals trained to identify all needs and make all design
decisions up front. Fortunately, refactoring and the automated tests cre-
ated during test-driven development can keep most rework efforts from
becoming very large.

Doing a large, up-front design became popular because of the belief that do-
ing so would save time and money. The cost of the up-front design plus the cost
of adjustments was viewed as less expensive than the many small changes necessary
with emergent design.The situation can be visualized as shown in Figure 9.3, with
the question being which weighs more?

FIGURE 9.3
T h e c o s t s o f s i g -
n i f i c a n t u p - f r o n t
d e s i g n a n d a n a l y s i s
p l u s o c c a s i o n a l
e x p e n s i v e c h a n g e s
a r e w e i g h e d
a g a i n s t t h e c o s t s
o f f r e q u e n t b u t
s m a l l e r c h a n g e s o n
a S c r u m p r o j e c t .

Tradi-Honal

Upfront analysis
and design

Soruw

fc&work.

Rework- Rework. | Rework.

In the past, it was entirely possible that doing a large, up-front design would
save time and money. After all, Barry Boehm demonstrated in Software Engineering
Economics (1981) that defects are more expensive to fix the later in the develop-
ment process they are discovered. But the technical practices employed by good
Scrum teams can dramatically alter the equation.When a team uses good techni-
cal practices—test-driven development, a heavy reliance on automated unit tests,
refactoring, and pair programming among them—it may find itself in the situation
where it is cheaper to adapt to user needs by reworking the application more often
than it is to anticipate those needs and rework only occasionally.

Figure 9.3 shows that in traditional development there is a large cost on up-
front analysis and design.This investment keeps down the number of later changes.
But when a change is needed, it is relatively expensive to make because the change

Design: Intent ional ye t Emergen t 169

violates the primary assumption that change will be largely unnecessary. By con-
trast, the Scrum view shows many more changes, but the size of each bit of rework
is smaller. This is the result of anticipating that change will be needed, but not
knowing exactly where. Because of that, a Scrum team pursues technical excel-
lence, always keeping the code well factored, with as simple a design as possible,
and with a suite of automated tests for early detection of regression problems. So,
while there are more occasions for rework, each is less of a setback.

Guiding the Design
When I hear attacks on the lack of design on a Scrum project, the attacks usu-
ally start from the position that technical members of the team have no influence
on the order in which features are added to the system. This is a faulty premise.
In fact, one of the best things a Scrum team can do to ensure the scale shown in
Figure 9.3 is tipped in the right direction is to influence the order in which items
are worked on.

However, we read in Chapter 7, "New Roles," that prioritizing the prod-
uct backlog is the responsibility of the product owner. Although that is true, the
chapter also pointed out that a good product owner will listen to the advice of
the team. Standard Scrum guidance is that the product owner prioritizes based
on some nebulous concept of "business value." Although this may be true, it is a
bit simplistic. The real job of the product owner is to maximize the delivery of
features over some period of time. This may mean getting less "business value"
now in favor of getting more later. In other words, a good product owner remains
focused on ensuring that the product contains as much business value as possible
when it is released but lets the team invest in the technical aspects of the product
as appropriate because doing so pays later dividends to the product as well.

Especially early on a new project, the team should encourage the product
owner to select product backlog items that will maximize learning and drive out
technical uncertainty or risk. This is what I meant earlier by saying design on
a Scrum project is both intentional and emergent. The design emerges because
there is no up-front design phase (even though there are design activities during
all sprints). Design is intentional because product backlog items are deliberately
chosen with an eye toward pushing the design in different directions at different
times.

An Example
As an example of how the product backlog items can be sequenced to influence
the architecture of the system, consider a workflow system I worked on. The
system supported a fund-raising company that produced specialized T-shirts and
similar products. School-age children would go door to door selling these items.
The sales revenue would be split between the company and the organization the

170 Chapter 9 Technical Practices

kids represented, such as a school, sports team, or other group. For each sale, the
kid would complete a form and send it to the company, where it was scanned,
sent through an optical character recognition (OCR) process, and converted into
an order. To keep shipping costs down, orders from the same organization were
batched together and sent back to the organization, after which the kids would
hand-deliver the items.

Our software handled the entire process—from when the paper was received
by the company until the shipment went out the door. Kids have notoriously bad
writing and are bad spellers, so our system had to do more than just scan forms
and prepare packing lists. There were various levels of validation depending upon
how accurately we thought each order form had been read. Some forms were
routed to human data-entry clerks who were presented the scanned form on one
side of the screen, the system's interpretation on the right, and an additional space
to make corrections.

Because thousands of shirts were processed on the busiest days, this process
needed to be as automated as possible. I worked with the product owner, Steve, to
write the product backlog. After that I met with the development team to discuss
which areas of the system were the highest risk or we were the most uncertain
about how to develop. We decided that our first sprint would focus on getting a
high-quality document to run through the system from end to end. It would be
scanned, go through O C R , and generate a packing list.We would bypass optional
steps such as deskewing crooked pages, despeckling pages, and so on but would
prove that the workflow could be completed from start to finish. This wasn't
highly valuable but it was something that needed to be done, and it let the devel-
opers test out the general architecture. After we accomplished this, we had a basic
database in place and could move documents from state to state, triggering the
correct workflow steps.

Next the developers asked the product owner if they could work on the part
of the system that would display a scanned document to a human, who would be
able to override the scanned and interpreted values. This was chosen as the second
architectural goal of the project for three reasons:

• It was a manual step, making it different from the workflow steps
handled already.

• Getting the user interface right was critical. With the volume of docu-
ments flowing through this system, saving seconds was important. We
wanted to get early feedback from users to allow time to iterate on
usability.

• After this feature was added, users could start processing shirt orders.

The project continued in this way for a few months and was ultimately
tremendously successful, meeting all of the prerelease targets for reliability and

Improv ing Technical Pract ices Is Not Opt iona l 171

throughput. A key to the success was that the product owner and technical per-
sonnel worked together to sequence the work. The closest the team got to a
design phase was the first afternoon in the conference room when we identified
risky areas and dark corners and decided which one we wanted to tackle first.
From there the design emerged sprint by sprint, yet was intentionally guided by
which product backlog items were selected to illuminate the dark corners and
risks of the project.

• Faci l i tate a d iscuss ion b e t w e e n t he t e a m and p roduc t o w n e r on
h o w m u c h in f luence techn ica l fac to rs shou ld have on h o w the prod-
uct o w n e r pr ior i t izes t he p roduc t backlog.

• Be fo re t he s tar t of t he nex t spr in t p lann ing m e e t i n g , ident i f y t he
t op f ive techn ica l uncer ta in t ies on t he pro jec t and t he risk associ -
a ted w i t h each. See if t he re are p roduc t back log i t e m s that cou ld be
m o v e d s l ight ly up in pr ior i ty tha t cou ld c rea te t he learning neces-
sary to e l im ina te t h e s e uncer ta in t ies .

THINGSTO
TRY NOW

Improving Technical Practices Is Not Optional
The technical practices described in this chapter are ones I would expect to see
in use by a top-performing team. Of course, there is room to argue that these
practices may not be necessary 100% of the time on your application. All of the
practices, though, are ones that members of a good Scrum team should be expe-
rienced with. Continuous integration is merely the natural extension of a nightly
build, which is a bare minimum for a team to be agile. Skill at refactoring and a
mindset of collective ownership can be established over time with any team. Prac-
tices such as pair programming and test-driven development lead to higher quality
code, which is a goal of every Scrum team.

Used together, these practices result in high-quality, low-defect products.
Chapter l , " W h y Becoming Agile Is Hard (But Worth It)," included metrics on
the improvements in quality and defect rates agile teams can experience. These
improvements are the result of teams deliberately enhancing their technical skills
and incorporating better practices.

As a result of these improvements, good Scrum teams are able to shift the
balance between anticipation and adaptation further to the side of adaptation.
Minimizing, and in some cases eliminating, up-front analysis and design activities
saves both time and money. In an aptly titled article, "Design to Accommodate
Change," Dave Thomas, founder of Object Technology International, which was
responsible for the early Eclipse development, summarizes how achieving this bal-
ance helps make change less painful.

172 Chapter 9 Technical Pract ices

Agile programming is design for change....Its objective is to de-
sign programs that are receptive to, indeed expect, change. Ideally,
agile programming lets changes be applied in a simple, localized
way to avoid or substantially reduce major refactorings, retesting,
and system builds. (2005, 14)

Additional Reading
Ambler, Scott W., and PramodJ . Sadalage. 2006. Refactoring databases: Evolutionary database
design. Addison-Wesley.

T h e first five chapters of this book clarify the role of the data professional in the
agile organization. T h e chapters that follow are a compendium of wel l - thought-out
ways to evolve a database design. Each refactoring includes descriptions of why you
might make this change, trade-offs to consider before making it, h o w to update the
schema, how to migrate the data, and how applications that access the data will need
to change.

Bain, Scott L. 2008. Emergent design: The evolutionary nature of professional software develop-
ment. Addison-Wesley Professional.

I've been waiting for someone to wri te the b o o k proving h o w effective designs can
emerge wi thout being entirely thought- through up front. I'd hoped from its title that
this would be that book. It isn't, but it is an excellent description of h o w code should
be developed on an agile project. Included are top-notch chapters on many of the
technical practices described in this chapter.

Beck, Kent. 2002. Test-driven development: By example. Addison-Wesley Professional.
This slim b o o k will no t teach you everything you need to k n o w about test-driven
development. (For that, see Test Driven :TDD and Acceptance TDD for Java Developers by
Lasse Koskela.) W h e r e Beck's book excels is at showing h o w T D D works and why
you might want to try it.

Duvall, Paul, Steve Matyas, and Andrew Glover. 2007. Continuous integration: Improving
software quality and reducing risk. Addison-Wesley Professional.

This b o o k covers everything you'll ever need to know about continuous integration.
It covers h o w to get started, incorporate tests, use code analysis tools, and even evalu-
ate continuous integration tools.

Elssamadisy, Amr. 2007. Patterns of agile practice adoption:The technical cluster. C4Media .
This b o o k covers all of the technical practices recommend here (and more) and is an
excellent choice if you are looking for one book that covers all of the technical prac-
tices in more detail. Whi le full of good advice, the b o o k is wri t ten in typical pattern
style, where each practice is described in a fixed manner, which I find doesn't hold
my attention well after awhile.

Addit ional Reading 173

Feathers, Michael. 2004. Working effectively with legacy code. Prentice Hall P T R .
Introducing new technical practices and committ ing to technical excellence is chal-
lenging enough on a new project; it's even harder on a legacy application. Michael
Feathers' excellent book provides practical and immediately useful advice on doing so.

Fowler, Martin. 1999. Refactoring: Improving the design of existing code. Wi th contributions
by Kent Beck, John Brant, William Opdyke, and D o n Roberts . Addison-Wesley Profes-
sional.

T h e bible of refactoring. Today's integrated development environments can do a lot
of refactorings for us, but it is still useful to go back to the original source and see the
catalog of refactorings presented here. O n e of my favorite chapters is on "Big Refac -
torings," which are often the ones that are most challenging.

Koskela, Lasse. 2007. Test driven: TDD and acceptance TDD for Java developers. Manning.
This is the most thorough book on test-driven development and is appropriate for
those new to T D D and those wi th lots of experience. Koskela doesn't shy away from
the hard topics and presents advice on such often-ignored topics as T D D for multi-
threaded code and user interfaces. T h e book takes a holistic approach to TDD, even
including nearly 150 pages on acceptance test—driven development.

Martin, R o b e r t C. 2008. Clean code: A handbook of agile software craftsmanship. Prentice
Hall.

T h e title page inside this book features the statement, "There is no reasonable excuse
for doing anything less than your best." T h e book then proceeds to present a c o m -
pendium of practices for wri t ing clean code. Topics range from the commonplace
(meaningful names) to novel (test-driving an architecture and emergence).This is a
must-read for all programmers.

Meszaros, Gerard. 2007. xUnit test patterns: Refactoring test code. Addison-Wesley.
This encyclopedic book covers everything a programmer might possibly want to
k n o w about the popular xUni t family of unit testing tools. T h e book starts wi th the
basics but quickly moves on to thoroughly cover advanced topics as well.

Wake, William C. 2003. Refactoring workbook. Addison-Wesley Professional.
A well-organized and easily accessible introduction to refactoring. T h e book is full of
Java code examples for you to refactor and is a combination of a refactoring pr imer
and exercises to drive home the point. T h e last third of the book is made up of four
programs for you to refactor.

SEE ALSO
A c c e p t a n c e t e s t - d r i v e n
d e v e l o p m e n t is de-
sc r ibed in Chap te r 16.

PART I I I
Teams

Most teams aren't teams at all
but merely collections of individual relationships with the boss.

Each individual vying with the others
for power, prestige and position.

—Douglas McGregor

Chapter

T e a m S t r u c t u r e

t is perhaps a myth, but an enduring one, that people and their pets resemble one
another. The same has been said of products and the teams that build them.

The system being produced will tend to have a structure that
mirrors the structure of the group that is producing it, whether
or not this was intended. One should take advantage of this fact
and then deliberately design the group structure so as to achieve
the desired system structure. (Conway 1968; commonly referred
to as "Conway's Law")

If it is true that a product reflects the structure of the team that built it, then
an important decision for any Scrum project is how to organize those individuals
into teams. Factoring into this decision are considerations of team size, familiarity
with the domain, the channels of communication, the technical design of the sys-
tem, individual experience levels, the technologies involved, the newness of those
technologies, where team members are located, competitive and market pressures,
expectations about project schedule, and much more.

In this chapter we look at the importance of two critical factors to be con-
sidered when deciding how to structure Scrum teams: keeping teams small and
orienting each team around the delivery of end-to-end user-visible functional-
ity. We also look at the importance of having the right people on each team and
not overloading those individuals by forcing them to split time among too many
teams.We conclude the chapter with nine questions to ask when starting a multi-
team project.

Feed Them Two Pizzas
I was working on a project for a bioinformatics company when the C E O asked
me to provide her with an estimate of how long the project would take. The
application was large, the domain complicated, and the team mostly new. Be-
cause the domain was so complicated, our team was made up of some very smart
Ph.D. scientists, who knew only a little about programming, and some very smart

178 Chapter 10 Team St ructure

SEE ALSO
S c r u m p ro jec ts sca le
t h r o u g h t he use of
t e a m s of t e a m s . For
i n fo rma t i on on large
S c r u m pro jec ts , s e e
Chap te r 17, "Sca l i ng
S c r u m . "

programmers, most of whom had taken no more than a class or two in biology or
genetics. No one on the team was great at both the science and the development.

After a bit of research and work with the team I returned to the CEO with
an estimate of something like 100 person-years. In other words, if we used all 40
people on the team, we could finish the project in about two and a half years. I
don't think that number was too shocking to her, but it was a big number, so she
asked me, "What's the cheapest way we could write it?" My answer: "Take Steve,
the scientist with the best understanding and aptitude for programming, and have
him go spend 10 years working in a great software company doing nothing but
learning how to be a great programmer. Then have him return to our company
and spend 30 years working alone to write the program. It'll take 40 years, but it's
your cheapest option." She should have been quite pleased with my answer—after
all, I'd taken the 100 person-year initial estimate and offered her a way to cut it by
more than half Alas, 40 years was just a bit too long for her to wait.

As this story illustrates, a team offers the advantage of getting things done far
more quickly than one person could, but with that advantage comes a potentially
large amount of communication overhead. Knowing that, what is the ideal team
size for Scrum projects? Generally accepted advice is that the ideal Scrum team
size is five to nine individuals. While I agree with this, putting a number to it
makes me nervous. If you're thinking about your ten-person team right now you
may feel inclined to return this book, demand a refund, and give up on Scrum.

Don't.
Rather than take the five-to-nine person guideline too literally, I prefer how

Amazon.com thinks its about its teams. Amazon refers to them as "two-pizza
teams," meaning a team that can be fed with two pizzas (Deutschman 2007). As
humorous as that is, it's actually useful. If ordering food for the occasional team
lunch is a hassle, it could be a good indicator that the team has become too large.

The largest single Scrum team that I worked with where I was content to
leave them alone was 14 people. The team, its ScrumMaster, and I had all looked
at possible ways to split them up, but no solutions we came up with seemed bet-
ter than leaving them intact. I've also worked with one team of 25 that insisted
it should be one team rather than more. They were wrong; there was too much
communication overhead on a single team of that size.

Why Two Pizzas Are Enough
To be fair, there are some advantages to large teams. Large teams may include
members with more diverse skills, experiences, and approaches. Large teams are
not as much at risk to the loss of a key person. They may also provide more oppor-
tunities for individuals to specialize in a technology or a subset of the application.

On the other hand, there are even more advantages to small teams. These
include the following:

Feed T h e m Two Pizzas 179

• There is less social loafing. Social loafing is the tendency for people to
exert less effort when they believe there are others who will pick up the
slack. Members of small teams are less prone to social loafing. Social loaf-
ing was first demonstrated by psychologist Max Ringelmann in the 1920s
when he measured the pressure exerted by individuals and teams pulling
on a rope. Groups of three exerted only two-and-a-half times (not three
times) the average individual pressure. Groups of eight exhibited less than
four times the individual average. Ringelmann's and related studies have
shown that individual effort is inversely related to team size (Stangor
2004,220).

• Constructive interaction is more likely to occur on a small team. Stephen
Robbins, author of Essentials of Organizational Behavior, a best-selling text-
book on organizational behavior, has concluded that teams of more than
10 to 12 people have a difficult time establishing feelings of trust, mutual
accountability, and cohesiveness. Without these, constructive interaction
is difficult (2005).

• Less time is spent coordinating effort. Small teams spend less time coor-
dinating the efforts of team members. This is true both in the aggregate
and as a percentage of total project time. As a simple example, we all know
that the effort just to plan a meeting for a large team can be overwhelm-
ing.

• No one can fade into the background. With large teams, there is lower
participation in group activities and discussions. Similarly, the disparity in
the amount of participation among team members increases. The prob-
lems can prevent a group of individuals from jelling into a cohesive, high-
performing team.

• Small teams are more satisfying to their members. With a small team, one
person's contributions are more visible and meaningful. This is perhaps
one reason why research has shown that participation on a large team is
less satisfying to team members (Steiner 1972).

• Harmful over-specialization is less likely to occur. On a large project,
individuals are more likely to take on distinct roles (Shaw 1960). For
example, one developer chooses to work only on the user interface. This
creates wasteful hand-offs of work between team members and reduces
the amount of learning that occurs when individuals are more willing and
likely to work beyond specific job roles.

One interesting study of team size looked at 109 different teams. The small
teams had 4 to 9 members while the large teams had 14 to 18. The researchers
reached several conclusions.

SEE ALSO
T h e p r o b l e m s w i t h
hand-o f f s w i l l be
cons i de red In Chap te r
11, " T e a m w o r k . "

Members of smaller teams participated more actively on their
team; were more committed to their team; were more aware of

180 Chapter 10 Team St ructure

the goals of the team; were better acquainted with other team
members' personalities, work roles, and communication styles;
and reported higher levels of rapport. The data also show that
larger teams are more conscientious in preparing meeting agen-
das compared to smaller teams. (Bradner, Mark, and Hertel
2003, 7)

Hmm.With a small team I can have many compelling advantages. Or I can
staff a larger team and get better meeting agendas.

Small Team Productivity
Given the strength of these advantages to small teams, we would expect small
teams to be more productive than large teams. Doug Putnam of QSM found ex-
actly that after studying 491 projects with team sizes from 1 to 20 people. Since
1978 QSM has been collecting data on software productivity and estimates. The
company maintains the software development industry's most thorough metrics
database, including data on application size, effort, industry, and more. As such, the
QSM database is uniquely valuable for comparing different types of projects.

From the QSM database of over 7,000 projects, Putnam narrowed the data set
to 491 projects completed between 2003-2005 that delivered between 35,000
and 95,000 new or modified lines of source code.1 Project sizes were evenly dis-
tributed from 1 to 20 team members. As shown in Figure 10.1, Putnam found that
the smaller the team size, the more productive each team member was. However,
the difference between teams sized from 1.5 to 7 people was very small.

FIGURE 10.1
T h e a v e r a g e
p r o d u c t i v i t y pe r
p e r s o n o n t e a m s o f
v a r i o u s s izes. Pr in t -
ed w i t h p e r m i s s i o n
f r o m Q S M , Inc. A l l
r i g h t s r ese rved . 9-11 people (13.7) < j

VplO people (13.0)

O 2 4 i> 3 \C> 12 14 % 13 2 O

Froduc-f M+y per perÇon

1 Lines of code is, of course, a much maligned metric and deservedly so in many cases.
However, in a database of this size, I believe it is a reasonable proxy for the size of a project
and can therefore be used in productivity calculations.

Feed T h e m T w o Pizzas 181

Putnam looked also at the total development effort that goes into projects.
N o t surprisingly, he found that smaller teams complete projects with less total ef-
fort. Putnam concluded that "larger teams translate into more effort and cost. The
trend appears to have an exponential behavior. The most cost-effective strategy is
the smallest team; however the extreme nonlinear effort increase doesn't seem to
kick in until the team size approaches nine or more people." These results can be
seen in Figure 10.2.

Team siz.e

1 . 5 - 3 people
I I

3 - 5 people

5 - 7 people
.1. 1

167, 9-11 people

283, 15 -20

O 2 5 50 7 5 lOO 125 150 175 2OO 225 2 5 0 275 3OO

Total development e f f o r t

FIGURE 10.2
S m a l l e r t e a m s
r e q u i r e less t o t a l
e f f o r t t o d e l i v e r t h e
s a m e size p r o j -
ect . P r i n t e d w i t h
p e r m i s s i o n f r o m
Q S M , Inc. A l l r i g h t s
r e s e r v e d .

In most cases, however, we are not concerned with minimizing the total de-
velopment effort; schedule is always a major consideration. After all, we rarely
have 40 years to wait for a lone developer to finish what we need by next spring.
The impact of team size on overall schedule is shown in Figure 10.3. This figure
shows that a 5 - to 7-person team will complete an equivalently sized project in
the shortest amount of time. Smaller teams took slightly longer. Notice again the
dramatic increase with teams of 9 to 11 people.

An additional study described in the Communications of the ACM compared
the productivity of large and small teams. Long-time industry veteran Phillip
Armour writes of this research.

Large teams (twenty-nine people) create around six times as
many defects as small teams (three people) and obviously burn
through a lot more money.Yet, the large team appears to produce
about the same amount of output in only an average of twelve
days less time. This is a truly astonishing finding, though it fits
with my personal experience on projects over thirty-five years.
(2006, 16)

Wi th all of the strong reasons in favor of small teams, I don't think I'll be plac-
ing any orders for three pizzas any time soon.

SEE ALSO
There are, of course,
pro jec ts that cannot
be done w i t h a s ingle
two-pizza team. Sc rum
t e a m s scale by having
t e a m s of t e a m s rather
than one i m m e n s e
team. For m o r e on
scal ing, see Chapter 17.

182 C h a p t e r 10 T e a m S t r u c t u r e

FIGURE 10.3
T e a m s o f f i v e
t o s e v e n p e o p l e
f i n i s h e d e q u i v a -
l e n t ^ s i zed p r o j -
ec ts in t h e s h o r t -
est a m o u n t o f
t i m e . P r i n t e d w i t h
p e r m i s s i o n f r o m
Q S M , Inc. A l l r i g h t s
r e s e r v e d .

Têain ÇÎz.e

1 . 5 - 3 people (13.6)
i r

3 - 5 people (11.9)

- 7 people (11.6)

9 -11 people (17.1)

WÊÊÊÊÊÊÊÊ

(t> S \0 12 H

Schedule (mon-thç)

1(t> 13 20

" T h e r e a r e t o o m a n y d i s c i p l i n e s o n m y p r o j e c t f o r us t o h a v e s m a l l
t e a m s . T h e r e a r e a n a l y s t s , p r o g r a m m e r s , d a t a b a s e d e v e l o p e r s , c l i e n t -
s i d e p r o g r a m m e r s , m i d d l e - t i e r p r o g r a m m e r s , t e s t e r s , t e s t a u t o m a -
t i o n e n g i n e e r s , a n d m o r e . I c a n ' t p o s s i b l y h a v e a f i v e - t o n i n e - p e r s o n
t e a m . "

A l t h o u g h a p ro jec t m a y requ i re w o r k in t ha t m a n y d isc ip l ines , it a l m o s t
ce r ta in ly d o e s no t requ i re a d e d i c a t e d e x p e r t in each area. O n a n ine-
p e r s o n t e a m w i t h each p e r s o n r e s p o n s i b l e so le ly f o r o n e d isc ip l ine , it w i l l
be d i f f i cu l t or i m p o s s i b l e t o ba lance t h e w o r k l o a d of each t e a m m e m b e r .
A t e a m s t r u c t u r e w h e r e s o m e p e o p l e m a y w o r k on l y w i t h i n o n e d isc ip l ine
bu t w h e r e o t h e r s can m o v e b e t w e e n t w o or m o r e m a k e s it m u c h eas ie r
f o r t h e t e a m t o ba lance t h e w o r k l o a d of t h e d i f f e r e n t d isc ip l ines . Hav ing
at least s o m e p e o p l e w o r k ac ross d i sc ip l i nes a lso inst i l ls a b e t t e r s e n s e of
w h o l e - p r o d u c t respons ib i l i t y ra ther t h a n " I j us t d o s u c h - a n d - s u c h . "

THINGS TO
TRY NOW

•

•

If y o u r t e a m has n ine or m o r e peop le , t r y sp l i t t i ng in to t w o t e a m s
a f t e r t h e c u r r e n t spr in t . W o r k t ha t w a y fo r at least t w o sp r i n t s be-
f o r e d i s c u s s i n g w h e t h e r it w a s be t te r .
For each t e a m w i t h f i ve t o n ine peop le , c o n s i d e r sp l i t t i ng in to t w o
t e a m s .

Favor Feature Teams
W h e n I first began to consult for a certain California-based game studio, its teams
were organized around the specific elements and objects that would exist in the
video game it was developing. There was a separate team for each character.There

Favor Feature Teams 183

were weapons teams, a vehicle team, and so on. This led to problems, such as
weapons too weak to kill the monsters, colors too dark to show secret passages,
and obstacles that frustrated even the most patient player.

On more traditional, corporate projects, we see equivalent problems when
teams organize around the layers of an application. For example, a typical early-
stage mistake for the project whose architecture is shown in Figure 10.4 would
be to have four teams: a rich client team, a web client team, a middle-tier team,
and a database team. Creating component teams such as these leads to a variety of
problems including

• Reduced communication across the layers

• A feeling that design by contract is sufficient

• Ending sprints without a potentially shippable product increment

FIGURE 10.4
A t y p i c a l t h r e e - t i e r
a r c h i t e c t u r e .

If structuring teams around the layers of an architecture is the wrong ap-
proach, what's better? Rather than organizing around components, each team on
a project can ideally be responsible for end-to-end delivery of working (tested)
features. A feature team working on the application shown in Figure 10.4 would,
for example, work across all layers of the architecture. It might develop one feature
that involves the database layer, the services tier, and the rich client user interface.
In the same or next sprint, it would develop a feature going across the web client,
services tier, and database tier.

There are many advantages to organizing multiteam projects into feature
teams:

• Feature teams are better able to evaluate the impact of design decisions.
At the end of a sprint, a feature team will have built end-to-end function-
ality, traversing all levels of the technology stack of the application. This
maximizes members' learning about the product design decisions they
made (Do users like the functionality as developed?) and about techni-
cal design decisions (How well did this implementation approach work
for us?).

SEE ALSO

The i m p o r t a n c e of
de l i ver ing end- to-
end func t iona l i t y is
d i s cussed f u r t he r in
Chap te r 14, " S p r i n t s . "

184 Chapter 10 Team St ructure

SEE ALSO
M o r e p r o b l e m s w i t h
hand-o f f s are desc r i bed
In Chap te r 11.

Feature teams reduce waste created by hand-offs. Handing work from
one group or individual to another is wasteful. In the case of a component
team, there is the risk that too much or too little functionality will have
been developed, that the wrong functionality has been developed, that
some of the functionality is no longer needed, and so on.
It ensures that the right people are talking. Because a feature team in-
cludes all skills needed to go from idea to running, tested feature, it en-
sures that the individuals with those skills communicate at least daily.
Component teams create risk to the schedule. The work of a component
team is valuable only after it has been integrated into the product by a
feature team. The effort to integrate the component team's work must be
estimated by the feature team, whether it will occur in the same sprint
during which it is developed (as is best) or in a later sprint. Estimating this
type of effort is difficult because it requires the feature team to estimate
the integration work without knowing the quality of the component.
It keeps the focus on delivering features. It can be tempting for a team to
fall back into its pre-Scrum habits. Organizing teams around the delivery
of features, rather than around architectural elements or technologies,
serves as a constant reminder of Scrum's focus on delivering features in
each sprint.

" M y a p p l i c a t i o n is t o o c o m p l e x ; I can ' t p o s s i b l y d e l i v e r e n d - t o - e n d
f u n c t i o n a l i t y in o n e s p r i n t . "

Learning h o w to ident i fy smal l p ieces of funct iona l i ty is one of the f i rst
big hurdles for a n e w Scrum team. I r e m e m b e r m y f i rst Scrum project:
Initially there w e r e t i m e s w e s t rugg led to f ind anyth ing w e could del iver
in less than six w e e k s . Look ing back on that s y s t e m many years later, I
n o w see many w a y s w e could have spl i t that wo rk . In fact , I see enough
w a y s to spli t the w o r k n o w that w e cou ld have done one-day spr ints if w e
had w a n t e d to.

A s they gain exper ience, t e a m m e m b e r s wi l l f i nd many more w a y s to spl i t
fea tures wh i l e still del iver ing end- to-end funct iona l i ty w i t h i n each sprint.
W h e n do ing so looks imposs ib le , it is usual ly because t e a m s are not struc-
tu red appropriately. Before g iv ing up, reconsider the individuals and skil ls
on the team.

Use Component Teams Sparingly
Although you should strongly favor the use of feature teams, there will be occa-
sions when creating a component team is appropriate. A component team, as I 'm

Favor Feature Teams 185

using the term here, is a team that develops software to be delivered to another
team on the project rather than directly to users. Examples of component teams
include a team developing an object-relational mapping layer between the appli-
cation and the database or a reusable user interface widget team.

It is important that a component team still produce high-quality, tested, po-
tentially shippable code by the end of each sprint. However, the new capabilities
created by a component team are usually meaningless on their own. Think back
for a moment to the examples I just gave. The object-relational mapping layer
developed by one of the component teams is of interest to end users only through
the context in which it is used by feature teams. But what about the team de-
veloping the reusable user interface widgets such as custom drop-down lists, data
entry grids, and so on? These are certainly of interest to end users, right? Yes, but
again only within the context of other features. An end user is not interested in a
new data entry grid until it is embedded onto a page or screen.

Build Components Only As Feature Teams Ask for Them
Because the work of a component team is delivered to another team, it is those
teams who usually act as the product owner for the component team. If your team
needs deliverables from my team, then you will act as the product owner to my
team. As such you will have all the responsibilities of a good product owner. At
the start of a sprint, you will need to help prioritize what I work on. At the end
of the sprint you will accept or reject it, providing feedback to me on what has
been produced.

It will be hard for you to prioritize my work and provide feedback on it if
my team is working far in advance of yours. Because of this, a component team
should not develop new capabilities until one or more feature teams is ready for
them.When a component team works far in advance of what feature teams need,
it resorts to guessing at what capabilities are needed next. All too often this results
in components or frameworks that are not usable by the feature teams. All new ca-
pabilities, including those built by component teams, should be developed within
the context of externally visible functionality.

Rob was the senior developer on a component team developing an object-
relational mapping layer that would be used by many of the 15 feature teams on
the project. Rob's team was initially tasked with choosing between developing this
technology in-house or using a commercial or open-source product. Members
made the questionable decision to build it themselves. Anxious to prove the cor-
rectness of this decision, Rob and team tried aggressively to get ahead of the needs
of the feature teams. Rather than working closely with one or more feature teams,
Rob's component team made some big guesses about the grand design. For two
months (two sprints) members didn't deliver anything to the feature teams. After

186 Chapter 10 Team St ructure

SEE ALSO
For m o r e on t h e evi ls
of mu l t i t ask ing , s e e
" P u t Peop le on O n e
P ro jec t , " later in th i s
chapter .

the third month, when they finally delivered an initial version, it did not meet the
needs or expectations of the feature teams.

What Rob's team should have done instead was work very closely with the
feature teams and add new capabilities in the context of the features being de-
livered by the feature teams. This would have forced a much closer collaboration
between the component team and the feature team, increasing the chances of
delivering what was needed. Rob's team could have, for example, delivered only
the ability to write fixed-length text data to the database in the first sprint. Feature
teams who received that capability would not have been able to write numeric
data, dates, and so on to the database. And they would not have been able to read
any data. But, the feature teams could have done one thing—write fixed-length
text data—and from that could have provided feedback to Rob and his team on
the usability of the component.

Perhaps the best way to ensure that a component team hears the feedback it
will need to create useful functionality is to staff the component team temporarily
with people from the feature teams. A developer assigned to a component team
who knows he will soon be moving back to a feature team will be more likely to
make sure the work of the component team will be usable.

Deciding When a Component Team Is Appropriate
Whenever possible, form feature teams rather than component teams. I like to
start out with the assumption that all teams on a multiteam project will be feature
teams. Fm willing to back away from that assumption, but I only want to do so in
the face of evidence that forming one or more component teams will be in the
best interest of the product. I suggest considering a component team only when
most of the following statements are true:

• The component team wi l l build something that wi l l be used by multiple
feature teams. If a component will be used by only one feature team,
have that feature team build it.This ensures that the new capability is built
within the context of that team's needs and expectations, which makes
the implementation more likely to be used. Even when a component
team will build something useful to multiple teams, a better strategy is
often to have one feature team build the functionality it needs and then
have subsequent teams refactor and generalize the functionality as their
needs arise.

• Using a component team wi l l reduce the sharing of specialists. On some
multiteam projects, some highly specialized disciplines are shared across
many teams. Although some sharing of specialists is usually necessary, too
much of it can be detrimental as the specialist's time becomes too frag-
mented. You may want to consider creating a component team if doing

Favor Feature Teams 187

so will make more manageable the extent to which specialists are shared
across many teams.

• The risk of multiple approaches outweighs the disadvantages of a compo-
nent team. If we choose to build a shared component or service by hav-
ing multiple feature teams contribute to the effort, there are two related
risks to be aware of First is the risk that each feature team implements a
different solution to the same problem. Second is the risk that the feature
teams each build on top of what prior feature teams have done but do so
without a cohesive vision. These risks could be great or small, depending
on what shared functionality is being built. When the risk of multiple ap-
proaches is high, a component team is a valid option.

• It wi l l get people talking who might not talk otherwise. People tend to
talk more with those on their team than those outside their team. This
is true even on a Scrum project. In fact, it may be especially true on a
Scrum project because team members on Scrum projects come to iden-
tify so strongly with their teams. You can use this to your advantage by
creating teams from people who need to work together but who might
not naturally talk to each other. If past experience shows that a project's
artificial intelligence programmers do not talk often enough, this can help
justify the short-term use of a component team, as long as there are other
reasons for doing so.

• You can see an end to the need for the component team. A component
team should not linger around forever, like my in-laws after the holidays.
The team should develop the functionality it has been pulled together to
create and then disband as soon as possible. When first forming a com-
ponent team, it is not necessary to know when it will disband; however,
you should have some idea of either how long it will exist or what will be
delivered by the time the team has fulfilled its purpose. Because a com-
ponent team is a deviation from the ideal of having all feature teams, you
should be reluctant to create a component team that looks as though it
might exist forever.

While acknowledging the occasional benefits of using a component team, I
want to stress again that the vast majority of teams on a large project should be
feature teams. Wes Williams and Mike Stout have described what happened at
Sabre Airline Solutions when beginning with component teams.

Stories weren't complete from a user perspective. Teams were
working on different features at different times with different
acceptance criteria. There was a lot of rework coming back
into the system. Teams were blaming each other for incomplete
functionality, failing builds, tests, etc. In hindsight...the teams

188 Chapter 10 Team St ructure

should have been structured along functional or feature lines.
(2008, 359)

Who Makes These Decisions?
Ideally, the team makes decisions about how it is structured. If the team is to be
trusted with solving the problem of how to build the product, it seems appropri-
ate to trust it with the decision about how to structure itself to do so. However,
though team members are accustomed to making technical decisions, they usually
do not have a lot of experience making team organization decisions. So, initially
the team may not be in the best position to design its own structure.

I've introduced Scrum to hundreds of teams. One of the things I've noticed
is how frequently someone's initial exposure to Scrum results in an opinion like,
"Scrum sounds wonderful for our company, and it will be great for all the other
groups but not mine." Architects add, "After we do the up-front architecture, I can
really see how this will help the programmers and testers." User experience de-
signers say, "After we've done the up-front usability research, I can really see how
this will work for the architects, programmers, and testers." Testers take the initial
view, "It will be wonderful to have everyone working so closely together and then
handing off to us for a big round of integration testing."

If we ask team members with these common initial mindsets to design the
structure of their multiteam project, it shouldn't surprise us when they come back
with plans for an architecture team, a programming team, a user experience team,
and a test team. Of course I 'm generalizing, but the tendency to think this way is
so prevalent that it will be tempting to organize that way as well.

Initially, then, it is likely that functional managers, project managers, Scrum-
Masters, or those driving the transition to Scrum will make the decisions about
how to organize the teams. These decision makers should solicit nonbinding input
from their teams, especially from team members with past experience with Scrum
or other agile methodologies.

What's Right Today May Be Wrong Tomorrow
An important thing to remember when selecting an appropriate team structure is
that no team structure is forever. If the current team structure is impeding a team's
or project's ability to use Scrum, that issue should be raised during an end-of-
sprint retrospective.You don't want to continually change team structures, as team
members need time to jell, but if the current structure is clearly wrong, change it.

As team members gain more experience with Scrum, it will be appropriate
for them to become more involved in team structure decisions, including which
teams are needed, whether each is a feature or component team, and who should
be on each team.

Sel f -Organiz ing Doesn ' t M e a n Randomly A s s e m b l e d 189

• M a k e a list of all t e a m s on your cu r ren t pro ject . Ident i fy w h e t h e r
each is a fea ture t e a m or a c o m p o n e n t t eam. For each c o m p o n e n t
t e a m , cons ider t he s t a t e m e n t s in t he sec t ion , " D e c i d i n g W h e n a
C o m p o n e n t Team Is Appropr ia te . " Cons ider res t ruc tu r ing t he t e a m
if not all s t a t e m e n t s w e r e t rue.

THINGS TO
TRY NOW

Self-Organizing Doesn'tMean Randomly Assembled
The ability for a team to self-organize around the goals it has been given is fun-
damental to all agile methodologies, including Scrum. In fact, the Agile Manifesto
includes self-organizing teams as a key principle, saying that "the best architec-
tures, requirements, and designs emerge from self-organizing teams" (Beck et al.
2007). As part of deciding how best to achieve the goal given them, some teams
will decide that all key technical decisions will be made by one person on the
team. Other teams will decide to split the responsibility for technical decisions
along technical boundaries: Our database expert makes database decisions, and
our most experienced C # programmer makes C # decisions. Still other teams
may decide that whoever is working on the feature makes the decision but has the
responsibility of sharing the results of the decision with the team.

There are two key points here: First, not every team will choose to organize
themselves the same way, and that's OK. Second, making use of the collective
wisdom of the team will generally lead to a better way of organizing around the
work than will relying solely on the wisdom of one personnel manager. However,
the benefit of allowing a team to self-organize isn't that the team finds some op-
timal organization for its work that a manager may have missed. Rather, it is that
by allowing the team to self-organize, it is encouraged to fully own the problem.

A common criticism of self-organizing teams is, "We cannot just put eight
random individuals together, tell them to self-organize, and expect anything good
to result." Well, I don't know if that's true, but when we are putting together a
two-pizza Scrum team, we are definitely not doing so with eight randomly se-
lected individuals. In fact, those in the organization responsible for initiating a
Scrum project should expend a lot of effort in selecting the individuals who will
comprise the team.

In the original paper describing Scrum, Takeuchi and Nonaka identified
"subtle control" as one of its six principles. They list staffing decisions as a key
management responsibility.

Selecting the right people for the project team while monitor-
ing shifts in group dynamics and adding or dropping members
when necessary [is a key management responsibility]. "We would
add an older and more conservative member to the team should
the balance shift too much toward radicalism," said a Honda

SEE ALSO
Chapte r 12, " L e a d i n g a
Se l f -Organ iz ing Team,"
desc r i bes h o w leaders
exer t subt le , pos i t i ve
in f luence.

190 Chapter 10 Team Structure

executive. "We carefully pick the project members after long de-
liberation. We analyze the different personalities to see if they
would get along." (1986, 144)

Getting the Right People on the Team
If you are a personnel manager or otherwise influence team composition in your
organization, some of the factors to consider are the following:

• Include all needed disciplines. As a cross-functional team, it is important
that all skills necessary to go from idea to implemented feature be repre-
sented on the team. Initially this may mean that team size is slightly larger
than desired. But, over time, individuals on a Scrum team will learn some
of the skills possessed by their coworkers. This is a natural result of being
on a Scrum team. As some team members develop broader skills, other
individuals can be moved onto other teams.

• Balance technical skill levels. Subject to considerations of team size, you
should strive to balance skill levels on the team. If a team has three senior
programmers and no less-experienced programmers, the senior program-
mers will need to code some low-criticality features that they could find
boring. Not only might a junior programmer have found such features
enjoyable to work on, that programmer would also benefit from learning
through association with the senior programmers.

• Balance domain knowledge. Just as we strive to balance technical skills,
we should strive for a balance between those with deep knowledge of
the domain in which we are working or the problem we are attempting
to solve. This is not to say that if we have the opportunity to assemble a
team entirely of domain experts we shouldn't take it. Rather, we should
consider the long-term goals of our organization. One of those goals is
likely the build up of domain knowledge throughout the organization.
You'll have a hard time achieving that if you put all of the domain experts
on one team.

• Seek diversity. Diversity can mean many different things—gender, race,
and culture being just three among them. Perhaps equally important
can be how individuals think about problems, how they make decisions,
how much information they need before making a decision, and so on.
Homogeneous teams reach consensus more quickly than do heteroge-
neous teams, but they do so by failing to consider all options (Mello and
Ruckes 2006).

• Consider persistence. It takes time for team members to learn to work
well together. Strive, therefore, to keep team members together who have
worked well together in the past. When forming a new team, consider

Put People on One Project 191

how long members will be able to work together before some or all are
dispersed to other commitments.

" W e can ' t s e l f - o r g a n i z e because w e have a d o m i n a t i n g f o r m e r t ech -
n ica l lead w h o m a k e s al l d e c i s i o n s b e f o r e w e e v e n h a v e a c h a n c e t o
d i s c u s s t h e i s s u e . "

If possible, take the domina t ing personal i ty aside and in fo rm her of the is-
sue. Let her k n o w that even in s i tuat ions w h e r e she may k n o w the " r i g h t "
th ing to do, she should s o m e t i m e s refrain f r o m vo ic ing her opin ion before
o thers have a chance to express their though ts . A s k her if she th inks the
t e a m w o u l d make the r ight dec is ion if she w e r e to present her t hough ts
as an opin ion rather than as an unchal lengeable decis ion. Enlist her assis-
tance as a men to r to the o the rs—her job shou ld be not just mak ing sure
the r ight dec is ions are made but that t e a m m e m b e r s g r o w such that they
wi l l make the r ight dec is ions on their next projects, w h e r e she may not
be there for t hem.

" M y t e a m w o n ' t se l f - o rgan i ze ; t e a m m e m b e r s a re t o o pass i ve a n d
look t o m e t o l e a d . "

If they look to you, look back r ight at t h e m . If you are the team 's Scrum-
Master , make sure they k n o w that your job is to suppor t t h e m , not to
make dec is ions for t hem. If you are a t e a m member , you do not need to
sub jugate your opin ions and keep quiet all the t ime. However , you shou ld
look for w a y s to engage o thers by not mak ing the decis ion in all cases. For
example , try ask ing ques t ions of o thers before g iv ing your opinion.

" T h e t e a m is t o o j u n i o r ; m e m b e r s d o n ' t h a v e e n o u g h e x p e r i e n c e t o
s e l f - o r g a n i z e . "

If they have enough exper ience to bui ld a s o f t w a r e product , they probably
have enough exper ience to f igure out h o w to organize themse lves . If not,
provide t h e m w i t h t ra in ing or coaching. Of ten , th is ob ject ion really masks
the object ion of, " I don ' t t rus t the t e a m to sel f-organize in the w a y I w a n t
t h e m t o . " Too bad. Exert subt le contro l over the t e a m in w h o you put
toge the r to f o r m the t e a m and the goal you give that t eam, not in h o w it
does its day-to-day work .

Put People on One Project
Individuals assigned to work on multiple projects inevitably get less done.
Multitasking—attempting to work on two projects or two things at once—is

192 Chapter 10 Team St ructure

one of the biggest drains on project team performance. Yet it has unfortunately
become one of the busy manager's most frequently used tools. The reason for this,
I believe, is that multitasking creates the illusion of progress and gives the man-
ager the feeling that a problem has been solved. Really though, in many cases the
problem has been made worse.

Consider the case of Jon, a director of database engineering who managed a
staff of database administrators (DBAs) who were woefully outnumbered by the
programmers, testers, and other types of developers in his company Jon was faced
with allocating himself and his staff of five across more projects than they could
handle. His solution was to create a spreadsheet like the one shown in Figure 10.5.
Jon's spreadsheet allowed him to allocate DBAs across the various projects, which
he did down to the 5% level. Five percent of an 8-hour day is 24 minutes. Through
this spreadsheet Jon was telling Bill he could spend 24 minutes each on the Napa
and P M T projects, Ahmed could spend the same on P M T and Spinwheel, and
so on.

FIGURE 10.5
A p o r t i o n o f J o n ' s
p r o j e c t s t a f f i n g
s p r e a d s h e e t . «3 «3 z: vS

o to
<$>

o
A—

•ir>
<$>

£

o
«3 O-)
5 c-i
S

«3 S l-
l \ S

pin
 W

he
el

5111 >% 15; 50% 25% n
Ahmed 9 o% n n

S'tv 25% 25% 25% 25%

Tor 25% 50% \o\ \5%

fc.ok>ert 20% n 15%

Jon 5; 10 10 \o\ s; \o%

Did Jon really think that Bill would stop working on the Napa project after
24 minutes each day? Of course not. But he probably did think that Bill had
enough control over his schedule that he could be close to 24 x 5 = 120 minutes
in a week. What Jon was really doing in this situation was taking a problem (the
correct allocation of resources) that he couldn't solve and pushing it down to the
members of his team. What Jon should have done instead was push this problem
up to his own manager.

Pushing problems toward the team is often a wonderful strategy. In fact, del-
egating problems to the team is at the heart of Scrum. However, when a problem
is pushed toward the team, the team needs to be given the authority to solve the
problem. In the case of Jon and his DBAs, it was obvious that one solution to

Put People on One Project 193

consider was doing fewer concurrent projects.Without being empowered to enact
that solution, they were put into an impossible-to-solve situation.

And they didn't solve it any better than Jon did. They invoked the age-old
policy of "work on the project of whoever is screaming the loudest."

Time on Task Decreases with Too Many Tasks
Kim Clark and Steven Wheelwright studied the impact of multitasking on pro-
ductivity. Their findings, shown in Figure 10.6, indicate that the total amount of
time on task goes up when a person has two tasks to work on. After that, however,
Clark and Wheelwright found that time on task decreased. In fact, with three tasks
the amount of time on task decreased so much it was less than when an individ-
ual had only one task to work on (1992,242).

FIGURE 10.6
T h e a m o u n t o f t i m e
s p e n t o n v a l u e -
a d d i n g t a s k s d e -
c r e a s e s w i t h t h r e e
o r m o r e c o n c u r r e n t
t a s k s .

1 2 3 4 5

Number of oonc-urreni assigned faifci

If you have only one task to work on it is almost a certainty that you will oc-
casionally be unable to work on that task.You will become blocked by waiting for
someone to return a phone call, answer an e-mail, approve the design, or so on.
And so it makes sense that the Clark and Wheelwright study shows that a person
with two tasks to work on spent more time on task than did someone with only
one task. However, consider that Clark and Wheelwright did this research in the
early 1990s.

What's changed since then? For starters how about e-mail, instant messag-
ing, the proliferation of mobile telephones, and any number of ways in which we
communicate? My theory is that the bars in Figure 10.6 need to be shifted one
space to the left to reflect today's faster pace. I remember clearly the job I had back
in 1992 when Clark and Wheelwright published their results. I remember times
back then when I was at my desk and thought, "I 'm caught up; I have nothing to
do right now." Of course, I haven't thought that since 1992.

The pace of the world has accelerated dramatically. Just being a good corpo-
rate citizen takes more time now than it did in 1992.There's more to read, more to

194 Chapter 10 Team St ructure

process, and more for each person to do. Merely being an employee should count
today as a first task for each of us. The first project we are on counts as a second,
and we are then already optimally productive. Any further projects we are assigned
just make us less productive.

One of the main reasons that multitasking is so horrible is the task-
switching cost involved. There is tremendous overhead in getting started on one
task, switching to another, and then switching back to the first. The more tasks or
projects we are involved in, the more likely we are to be interrupted while work-
ing on them. One study of members of a software development team found that
team members are interrupted every 11 minutes (Gonzales and Mark 2004). If
you're reading this chapter at the office, it is likely that you were interrupted at
least once while reading.

• If you are a manager, make a list of your di rect repor ts and the proj-
ec ts each is on. If anyone is on m o r e than t w o projects, immed i -
ately f ind a w a y to change that. If y o u ' v e already ach ieved this, see
if you can reduce someone ' s al locat ion f r o m t w o pro jects to one.
Assess the s i tuat ion af ter t w o spr ints.

When Multitasking Is OK
All of this is not to say that we should never allow multitasking on our projects.
It is sometimes helpful. The key is to remember that a person who is multitasking
and shared across multiple projects is likely to get less total work done than if she
had been dedicated fully to just one of those projects.

Let's again consider Jon and his DBAs. Suppose each DBA could complete
"20 database tasks" per day assuming that all database tasks are the same size. A
DBA fortunate enough to work on only 1 project would achieve this level of per-
formance. However, a DBA on 2 projects might complete only 16 database tasks
per day. And a DBA on 3 projects might complete only 14 database tasks per day.

Although these reduced levels of productivity may look quite bad, they may
not be. Suppose 1 of our DBAs is assigned to 2 projects and is to split her time
equally between them. She will be able to complete 8 database tasks on each proj-
ect. This may be the optimal use of her time if neither of the projects needs 20
database tasks done in a day. If neither project needs more than 8 database tasks a
day from her, then she is better split between both projects than dedicated entirely
to 1. From this we can extract the following guidelines:

• In general, and for the majority of a project's team members, multitask-
ing is to be avoided.

• Multitasking may be acceptable if a person cannot be fully or nearly
fully utilized on a single project. If we look back to Figure 10.5 and
Jon's DBAs, we see that the Connect project was allocated three people

THINGST0
TRY NOW

Put Peop le on O n e Pro jec t 195

with a total allocation greater than 100%. A better solution would likely
have been to allocate a single person but for 100% of his time.

• Rather than have everyone multitask a little, it is better to have a few
people multitask a lot. Figure 10.6 illustrates how the largest drop in
time on task occurs after a person takes on the first task too many. In
Jon's case, a better solution would have been to do anything possible to
have two or three of his DBAs not have to multitask, even if that meant
the others had to multitask even more.

The Corporate Form of Multitasking
Individuals feel compelled to multitask because the organizations in which we
work attempt to multitask as well. The corporate fo rm of multitasking is pursuing
too many concurrent projects. W h e n an organization takes on too many projects,
people become shared across multiple projects, which leads to individual multi-
tasking. The detrimental effect of multitasking then causes those projects to take
longer, which leads to more multitasking near the end of the project when "we
need to get started" on the next project.

An eight-year study of projects at a dozen companies and published in Harvard
Business Review concluded that "projects get done faster if the organization takes
on fewer at a t ime" (Adler et al. 1996). Corporate multitasking—attempting to
make progress on too many concurrent projects—is what created the situation
that Jon found himself in earlier in this chapter when he resorted to allocating his
people to the 5% level.

Mary and Tom Poppendieck urge organizations to limit work to capacity. An
organization that has more projects running concurrently than can be adequately
staffed is attempting to work beyond its capacity. As they write, "If you expect
teams to meet aggressive deadlines, you must limit work to capacity (2006, 134, em-
phasis is theirs).

Stopping the Treadmill
One of the happiest days of my life as a consultant was when I explained the
impact of personal and corporate multitasking to the general manager of a large
division of a big company. I could tell the message resonated with her. She asked
me to follow her as she rose from her desk. We walked to a conference room near
her office. She pointed toward a huge number of sticky notes stuck to the widest
wall in the conference room and said, "We just made our plan for next year. There
it is. D o you think we're doing too much?"

Her division had well over 100 developers but the wall was full. We talked
about the plan, the number of concurrent projects, and the ripple effect that
would occur if one project was substantially late. She knew they were planning to

196 Chapter 10 Team Structure

do too much, and I confirmed this for her. She convened a meeting for the next
day of the vice presidents and directors who had made the plan and instructed
them to start taking projects off the board. A look of relief (and surprise) went
across the faces of everyone present. They had each known that the plan they had
created the week before was overly ambitious and would not happen. However,
no one had been willing to say so.

I checked back with this general manager a year later and was delighted—but
not surprised—to hear that her division had just completed its most successful
year ever. Part of that was attributable to the adoption of Scrum and the improve-
ments it brought across her department. But an equal part of the success was at-
tributable to the focus that was brought to each project by having fewer projects
in progress at one time.

As this anecdote shows, often the best way to stop multitasking is to stop cold
turkey. However, the reason I was so impressed with this general manager is that
she is one of the few I have seen with the courage to do that. If you can't stop
immediately, or if you're not in a position within the organization to make such a
far-reaching decision, there are other things you may want to try.

Don't start a new project until it can be fully staffed. Avoid the temptation to start
a new project with just a few analysts and maybe one programmer. Try to get
everyone to agree that new projects will be started only when they can be staffed
with all disciplines represented. This isn't to say you need to wait to start a large
project until all 50 developers are available. Starting a new project only when at
least one full team can be fully and appropriately staffed will help adjust the rate
at which new projects are started to closer to the rate at which they can be de-
veloped.

Include ramp-up and wind-down time in enterprise plans. If,like the general man-
ager in this section's story, you put together a big, annual plan, be sure to include
the time necessary to start and stop the various projects. All too often a team
provides an estimate of six months, and six months are reserved on an enterprise
calendar. However, even on a Scrum project (especially from a new Scrum team),
there may be a month or two of wind-down. During this time at least a subset of
the team may be needed for high-priority bug fixes or to implement great, new
ideas that were discovered only upon release. Failing to plan for some of this will
cause unexpected periods of overlapping projects.

Institute simple rules. Gaining agreement on simple rules can help lead to the
right organizational behavior. A simple rule such as "No one can be assigned to
more than two projects" can work wonders. Johannes Brodwall, chief scientist
with Steria in Norway, suggests one simple rule.

Guidel ines for Good Team Structure 197

Everyone on the team must be at least 60% allocated to the team.
Sixty percent seems to be a magical number, which says to peo-
ple, "This is the most important thing." With 60%, when one task
suffers, it is usually one of those 10% or 20% tasks. So this struc-
ture guides people to be more dedicated to their primary team.

Go slow but go. I can totally respect the leap of faith required to believe that doing
fewer concurrent projects will lead to more projects being completed. Even if they
believe that completing projects more quickly will ultimately lead to increased
productivity, people will be uncomfortable postponing or canceling large-scale
projects. So, start small: Remove one project from the first quarter plan and see
how it goes.

Guidelines for Good Team Structure
This section presents a set of guidelines to consider in designing an appropriate
team structure. Each guideline is presented in the form of a question to be asked
of a current or proposed team. The questions are intended to be asked iteratively.
Ask each question of a current or proposed team, changing the structure as ap-
propriate based on the answer. As the structure changes, reask the questions until
you can answer "yes" to each.

Does the structure accentuate the strengths, shore up the weaknesses, and sup-
port the motivations of the team members? People don't enjoy being on a team
where they are not able to make use of their strengths or are constantly required
to do things they are bad at. Good team members are willing to do whatever is
necessary for the success of the project, but that doesn't relieve us from the goal
of trying to find a team structure that accentuates the strengths of as many team
members as possible.

Does the structure minimize the number of people required to be on two teams
(and avoid having anyone on three)? A well-conceived team structure for an or-
ganization that is not attempting to do too many concurrent projects will reduce
multitasking to a tolerable level. If the organization is not attempting too many
concurrent projects, yet more than 10-20% of all team members belong to more
than one team, consider an alternative team design or deferring some projects.

Does the structure maximize the amount of time that teams wi l l remain together?
If other factors are equal, you should favor a design that allows team membership
to persist over a longer period. It takes time for individuals to learn to work well

198 Chapter 10 Team Structure

together. Amortize the cost of that learning over a longer period by trying to leave
teams together as long as possible, ideally even finding a team structure that can
outlast the current project.

Are component teams used only in limited and easily justifiable cases? Most
teams should be created around the end-to-end delivery of working features. In
some cases, it is acceptable to have a component team developing reusable user
interface components, providing access to a database, or similar functionality. But
these should be exceptions.

Wil l you be able to feed most teams with two pizzas? Given the compelling pro-
ductivity and quality advantages of small teams, the majority of teams in a good
design should have five to nine members.

Does the structure minimize the number of communication paths between teams?
A poor team structure design will result in a seemingly infinite number of com-
munication paths between teams. Teams will find themselves unable to complete
any work without coordinating first with too many other teams. Some interteam
coordination will always be required. But, if a team that wants to add a new field
on a form is required to coordinate that effort with three other teams, as I've seen,
then the communication overhead is too high.

Does the structure encourage teams to communicate who wouldn't otherwise do
SO? Some teams will just naturally communicate with each other. An effective
team design encourages communication among teams or individuals who should
communicate but may not do so on their own accord. In fact, one valid reason
to put someone on two teams is that doing so will increase the communication
between those teams. If lack of communication between two teams is a concern,
splitting a person's time between those two teams is easily justified.

Does the design supporta clear understanding of accountability? A well-designed
team structure will reinforce the concept of a shared, all-teams accountability for
the overall success of the project while providing each team with clear indicators
of its unique accountabilities.

Did team members have input into the design of the team? During the early stages
of your transition to Scrum, this may not be possible. Individuals may not yet have
enough experience delivering working, tested, ready-to-use products by the end
of each sprint. Similarly, some individuals may be initially too resistant to Scrum
to contribute to team structure discussions in constructive ways. In these cases,
it is acceptable for managers outside the team to design an initial team structure.

Addi t ional Reading 199

While doing so, however, they should remember that this is a responsibility that
will eventually need to be turned over to the team as a whole.

Onward
In this chapter we've looked at why Scrum teams should be kept small and used
the analogy of being able to feed each team with two pizzas. To further enhance
a team's ability to rapidly, correctly, and efficiently develop software products, we
also considered whether teams should be structured around features or compo-
nents. We concluded that in structuring multiple teams, we should seek to favor
feature teams and try to avoid the use of component teams, while acknowledging
they will occasionally be appropriate.

Next we dispensed with the myth that a self-organizing team is a random
collection of individuals. As with any team, team members should be chosen with
effort and care. We also looked in detail at the need to structure teams in such a
way as to minimize the need for individuals to belong to two or more teams. Fi-
nally, we concluded with nine guidelines for structuring teams.

In the next chapter we turn our attention to the subject of teamwork. We
look specifically at what the members of a single, two-pizza team can do to work
well together during a sprint.

Additional Reading
DeMarco, Tom, and Timothy Lister. 1999. Peopleware: Productive projects and teams. 2nd ed.
Dorset House.

It is impossible to say enough good things about this book. I remember the day in
1989 w h e n my C E O told me, "After reading Peopleware this weekend, I am going to
completely change our development group." She did, and the group excelled because
of it. This b o o k is full of advice on helping teams achieve their fullest potential.

Goldberg, Adele, and Kenneth S. R u b i n . 1995. Succeeding with objects: Decision frameworks
for project management. Addison-Wesley Professional.

This book precedes the agile movement but still contains some of the best advice on
various team structures. Two chapters include a summary of various team structure
options, how to choose among them, and case studies of how six teams chose to
organize.

Hackman,J . Richard. 2002. Leading Teams: Setting the stage for great performances. Harvard
Business School Press.

T h e premise of this book is that a leader's job is to design and support teams that can
manage themselves. It includes an excellent chapter ("Enabling Structure") on h o w
to structure teams.

Chapter

T e a m w o r k

eamwork is at the heart of every agile process. The Agile Manifesto proclaims
that we are to favor "individuals and interactions over process and tools" (Beck et
al. 2001), meaning great software comes from great teams. Scrum itself derives its
name from the view that a product development team should behave much like a
rugby team—a group of individuals moving the ball down field as a unit. Consid-
ering the central importance of teams to successful agile development, it should
be no surprise to encounter a chapter called "Teamwork."

Scrum teams succeed together and fail together. There is no "my work" and
"your work" on a Scrum team; there is only "our work." This is a radically differ-
ent way of working for most people, especially those used to working in specialty
silos or those who have developed a habit of doing only what they're asked to do.
Teams that break free of this mind-set rightly feel a sense of satisfaction and ac-
complishment. Too many teams, however, stop improving at the point where they
begin functioning as a unit, missing out on many of the advantages Scrum can
bring.To become a truly high-performing Scrum team requires a concerted effort
toward continuous learning and improvement.

In the following sections, we explore whole-team responsibility, collaboration,
and the role of specialists on a Scrum team. We also look at how Scrum teams can
work effectively during a sprint by doing a little bit of everything all the time. The
chapter concludes with advice on how to go beyond a basic level of functionality
by fostering team learning, eliminating sources of knowledge waste, and eliciting
a commitment from the team to continuous improvement.

Embrace Whole-Team Resposibility
One of the first steps to becoming a functional Scrum team is to come to terms
with whole-team responsibility. When I teach, my favorite questions are the ones
starting with "Who is responsible for...." It doesn't matter how someone ends that
question, my answer is always the same: the team.

Not wanting to fully evade such questions, I will expand further. Suppose
the question was, "Who is responsible for the product backlog?" I will answer

2 0 2 C h a p t e r 11 T e a m w o r k

that although the whole team is responsible, it is the product owner I'll go talk to
about making it happen. The whole team should feel responsible for all aspects of
the product. Quality is a whole-team responsibility. Clean code is a whole- team
responsibility. Having a well-formed product backlog is a whole-team responsibil-
ity. And so on.

As Jon Katzenbach and Douglas Smith, authors of the best-selling The Wisdom
of Teams, wrote, " N o group ever becomes a team until it can hold itself account-
able as a team" (1993, 60). Yes, there will be specific individuals who should feel
additional responsibility for some of these items. But that doesn't relieve the team
f rom sharing full-team responsibility for the overall product and all aspects of its
development.

Although having clean, well-written code may seem to be something only
the programmers can do anything about, that isn't the case. Suppose a tester n o -
tices that a handful of bugs appear, are fixed, and then reappear in one part of
the application. This may be evidence to the tester that this particular code has
become difficult to maintain. Exactly what the tester does with this information is
up to the tester and the culture of the team. The tester may, for example, share the
concern with a programmer who has worked in that area, with the whole team
during a daily scrum or retrospective, or with the product owner. Which approach
the tester selects is unimportant. That the tester takes action out of a sense of re-
sponsibility for having well-written code is what matters.

Lisa Crispin, long-time agile tester and coauthor with Janet Gregory of Agile
Testing, recalls how she first learned that on an agile team she was not solely re-
sponsible for quality.

My title at my last job prior to joining my first agile team was
"Quality Boss." I thought I was in charge of quality. I had a lot
of input to release decisions, and in fact, I had the keys: I was the
only one who could release. Our first iteration on my new XP
team, the server crashed if two people logged on to the app at the
same time. I was appalled and deemed it unacceptable. Our coach
had to have a talk with me and explain that I wasn't in charge of
quality. In fact, our customer was in charge. The customer worked
for a start-up company and wanted bells and whistles that could
be shown to their potential customers. They had no need for two
users being logged in at the same time—that wasn't what they
were prioritizing—so the programmers hadn't written code to
support it. This was a huge mind-set change to me.

Embrace Who le -Team Resposibi l i ty 203

" I f e v e r y o n e is r e s p o n s i b l e t h e n n o o n e is r e s p o n s i b l e . For e v e r y t h i n g
t h a t needs t o be d o n e t h e r e needs t o be o n e t h r o a t t o choke."

From a manager 's perspect ive it can be nice to a lways be able to point to
one person and say, "That 's w h o I'll b lame if th ings go wrong . " But the
"one throat to choke" a r g u m e n t is false. Historically, there may be one
person w h o takes the b lame for th ings w h e n they go w r o n g , but that
doesn ' t mean that person w a s responsib le for the fai lure. Take the case of
a spor ts team. A t the star t of a n e w season, w h o on a spor ts t e a m do w e
say we ' l l hold responsib le for w inn ing the championsh ip? The coach? The
owne r? The star player? Teams that w i n championsh ips f ind a w a y to w i n
games , no mat ter the c i rcumstances . If the g a m e plan isn't wo rk ing , the
coach and players adapt. If the star player is having a bad day, s o m e o n e
else s teps up. The w h o l e t e a m feels responsib le for w i n n i n g s o m e h o w ,
s o m e way. If the t e a m loses, it may be t e m p t i n g to b lame one person or
another, but the t e a m m e m b e r s k n o w that each one of t h e m is account -
able for the loss. It's never just one person's fault. In reality, there is no
single, wr ingab le neck.

Consider a nonspor ts analogy. If bo th parents w e r e involved in raising
a child (and assuming one of t h e m isn't abusive or obviously negl igent) ,
wh i ch parent is the one throat to choke if a child g r o w s up to be a con-
v ic ted felon? There is a reason w e call it a parental unit. Raising a child is
a t e a m effort .

The only w a y to ever create an env i ronmen t of shared owne rsh ip and
responsib i l i ty is to let go of the not ion of having one throat to choke. That
doesn ' t mean no one is responsib le. That means that on a success fu l
t eam, the t e a m m e m b e r s m u s t do their part, or even go beyond a per-
ce ived role, to ensure that the t e a m reaches its goals.

" B u t m y a n n u a l r e v i e w is b a s e d o n w h a t I d o , n o t w h a t m y t e a m
does. "

OBJECTION

Indeed it probably is and, if not a l tered, that wi l l w o r k against your orga-
nization's success fu l long- term adopt ion of Scrum. W e do not need to
comp le te l y abandon individual assessmen ts , but periodic per fo rmance
rev iews shou ld include a s igni f icant c o m p o n e n t measur ing ach ievement
of t e a m goals.This topic is d iscussed in more detai l in Chapter 20, " H u m a n
Resources, Facilit ies, and the PMO."

204 Chapter 11 Teamwork

SEE ALSO
A s a resul t of t h e
shi f t t o w h o l e - t e a m
responsib i l i ty , Indiv idu-
als w i l l o f t en be cal led
on to p e r f o r m w o r k
ou t s i de the i r specia l -
t ies . C h a n g e s in t he
day-to-day w o r k of
var ious ind iv iduals are
desc r i bed in Chap te r 8,
" C h a n g e d Roles."

Nurture Whole-Team Commitment
Along with shared responsibility must come a shared commitment to achieving
the goals the team accepts. One of the worst things I've ever heard at the end of
a sprint was a programmer who said, "But I finished my tasks," when the product
owner complained that sprint backlog items were left incomplete. This program-
mer may indeed have finished his tasks, but his tasks were only one part of the
work his team had committed to finish and only a small portion of the work
required to move the product forward.

During sprint planning, the team plans the work of the coming sprint. Al-
though I do not recommend that this planning include selection of tasks by in-
dividuals ("I'll do this, you do that...."), such early allocation of work is common
among teams new to Scrum. During these early sprints, I remind teams I coach
that these allocations are to be treated tentatively. The team's goal is to finish all of
the product backlog items it has committed to for the sprint. This is a whole-team
commitment, not a commitment by each person to complete the tasks he or she
has signed up for.

In some organizations, it will be difficult to shift from a culture of "I am re-
sponsible for and commit to completing my tasks" to a culture of shared, whole-
team responsibility. Until this shift occurs, however, teams will find it difficult to
complete the selected product backlog items for a sprint. With whole-team com-
mitment, the team member who is ahead of schedule will help the one who is
behind such that hopefully each finishes on time. Without a whole-team commit-
ment, it is almost certain that many product backlog items will be "90% done" at
the end of the sprint, as each waits on a last bit of work from the person who was
a little behind schedule.

THINGSTO
TRY NOW

• In your next spr int p lanning mee t ing , do not have individuals s ign
up for speci f ic tasks. Go ahead and ident i fy w h o is likely to w o r k
on wh ich tasks so that everyone can agree to the product backlog
i t ems to be comp le ted . But, don ' t w r i t e any names next to tasks,
and let the ass ignmen ts e m e r g e dur ing the sprint. A f te r the spr int ,
d iscuss h o w it w e n t .

• S w a r m on one product backlog i tem at a t ime : Have the ent i re
t e a m c o m m i t to wo rk i ng on one product backlog i tem unti l it is
f in ished before mov ing on to the next. This is a great w a y for t e a m
m e m b e r s to learn to w o r k together , even if it may be overly restric-
t ive as a pe rmanen t pract ice.

Rely On Specialists but Sparingly
A common misconception is that everyone on a Scrum team must be a generalist—
equally good at all technologies and disciplines—rather than a specialist in one.

Rely On Special ists but Sparingly 205

This is simply not true. What I find surprising about this myth is that every sand-
wich shop in the world has figured out how to handle specialists, yet we in the
software industry still struggle with the question.

My favorite sandwich shop is the Beach Hut Deli in Folsom, California. I've
spent enough lunches there to notice that they have three types of employees:
order takers, sandwich makers, and floaters. The order takers work the counter,
writing each sandwich order on a slip of paper that is passed back to the sandwich
makers. Sandwich makers work behind the order takers and prepare each sand-
wich as it's ordered. Order takers and sandwich makers are the specialists of the
deli world. Floaters are generalists—able to do both jobs, although perhaps not as
well as the specialists. It's not that their sandwiches taste worse, but maybe a floater
is a little slower making them. When I did my obligatory teenage stint at a fast
food restaurant, I was a floater. I wasn't as quick at wrapping burritos and making
tacos as Mark, one of the cooks. And whenever the cash register needed a new roll
of paper, I had to yell for my manager, Nikki, because I could never remember
how to do it. But, unlike Mark and Nikki, I could do both jobs.

I suspect that just about every sandwich shop in the world has some
specialists—people who only cook or who only work the counter. But these busi-
nesses have also learned the value of having generalists. Having some generalists
working during the lunch rush helps the sandwich shop balance the need to have
some people writing orders and some people making the sandwiches.

What this means for Scrum teams is that yes, we should always attempt to have
some generalists around. It is the generalists who enable specialists to specialize.
There will always be teams who need the hard-core device driver programmer,
the C + + programmer well-versed in Windows internals, the artificial intelligence
programmer, the performance test engineer, the bioinformaticist, the artist, and so
on. But, every time a specialist is added to a team think of it as equivalent to add-
ing a pure sandwich maker to your deli. Put too many specialists on your team,
and you increase the likelihood that someone will spend perhaps too much time
waiting for work to be handed off, which is the subject of the next section.

• In your next spr int p lanning mee t ing , agree that one special ist
on the t e a m wi l l not w o r k in that specia l ty for the durat ion of the
sprint. The special ist can advise o thers w h o do the specia l ty w o r k
but cannot do the w o r k personally. The goal is not so m u c h to
broaden the special ist 's skill set as it is to deve lop those skil ls in
other t e a m m e m b e r s . Discuss h o w th is w o r k e d dur ing the retro-
spect ive. Consider repeat ing it w i t h the same person. Consider
t ry ing it w i t h a d i f fe ren t special ist .

THINGSTO
TRY NOW

2 0 6 C h a p t e r 11 T e a m w o r k

Do a Little Bit of Everything All the Time
Teams used to a sequential development process have become accustomed to
hand-offs between specialists. Analysts hand their work to designers who hand it
to programmers who pass it on to testers. Each of these hand-offs includes some
overhead in the fo rm of meetings, documents to read and perhaps sign, and so
on. In part because of this overhead, the hand-offs tend to be of large amounts of
functionality. In the purest meaning of a waterfall process, the entire application is
handed from group to group.

Teams that are new to Scrum often do not go far enough in eliminating these
hand-offs. They often make the assumption that the programmers should finish
programming a product backlog item before handing it off to the testers. This
results in lengthy delays at the start of a sprint, when the testers are waiting for a
first product backlog item to be handed to them. O n a Scrum project, the unit of
transfer between disciplines should be smaller than an individual product backlog
item. That is, although there will always be some hand-offs (not everyone can be
working on everything all the time), the amount of work being transferred from
one person to the next should generally be as small as possible.

As an example, suppose a team is developing a new eCommerce application.
The team chooses to work on this user story: "As a shopper, I can select how I want
items shipped based on the actual costs of shipping to my address so that I can make the best
decision." A discussion should ensue among those who are interested in or who
will be involved in developing this feature. Let's suppose that includes the product
owner, a business analyst, a tester, and a programmer. Their initial discussions are
around the general requirements implicit in this feature—things like which ship-
ping companies do we support (FedEx? DHL? and so on), do we want to support
overnight delivery? two-day delivery? three-day? and so on.

As these discussions occur, the individuals involved will naturally be think-
ing about how to get started. O n a traditional project, each would be able to start
however he or she wanted (after the work was handed over). O n a Scrum team,
however, how to get started should be a collaborative discussion among those
who will work on this feature. For this example, let's assume that the programmer
makes the case that it will be easier for some reason to start with FedEx.The tester
agrees. The analyst states an intention to investigate D H L and learn more about
the parameters that affect D H L shipping costs. The analyst's goal is to have that
information available by the time the programmer and tester finish with FedEx.

W h e n the programmer knows enough to get started coding, she does so. The
product owner, analyst, and tester discuss high-level tests. (Will our site ship any
odd-sized items like skis?) After that discussion, the tester turns the high-level list
of tests into concrete tests (boxes of this size and weight going to that destination).
The tester creates test data and automates the tests. Some automation may be
possible without any interim deliverables f rom the programmer. Full automation

Do a Litt le Bit of Every th ing All the T i m e 207

may require getting an early version from the programmer. While the tester is
thinking of the concrete tests, he should also inform the programmer of any test
cases that the programmer may not be considering while she's programming.
When the programmer and tester have finished, they add support for calculating
FedEx shipping costs into the build, complete with automated tests. Graphically,
this can be depicted as shown in Figure 11.1.

FIGURE 11.1
T h e s e f o u r i n d i v i d -
ua l s w o r k c l o s e l y
t o g e t h e r o n o n e
p r o d u c t b a c k l o g
i t e m r a t h e r t h a n
h a n d i n g it t o each
o t h e r .

Next, the programmer and tester check in with the business analyst, who
has hopefully learned more about calculating DHL shipping costs. The process is
repeated, and support for DHL shipping calculations is added to the application
when the programming and testing are complete. The key element in Figure 11.1
is that the team has learned to work by doing a little of everything all the time.
Rather than an analysis phase (done without the programmer and tester) followed
by a programming phase followed by a testing phase, a little of each of those activi-
ties is happening at all times.

Don't Wait Until the End of the Sprint to Finish Everything
A symptom of continuing to hand off work in overly large chunks will be a ten-
dency for no product backlog items to be finished until the last few days of the
sprint. Testers on teams that work this way often complain that they are given
nothing to test until two days before the end of a sprint and are expected to test
everything that quickly. The best way to expose this problem is to create a chart
of the number of product backlog items finished as of each day in the sprint. An
example can be seen in Figure 11.2a.

208 Chapter 11 T e a m w o r k

As the ScrumMaster on a team, I often just hang this chart in the team area
with no fanfare or explanation. Team members soon figure out the problem a
chart like this exposes and hopefully start to find ways to finish product backlog
items sooner.The result will often be similar to Figure 11.2b, which shows a much
smoother flow through the sprint.

FIGURE 11.2
C h a r t i n g t h e
n u m b e r o f p r o d -
u c t b a c k l o g i t e m s
f i n i s h e d as o f e a c h
d a y in t h e s p r i n t
c a n e x p o s e t h e
p r o b l e m o f h a n d -
i n g o f f l a r g e p i e c e s
o f w o r k .

a. A common starting point

Produot
baofclog
items
finished

Vaf

t>. TTie ideal result

Froduot
backlog
items
finished

Pay?

THINGS TO
TRY NOW

Mix the Sizes of the Product Backlog Items You Commit To
When planning a sprint, pay attention to the sizes of the product backlog items
you are committing to. Some product backlog items are more complex than the
FedEx/DHL example given in this section. Some product backlog items will
require a week or more of programming time before the programmer can give
something even beginning to be testable to a tester. That's OK. Not everything
can be split as small as we might like.

You want to avoid bringing a bunch of items like this into the same sprint.
Doing this will shift too much testing work to the end of the sprint. Instead of
planning a sprint with, for example, three very large items that cannot be partially
implemented, bring one or two large items into the sprint along with two or three
smaller items. Some of the programmers can work on the large items, handing
them over to testers whenever possible. The remaining programmers can work on
the smaller items, ensuring a somewhat smoother flow of work to testers early in
the sprint.

• C o m m i t to having one-th i rd of the p lanned product backlog i tems
done by the midpo in t of your spr int.

• Post a chart like the one s h o w n in Figure 11.2.
• For the next th ree spr ints, star t by having p rog rammers and tes te rs

f ind a sui table approx imate midpo in t of each product backlog i tem.
C o m m i t to adding it to the night ly bui ld as soon as th is m idpo in t is
reached rather than only af ter the i t em is done.

Foster Team Learning 209

Foster Team Learning
If your team has embraced the concept of whole-team commitment, has reduced
its reliance on specialists, and is doing a little bit of everything all the time, you
have probably made great strides in improving how you work together. This is
when most teams become complacent. Don't.There are still opportunities for
improvement. To become a truly high-performing team and to realize all of the
benefits that Scrum has to offer, your team must proactively seek out new ways to
learn and share knowledge.

Some learning occurs naturally—a user tells the product owner that she likes
how a feature behaves or a programmer discovers that scalability needs cannot be
met using a particular technology. Other learning is sought deliberately. This is the
learning we are interested in right now Rather than passively waiting for learn-
ing to occur, the most effective teams and their leaders take a very active role in
optimizing the rate and significance of learning.

Ensure Learning Conditions Exist
In the proactive pursuit of team learning as a goal of the project, there are five
conditions that are necessary for team learning to occur:

• Teams must be designed for learning.

• Individuals must have concrete ways of sharing knowledge.

• Leaders must reinforce the importance of learning.

• Teams need to be presented with motivating challenges.

• A supportive learning environment must exist.

These are described in the following sections.

Design Teams for Learning
As we discussed in the previous chapter, managers and others often have signifi-
cant influence over the composition of a team. They should use this responsibility
to create teams from individuals who, when combined, will be more than the sum
of their parts. These individuals should be diverse enough that new, creative ideas
are generated but not have so many differences that the team fails to jell.

The best thing a manager can do for a newly functional team is to allow it
to remain together for as long as possible. A team needs time to learn how to
work well together; constantly altering who is on the team forces the team to
start this process over each time a new member is added or leaves. Richard Hack-
man, a Harvard professor and authority on teamwork, cites a study that indicates
that "R&D teams do need an influx of new talent to maintain creativity and

SEE ALSO
In t he nex t chapter ,
Chap te r 12, " L e a d i n g a
Se l f -Organ iz ing T e a m , "
w e w i l l s e e h o w
m a n a g e r s and o the r
leaders shou l d use th is
In f luence and respon-
sibi l i ty.

210 Chapter 11 T e a m w o r k

SEE ALSO
C o m m u n i t i e s of
p rac t i ce are desc r i bed
in Chap te r 17, "Sca l i ng
S c r u m . "

freshness—but only at the rate of one person every three to four years" (Hackman
and Coutu 2009).

Find Concrete Ways to Share Knowledge
Lew Piatt, former CEO of Hewlett-Packard, once said, "If HP knew what HP
knows, it would be three times more profitable." For companies to be success-
ful, teams must have concrete ways to share what they have learned not just with
each other but with the rest of the organization as well. One way Scrum teams
attempt to do this is through Scrum's many built-in communication forums. Daily
scrums disseminate information among the members of one team and possibly a
few additional attendees; sprint reviews typically spread knowledge a bit further,
especially if they are attended by stakeholders and members of other teams; and,
in large organizations, the scrum of scrums allow teams to share information with
representatives from all other Scrum teams. Scrum teams also have tools designed
to help them share knowledge. Wikis and big visible charts give an at-a-glance
view into the current state of the sprint and the project among team members
and any who view it.

Beyond these communication devices, high-performing Scrum teams find
ways to talk with people on other teams directly. It is common, for example, for
database developers to talk with other database developers and for user interface
designers to talk to other user interface designers. In many environments these
conversations are entirely informal and unplanned, but that does not need to be
the case. Large Scrum projects and departments often form communities of prac-
tice, where groups of like-minded or like-skilled individuals can meet regularly
to talk and share not only common problems but also the solutions they have
discovered. Communities of practice are a wonderful means of sharing knowledge
among teams.

Exhibit Behavior That Reinforces Learning
Team members will interact in ways they see modeled by those they consider
leaders in the organization or to their team, including product owners, any func-
tional managers to whom team members report, and other executives and manag-
ers in the organization. To foster the right kind of behavior, then, team and orga-
nizational leaders should demonstrate the type of learning behaviors they would
like to see on their teams.

For example, I recently attended a meeting at which a team and its product
owner, Michael, were pitching a new product idea to an executive committee.
One member of this committee, a VP named Sean, was particularly adept at ques-
tioning Michael and the developers. He asked hard questions intended to help
the team (and the other committee members) identify holes in the product plan.
Sean was not grilling Michael to make him squirm or to shoot down his ideas. His

Foster Team Learning 2 1 1

questions (Can you give me three reasons why a prospect would buy our product
instead of a competitor's? Would those reasons be sufficient?) were designed to
initiate a dialogue in which he engaged as an active participant. Because Sean—a
senior leader in the company—was sincerely willing to learn during this dialogue,
his behavior created and reinforced similar learning-conducive behavior in those
who witnessed it.

Beyond asking questions that lead to a sincere, learning-focused dialogue, Ed-
mondson, Bohmer, and Pisano identify three additional behaviors leaders should
exhibit to reinforce learning:

• Be accessible. Leaders need to be available to team members rather than
locked away behind closed doors, three floors up.

• Ask for input. Asking team members for input is a sure way to let them
know that their opinions are valued and desired. If you ask them for input
into decisions you need to make, they will be more likely to do the same
of each other. If you ask the team for input, be sure later to demonstrate
how that input was used or why it couldn't be acted upon.

• Serve as a "fallibility model." By admitting your own mistakes, you dem-
onstrate to others that bugs, bad decisions, and problems can be discussed
without repercussion (2001).

Give Teams a Motivating Challenge
The way in which a challenge is presented to the team influences how team
members will respond to it. Imagine a product owner who needs a certain set of
features delivered by a firm deadline that appears to be impossible. The product
owner could present this challenge to the team as a fait accompli: "I need these
features by that date and there's no flexibility. Make it happen."

This isn't how Curt, a product owner, presented a similar challenge to his
southern California team. Instead, Curt first acknowledged the difficulty of the
task he was about to put before the team. He then outlined what was needed and
by when. Without any false tone of doom or threat of penalty, he explained the
importance of achieving the goal. He concluded by emphasizing the importance
of each person to achieving the goal. Five months later the team delivered enough
functionality to avoid the initial crisis, which bought them another six months to
deliver the full release.

In the first situation the product owner threw a problem over the wall at the
team. In the second, Curt acknowledged the difficulty of the challenge but main-
tained a positive outlook on the team's ability to rise to the occasion. He then
worked with the team to find a suitable initial release—-just enough to keep the
company's largest customer happy and as much as the team could do. This helped
establish a positive environment on the project, which led to the dialogue and
discussion necessary for learning.

212 Chapter 11 T e a m w o r k

Create a Supportive Learning Environment
I remember being less than impressed when I took my daughter, Delaney, to her
first day of preschool. The place looked a mess. Rather than one big bookshelf or
two to hold all the school's books, there were lots of small bookshelves all over the
large room that would be my daughter's home two mornings a week. There were
no orderly rows or circles of chairs; instead, chairs, bean bags, cushions, and small
couches were all over the place. Every inch of wall space was covered with posters,
large cut-out letters, maps, or something similar. My wife explained that while the
place looked messy to me, it was actually a well-organized space intended to be
conducive to learning by four- and five-year-olds like Delaney.

Similarly, it is up to leaders and managers in aspiring Scrum organizations to
create supportive learning environments for their teams. Whereas creating a learn-
ing environment for little kids consists mostly of arranging the physical layout of
the room (being sure a book is never far from reach), creating a learning envi-
ronment for a Scrum team will involve organizational, social, and psychological
changes. Organizations with a supportive learning environment exhibit the fol-
lowing characteristics:

• Psychological safety. One of the best ways to learn is to try something,
make a mistake, and then do it a better way. Other ways to learn include
asking questions and engaging in debate. If someone doesn't feel safe do-
ing these things, they won't. Product owners, ScrumMasters, functional
managers, and others must find ways to create a feeling of safety around
these activities; otherwise, team members will not risk trying new things
for fear of failing, looking stupid, or suffering similar repercussions. Cre-
ating psychological safety is particularly important when transitioning to
Scrum because of the expertise shift that occurs. It's likely that certain
individuals are accustomed to being viewed as experts, perhaps in the
technology, the code base, or the domain. Transitioning to Scrum disrupts
existing expertise and introduces the need for new expertise. Organiza-
tional leaders (and, in fact, all team members) need to create psychologi-
cal safety so that, for example, the company expert on multithreaded Java
programming is willing to ask rudimentary questions about automated
unit testing. Failure to do so usually results in the expert resisting the
transition.

• Appreciation of differences. Individuals on a team need to appreciate
rather than attack differences. When everyone has the same background,
the same skills, approaches a problems with the same style, or so on, the
result can be a lack of creative thinking. As Harvard professor and author
of Lending Teams, Richard Hackman puts it: "Every team needs a deviant,
someone who can help the team by challenging the tendency to want too
much homogeneity, which can stifle creativity and learning. Deviants are

Foster Team Learning 213

the ones who stand back and say, 'Well, wait a minute, why are we even
doing this at all? What if we looked at the thing backwards or turned it
inside out?'" (Hackman and Coutu 2009)

• Openness to new ideas. Scrum teams are often asked to meet difficult
challenges: develop this faster than we've done similar projects before, do
that project with fewer resources, and so on. To rise to meet these chal-
lenges, team members often have to look beyond the tried-and-true. An
openness to new ideas—and occasionally to the temporary failures and
setbacks this creates—is vital.

• Time for reflection. Teams need time apart from the fast pace of iterative
development in which to reflect upon what they are doing and how they
are doing it. Real-time learning in action is the best way for a team to
learn, and this is helped by daily scrums. But most teams find that some-
where between a half hour and a half day every sprint spent finding ways
to improve is time well spent.

• If a t e a m includes m e m b e r s w h o are exper t at s o m e aspect of the
current w a y of w o r k i n g but w h o feel t h rea tened by the changed
technical pract ices Scrum inspires, th is is an excel lent t i m e to br ing
in an external coach. The lead deve loper w h o is s t rugg l ing to get her
head around test -dr iven deve lopmen t and m o c k ob jec ts o f ten fee ls
less th rea tened learning th is n e w skill f r o m an outs ider than f r o m
s o m e o n e on the t e a m w h o m she is normal ly mentor ing .

THINGSTO
TRY NOW

Eliminate Knowledge Waste
While establishing an environment conducive to team learning, we must simul-
taneously strive to eliminate organizational impediments that cause knowledge
waste. Knowledge waste refers to either lost opportunities to learn or learning less
than we could have from a situation. Lean development expert Allen Ward divides
knowledge waste into three categories: scatter, hand-off, and wishful thinking
(2007).

Scatter happens when anything breaks the flow of work. At the individual
level, scatter refers to the many things that distract us or break our day into small
pieces, making it difficult to do substantive work. At a project level, scatter occurs
when the team is interrupted, such as when it is asked to stop what it's doing and
work on a different feature, when a person is added to or removed from the team,
or when the team is harassed for updates on its progress toward an urgent task.

There are two main causes of scatter—barriers to communication and poor
tools. Communication barriers can be physical, such as the 5,000 miles or two
floors between team members. Barriers to communication can also, however, be

2 1 4 C h a p t e r 11 T e a m w o r k

the result of corporate policies ("all database change requests must be in writing")
or skill deficiencies, such as the inability of two groups to communicate because
they lack a common vocabulary. Ed Catmull, cofounder of Pixar, makers of Toy
Story; Finding Nemo; The Incredibles; Monsters, Inc.; and other movies, acknowledges
these barriers.

Getting people in different disciplines to treat one another as
peers is just as important as getting people within disciplines to
do so. But it's much harder. Barriers include the natural class
structures that arise in organizations: There always seems to be
one function that considers itself and is perceived by others to be
the one the organization values most. Then there's the different
languages spoken by different disciplines and even the physical
distance between offices. (2008, 70)

By poor tools,Ward was not specifically referring to the software products that
are such a part of our day-to-day lives. The poor tools that cause scatter are the
standardized practices that are so common in a typical development process. For
example, one company I consulted to had failed to anticipate the effect of a
change to the database shared by multiple applications. This led to a new rule that
every new feature must be accompanied by a database impact report.The vast major-
ity of application changes, of course, had no database impact, but this standardized
report was required nonetheless. Rather than mandating that all projects complete
a standard form, a more appropriate response would have been to clarify the re-
sponsibility of all project teams to consider and communicate impacts to the da-
tabase. Responsibility for results, not process adherence, should be the goal.

• In y o u r n e x t sp r i n t r e t r o s p e c t i v e , i den t i f y at least a d o z e n c a u s e s
of s ca t t e r a f f e c t i n g y o u r t e a m . Pick t w o t o w o r k t o w a r d e l im ina t -
ing ove r t h e n e x t m o n t h . Look fo r i t e m s t h a t c a u s e sca t te r w i t h i n
a s ing le day a n d fo r i t e m s t h a t c rea te sca t te r ac ross t h e span of a
p ro jec t .

Ward defines a hand-off as a separation of knowledge, responsibility, action,
and feedback. Hand-offs occur everywhere you look in a sequential software de-
velopment process. The results of analysis are handed off to architects who hand
the architecture off to programmers. Programmers then hand off code to testers.
Most written documents on a project are produced to enable a hand-off. N o t all
hand-offs are of artifacts, however. Holding a traditional project manager account-
able for meeting project specifications and deadlines she didn't contribute to is an
example of a responsibility hand-off.

Cross-functional teams became popular, at least in part, as a response to the
trouble caused by hand-offs on traditional development projects. Think back

THINGSTO
TRY NOW

E n c o u r a g e Co l labora t ion T h r o u g h C o m m i t m e n t 215

to the earlier section of this chapter, "Embrace Whole-Team Resposibility." The
main point of that section was that although there may be one person we look
to for certain tasks, just about everything is the responsibility of the whole team.
The more the whole team is involved and the more the whole team feels this
shared responsibility, the fewer hand-offs there will be. By eliminating hand-offs
we eliminate problems created by waiting and by the need to transfer knowledge
from one person to another.

Ward's third category of knowledge waste, wishful thinking, is not simply op-
timism. Wishful thinking refers here to making decisions without adequate in-
formation to support those decisions. Late projects are the most obvious result of
wishful thinking. Choosing a date, creating a specification, and hoping the project
will run exactly as planned with no unexpected changes is the ultimate in wishful
thinking. Discarded knowledge is a second type of wishful thinking. Discarded
knowledge is the failure by teams to capture acquired knowledge in useful for-
mats. W h e n a team finds and fixes a rare bug but fails to add an automated test to
prevent that bug from being detected later, it is discarding knowledge. It is wishful
thinking for the team to think that the bug will never recur.

It is hard to overstate the importance of team learning. I meet too many teams
who are much improved over how they were before they adopted Scrum but that
have failed to improve since. Continuous improvement is part of Scrum; failing to
learn and wasting the knowledge gained are serious deficiencies.

Encourage Collaboration Through Commitment
Tommy Lasorda, long-time manager of the Los Angeles Dodgers baseball team,
has said, "My responsibility is to get my twenty-five guys playing for the name on
the front of their shirt and not the one on the back" (LaFasto and Larson 2001,
100). Team learning will only get you so far in your quest to become a high-
performing, agile team. To keep your self-organizing team working as a unit in-
stead of a collection of individuals, you must constantly reenergize and focus it
toward shared goals. To do this you must find ways to renew team members ' com-
mitment to their purpose and to each other. There are a number of things you can
do to build and nurture this kind of commitment.

Involve widely . One of the most common complaints I hear f rom programmers,
in particular, is that they do not want to be treated like "code monkeys."They use
this term to mean someone who is told exactly what to code and has had all cre-
ativity (and fun) stripped from the job.You can avoid treating developers like code
monkeys by involving them in as many project activities as practical. This is why,
for example, I advocate including all developers in product backlog story-writing

216 Chapter 11 T e a m w o r k

SEE ALSO
For i n fo rma t i on on
c o n d u c t i n g a s to ry -
w r i t i n g w o r k s h o p , s e e
User Stories Applied
for Agile Software
Development (Cohn
2004) .

workshops.The broader the picture of the project and product that team members
see, the more fully engaged in the project and committed to it they will be.

Find an igniting purpose. London Business School professor Lynda Gratton uses
the term "hot spot" to refer to a place and time when "working with other people
was never more exciting and exhilarating and when you knew deep in your heart
that what you were jointly achieving was important and purposeful" (2007,1). For
a hot spot to form, you need what she calls an "igniting purpose," which is "some-
thing that people find exciting and interesting and worth engaging with" (13).

In the mid-1990s I worked at a company that had the igniting purpose of
revolutionizing healthcare by changing how patients interacted with providers.
This company was built around nurses in a call center, supported by developers
writing systems for them. Every week the head nurse sent an e-mail summarizing
important information for the week. Much of it was mundane: how many new
clients were added, how many calls were answered, the average time to answer
calls, and so on.

What wasn't mundane and what stoked the company's igniting purpose was
the summary of patients' lives we'd saved. I remember one particular call the head
nurse e-mailed us about. The caller was a man who had pain in his upper-left
back. He wanted to know if he should go to a doctor or just take ibuprofen. By
asking a few questions and being guided by the expert system within our software,
the nurse determined the caller was having a heart attack. She dispatched an am-
bulance to his house even before he hung up, thereby saving his life. An igniting
purpose does not have to be as lofty as saving lives. It just has to be something that
excites and interests the team members so that they are anxious to be a part of it.

Tap into existing intrinsic motivation. Beyond seeking a teamwide igniting pur-
pose, you should also feed team members' existing motivations. These will differ
from team member to team member, but a project that is structured such that each
individual's unique, personal goals are aligned with project goals will generate the
desired commitment. Perhaps a Java developer wants to gain some experience
with C# . Is there an opportunity to do that on this project? Perhaps a tester wants
to gain some leadership experience. Can he be given responsibility to lead the ef-
fort to select a vendor who will develop some outsourced components?

Beware the least motivated team member. One highly motivated and skilled in-
dividual often makes each of his teammates a little better. One unmotivated team
member, on the other hand, can drag the whole team down with him. Christo-
pher Avery describes the devastating effect of one bad apple.

In my experience when a freeloader comes into a team and can't
be rejected because of bureaucratic policy, the other hardworking

All Together N o w 217

members of the team immediately and drastically reduce their
work level and channel their attention and commitment to other
parts of their lives. (Avery, Walker, and O'Toole 2001, 97)

Help everyone understand their relevance to the goal. No one wants to feel su-
perfluous or that they are making only ancillary contributions to a project. It is
difficult for team members to fully engage and commit to a project's goals if they
do not feel their contributions are significant. Product owners are an obvious
source for helping everyone feel important and relevant to the goal, but relevance-
boosting comments can come from anyone on the team.

Build confidence. While knowing that the challenge before them will not be easy,
team members do want to feel confident they can achieve it. Confidence doesn't
come from making the goal easier but from belief in ourselves and our teammates.
People enjoy working with those who boost their confidence. A confident team
will commit to almost any goal.

Remember that creating commitment is not a one-time effort. Teams need
periodic reenergizing to renew their commitments both to the project and to
each other. In Teamwork Is an Individual Skill, Christopher Avery suggests that
while calendar years and quarterly boundaries are good times to reenergize, "the
best time to reorient a team is any time you notice that the sense of shared direc-
tion has been lost or that energy has decreased" (107).

• Does your t e a m have an igni t ing purpose? Can all t e a m m e m b e r s
express it? W o u l d each do so in roughly t he same te rms? If not,
ask the product o w n e r to faci l i tate a char ter ing sess ion as de-
scr ibed in the "Energ ize the S y s t e m " sect ion in Chapter 12.

• Do you unders tand w h a t mot i va tes every other person on your
team? If not , f ind out. H o w ? Ask.

• Do o thers unders tand your mot iva t ion? If not, tel l t h e m .

All Together Now
Creating the right sense of teamwork can be challenging. ScrumMasters can help
by ensuring that the team embraces the concept of whole-team responsibility and
whole-team commitment to deliver working software at the end of each sprint.
The team might struggle at first to break long-held habits of specialization and
hand-offs. Minimizing individual task assignments and doing a little bit of every-
thing all at once in a sprint are essential to shifting from sequential development
to working as a team. After a team is working well together and delivering what it
has committed to during each sprint, the team deserves to feel pride and a sense

THINGSTO
TRY NOW

2 1 8 C h a p t e r 1 1 T e a m w o r k

o f a c c o m p l i s h m e n t . D o n ' t fall i n t o t h e trap, t h o u g h , o f b e i n g satisfied w i t h m e r e l y

b e i n g a f u n c t i o n a l S c r u m t e a m . B e c o m i n g a h i g h - p e r f o r m i n g , agile t e a m requ i res

tha t y o u c o n t i n u e t o l e a r n and improve . Fos ter t e a m l ea rn ing , e l imina te sources

o f k n o w l e d g e waste , and k e e p y o u r team's col laborat ive spirit alive by e l ic i t ing its

c o m m i t m e n t and f i n d i n g ways t o r e n e w it t h r o u g h o u t t h e p ro jec t .

T h e n e x t c h a p t e r l o o k s at ways in w h i c h leaders can f u r t h e r i n f l u e n c e self-

o r g a n i z i n g t eams , l e a d i n g t h e m f o r w a r d t o w a r d h i g h p e r f o r m a n c e and o p t i m a l

product iv i ty .

Additional Reading
Avery, Christoper M. , Mer i Aaron Walker, and Erin O'Toole. 2001. Teamwork is an indi-
vidual skill: Getting your work done when sharing responsibility. Berret t-Koehler Publishers.

T h e premise of this book is that each individual needs to take responsibility for the
performance of the team. Avery provides details and anecdotes about h o w any team
m e m b e r can improve the performance of the overall team.

Katzenbach, Jon R . , and Douglas K. Smith. 1993. The ivisdom of teams: Creating the high-
performance organization. Collins Business.

An early classic on the subject of teams that has stood the test of time. Covers every
aspect of teams including the stages they progress through, w h o should be on them,
w h o should lead them, the role of management in working wi th them, and more.

Larson, Carl E., and Frank M.J . LaFasto. 1989. Teamwork:What must go right/what can go
wrong. SAGE Publications.

T h e authors spent three years studying and interviewing 32 highly successful teams
across a broad spectrum. Included were a cardiac surgery team, a team that climbed
Mt . Everest, championship sports teams, an airplane design team, and even the team at
McDonald 's that invented Chicken McNuggets . From this they distilled eight charac-
teristics of a high-performing team.

Chapter

L e a d i n g a S e l f - O r g a n i z i n g T e a m

ne of the earliest models for organizational change was put forth by Kurt
Lewin in the 1940s. In Lewin's model, change is a three-step process: "unfreezing"
the current situation so that change may occur, transitioning to a new state, and
then "refreezing" the new state so that it persists. Many subsequent organizational
change models are similar to Lewin's in depicting extended periods of relative
stability punctuated by brief times of transition.

Although this may have been Lewin's world in the early 1900s, the world
today is much different. Change no longer happens in short spurts that interrupt
long periods of relative stability. Instead, rather than moving from one state of
equilibrium to another, organizations in the 21 st century operate under far-from-
equilibrium conditions. Despite the turmoil and frenetic pace this leads to, there
are benefits. An organization in equilibrium, and that seeks to return to equilib-
rium when pushed away from it, is one that resists change (Goldstein 1994, 15).
Organizations that operate far from equilibrium become better suited to continu-
ous change. As such, it is up to an organization's leaders and change agents to keep
the organization in these far-from-equilibrium conditions.

Leaders do this by periodically agitating the organization. By stirring up, ex-
citing or calming, pushing, shaking up, stimulating, and rearranging the organiza-
tion, leaders are able to keep the organization from achieving an equilibrium from
which it will resist moving. This keeps the organization on its toes and better able
to respond to or create change. Agitating the organization becomes a fundamental
way leaders and change agents continually move the organization toward becom-
ing more and more agile.

So, who are these leaders and change agents? It's difficult to answer that with-
out knowing the specifics of a given organization, but when I say leaders, I am
addressing anyone with influence or authority over the team. That includes man-
agers, who can hire and fire team members. It includes the product owner, who
determines the scope of the product or system to be developed. It includes the
ScrumMaster, who can introduce small but significant changes to the process. And
it includes organizational change agents working to introduce or spread Scrum.

2 1 9

2 2 0 C h a p t e r 12 Lead ing a Se l f -Organ iz ing T e a m

In the following sections, we look at how these leaders, managers, and change
agents can influence the self-organizing path of a team or company. You'll learn
about three conditions that must exist for self-organization to occur and how
leaders can alter those conditions.You'll also learn how organizations evolve, and
you'll encounter seven ways that leaders, managers, and change agents can exert
influence on the evolution of their organizations.

Influencing Self-Organization
Self-organization is a fundamental concept in agile software development. The
Agile Manifesto includes the principle, "The best architectures, requirements, and
designs emerge from self-organizing teams" (Beck et al. 2001) Yet a common mis-
conception is that because of this reliance on self-organizing teams, there is little
or no role for leaders of agile teams. Noth ing could be further f rom the truth. In
The Biology of Business, Philip Anderson refutes this mistaken assumption.

Self-organization does not mean that workers instead of manag-
ers engineer an organization design. It does not mean letting
people do whatever they want to do. It means that management
commits to guiding the evolution of behaviors that emerge from
the interaction of independent agents instead of specifying in
advance what effective behavior is. (1999, 120)

Self-organizing teams are not free f rom management control. Management
chooses for them what products to build or often chooses who will work on their
projects, but they are nonetheless self-organizing. Neither are they free f rom influ-
ence. Early references to Scrum were clear about this. In "The N e w N e w Product
Development Game" from 1986,Takeuchi and Nonaka write that "subtle control
is also consistent with the self-organizing character of project teams." Then in
Wicked Problems, Righteous Solutions in 1990, DeGrace and Stahl describe how
managers exercise indirect control over a self-organizing team.

To be sure, control is still exercised; but, it is subtle and much of
it is indirect. It is exercised by selecting the right people, creating
an open work environment, encouraging feedback from the field,
establishing an evaluation and reward system based on group per-
formance, managing the tendency for going off in many direc-
tions early on and the need to integrate information and effort
later on, tolerating and even anticipating mistakes, and encourag-
ing suppliers to become involved early without controlling them.
(159)

In f luencing Self-Organizat ion 2 2 1

A Scrum team's job is to self-organize around the challenges, and within the
boundaries and constraints, put in place by management. Management's job is to
come up with appropriate challenges and remove impediments to self-organization.

That being said, the fewer constraints or controls put on a team, the better. If
leaders overly constrain how a team solves the challenge given to it, self-organiza-
tion will not occur. The team will shut down; because it has already been told so
much about the challenge and how to solve it, it will wait to hear the rest.

So how does an agile leader achieve the subtle balance between command
and influence? One way is to understand how slight changes in three team-related
conditions can have a tremendous impact on how teams organize, and thereby
how they perform. These conditions are containers, differences, and exchanges.

Containers, Differences, and Exchanges
In her doctoral dissertation, Glenda Eoyang describes three conditions that, when
altered, influence how a team will self-organize: containers, significant differences,
and transforming exchanges (2001).

A container is some boundary within which self-organization occurs. Imag-
ine you are at a movie theater that does not preassign seats. The physical bound-
aries of the theater form a container within which you and other filmgoers
self-organize into seats. Another set of filmgoers are in the adjacent theater, and
they have self-organized within their physical container. The two containers (the-
aters) are distinct, so filmgoers in one theater cannot be said to have self-organized
with filmgoers in the other theater. Containers do not need to be physical. As
the following examples illustrate, they can also be behavioral, organizational, and
conceptual:

• Everyone working on the San Jose campus

• Everyone working in Building A-3

• Everyone working in the software development department

• Everyone programming in Ruby

• Everyone who is Norwegian

• Everyone who belongs to the Agile Alliance

• Everyone on the Capricorn project team

Differences among individuals inside the container also influence how they
will self-organize. Without differences among members of our Scrum team, it
wouldn't matter who does which work or whether the individuals interact. Be-
cause we would all be equivalently skilled in all ways, each member of the group
would work in isolation. Fortunately, there always are differences among the

2 2 2 C h a p t e r 12 Lead ing a Se l f -Organ iz ing T e a m

individuals on a software development team. These include technical expertise,
domain knowledge, power, gender, race, education, connections to others in the
company, problem-solving approach, and so on. The types and degrees of these
differences influence how a team self-organizes.

Finally, transforming exchanges influence how a team organizes in response to
a challenge. A transforming exchange is an interaction between members within
a container in which one or more of the individuals is changed or influenced
by that interaction. For example, I meet with my project's product owner who
answers my questions about how a feature should work. This is a transforming
exchange because I leave with new knowledge. It is not always information that
passes between individuals in a transforming exchange; it might be money, power,
energy, or any number of other things. A team motivated by a conversation with
its product owner has experienced a transforming exchange: Energy was created
and passed to the team.

What do these three conditions mean for leaders and change agents? By ad-
justing containers, amplifying or dampening differences, or altering exchanges,
leaders can influence how a team or teams self-organize. This is one fo rm of the
subtle control mentioned at the start of this chapter. For example, suppose one team
member, Jeff, is domineering and no one is willing to stand up to him. This team
has self-organized—it has chosen to let Jeff make all key decisions. As the Scrum-
Master for this team, you recognize that this will impede the team's efforts to
improve. You consider having a private conversation with Jeff, but that is unlikely
to change much. You contemplate stepping in and overruling some decisions he
makes, but if you do it once the team will expect you to continue to do so, which
won't be good.

Stumped, you begin to think about the containers, differences, and exchanges
that are influencing how this team has chosen to self-organize You realize that you
could influence the situation by decreasing the differences among team members.
As a result, you decide to add someone else to the team who will sometimes stand
up to Jeff Or you may decide to exert subtle control over the team by altering the
exchanges.To do so, you suggest to the enterprise architecture team that someone
f rom the group attend key meetings. N o matter the specific problem, if you see
that the team has self-organized in a way that impedes it, it is your responsibility to
find a way to agitate, stir up, or otherwise disturb the status quo, so that the team
adjusts, hopefully reorganizing in a more productive way.

In Facilitating Organization Change, Eoyang and coauthor Edwin Olson advo-
cate exactly this type of approach.

The role of the change agent is to use an understanding of the
evolving patterns to shift the container, differences, or exchanges
to affect the self-organizing path, to observe how the system re-
sponds, and to design the next intervention. The objective of this

In f luencing Sel f -Organizat ion 223

action-oriented experimentation is to anticipate, adapt, and in-
fluence, not to predict or control the behavior of the system.
(2001, 16)

" T h i s d o e s n ' t s o u n d r i gh t . H o w can a t e a m be s e l f - o r g a n i z i n g if s o m e
boss o r c h a n g e a g e n t is c o n t r o l l i n g t h i n g s f r o m b e h i n d t h e s c e n e s ? "

Self-organizat ion does not mean a col lect ion of individuals is f ree to do
wha teve r it wan ts . The individuals self-organize around a p rob lem that is
p resen ted to t h e m by the organizat ion. (" W e w a n t a p roduct that does
t h i s ") The conta iners, d i f ferences, and exchanges put in place by the or-
ganizat ion inf luence, but do not de te rm ine , h o w a t e a m organizes itself
a round the prob lem.

Keep in m i n d also that a change agent is not f idd l ing w i t h a team 's or
project 's conta iners, d i f ferences, or exchanges for her o w n pleasure. The
change agent is do ing it as part of help ing t he t e a m b e c o m e the best that
it can be.

Adjusting Containers
Colin, a development director at a medical software company, was frustrated by
one team's inability to produce working software by the end of its sprints. He
wasn't disappointed with the amount of work being done each sprint; the team
seemed to be doing a reasonable amount of work each time. He was frustrated
because rather than finishing five items by the end of a sprint, the team would
instead be "half done" with ten. He knew this wasn't how a Scrum team should
behave.

Colin and I discussed the situation and I presented the CDE (Container, Dif-
ference, Exchange) model. Colin felt that the right people were talking and that
he didn't need to change the current exchanges or introduce new ones. We dis-
cussed differences among team members and agreed that one possible remedy was
to move an experienced agile developer onto the team. Such a developer would
be able to help the team understand the problems with how it had been working.
Unfortunately, there were no experienced agile developers available for this team.

In discussing the containers that enclosed this team, Colin realized that a
possible solution was to expand the team's responsibilities. Contributing to its
challenges in finishing work, he decided, was the fact that this team was depen-
dent on low-level functionality being developed by another team. Colin decided
to merge the two teams. By merging them, he could make the combined team
entirely responsible for work that used to span two teams. This would eliminate

SEE ALSO
The i m p o r t a n c e of
f in ish ing each spr in t
w i t h w o r k i n g s o f t w a r e
is d i s cussed in Chap te r
14, "Spr in ts . "

SEE ALSO
The mer i t s of fea-
tu re and c o m p o n e n t
t e a m s are desc r i bed
in Chap te r 10, " T e a m
Structure."

224 Chapter 12 Leading a Self-Organizing Team

one opportunity for excuses about why something wasn't finished by the end of a
sprint. In a later e-mail to me, Colin described his thought process.

Only part of their problems were caused by delays waiting for the
other team. But they'd become accustomed to leaving product
backlog items half finished. By adding responsibilities and new
members to the team, it would be a chance for me to re-stress my
expectation that having a few things done at the end of a sprint
was better than having more things started.

Colin's approach of expanding the responsibilities to expand the container is
just one possible way of adjusting containers to influence the team. It and some
others are summarized in Table 12.1.

TABLE 12.1
W a y s t o u s e c o n -
t a i n e r s t o i n f l u e n c e
h o w a t e a m se l f -
o r g a n i z e s .

Change the number of people on the team.

Change who is on the team.

Introduce a new container, such as a community of practice.

Give the team more or less responsibility.

Change the team's physical space. Give team members more or less space. Remove or
lower cubicle walls. Move everyone together on the same floor.

List all of the conta iners that m e m b e r s of a t e a m w o r k w i th in . Do
the conta iners s e e m appropr iate ly sized and scoped? Are there too
many? too f e w ?
For each container, dec ide if it has a posi t ive, negat ive, or neutral
impact on the t eam 's per fo rmance.
Ident i fy the conta iner that you th ink current ly exer ts the m o s t influ-
ence on the team. Should changes be made to that container?

Amplifying or Dampening Differences
Carey, a development director who initiated her company's adoption of Scrum,
was troubled by a recent but sustained drop in velocity on one of her teams. The
quality of its work remained high, but the team was getting less done now than
it was a few months ago. During regular, 30-minute, one-on-one meetings she
had with each of her employees, she asked some members of this team why they
thought this had happened. She followed that up by attending the team's next
sprint retrospective.

What Carey learned was that the team had made a few ill-considered archi-
tectural decisions six to nine months back. She put together what she learned

THINGSTO
TRY NOW

•

In f luencing Sel f -Organizat ion 225

from the retrospective, her monthly team member meetings, and what she already
knew of team member personalities. Carey concluded that while some bad de-
cisions are inevitable, some of this team's bad decisions were the result of team
members not adequately questioning one another.

I had previously introduced Carey to thinking about containers, differences,
and exchanges as a light-touch way for her to guide her teams. She told me later
that she had used the approach in this situation. By thinking through the CDE
model, Carey knew that insufficient differences existed between team members.
She decided that she could best help this team by amplifying those differences. She
did so through one of my favorite techniques: She asked a lot of probing questions.

Carey had always been a hands-off director, but she decided this team needed
more of her attention. She began to drop by when she saw the team holding im-
promptu meetings. During these meetings she asked questions intended to pull
out dissenting opinions. She asked questions such as the following:

• What alternative approaches have you considered and rejected before
accepting this one?

• What could go wrong with this approach?

• What has to go right for this approach to work?

• What could make us regret this decision?

• Is there any information we don't have that would help us be sure
of this?

Even when Carey agreed with the prevailing opinion, she asked hard ques-
tions, poking for flaws and hoping others might voice even better opinions.

Another good way to amplify differences is to change how the team makes
decisions. For example, if a team currently makes decisions by a majority vote, ask
members to require consensus for the next two sprints. Do the opposite if they
currently require consensus. These and other approaches for dampening or ampli-
fying differences are shown in Table 12.2.

Introduce a new team member with significantly more power, experience,
knowledge, or so on.

Ask hard questions of the team to ensure different viewpoints are heard.

Change the team's decision-making style.

Encourage dissenting viewpoints.

TABLE 12.2
W a y s t o a m p l i f y
o r d a m p e n d i f fe r -
e n c e s t o i n f l u e n c e
h o w a t e a m se l f -
o r g a n i z e s .

226 Chapter 12 Leading a Self-Organizing Team

THINGSTO
TRY NOW

• For each w a y in w h i c h t e a m m e m b e r s d i f fer (such as technica l
know ledge , domain know ledge , industry exper ience, tenure w i t h
the company, respect , p rob lem-so lv ing style) rate the d i f fe rences
f r o m one to ten. From this, do t e a m m e m b e r s appear too d i f ferent?
too similar?

• Ident i fy one d i f fe rence that if ampl i f ied w o u l d improve t e a m perfor-
mance. Could s o m e o n e be added to the t e a m w h o w o u l d ampl i f y
that d i f fe rence?

• Ident i fy one d i f fe rence that if d a m p e n e d w o u l d improve t e a m per-
fo rmance . Could s o m e o n e be r e m o v e d f r o m the t e a m w h o w o u l d
dampen that d i f fe rence?

Altering Exchanges
A leader or change agent in the organization can also influence a team by alter-
ing the exchanges in which team members participate. Alejandro, a technical lead
at a video game development studio, was attending his third sprint review of the
day when he noticed a problem. Each team included an artificial intelligence (AI)
programmer. The AI programmers were responsible for the behavior of the bad
guys who would attack the player in the game. Alejandro picked up on statements
in the sprint reviews that told him each team was programming its AI a bit differ-
ently. Not only would this lead to inconsistent game play, but it was also a duplica-
tion of some of the effort.

I met Alejandro after he had encountered and solved this problem. His solu-
tion was to introduce a new exchange. Because the AI programmers were not
talking to each other often enough, Alejandro decided the AI programmers should
meet once a week with no one else present. Although not one of the AI program-
mers himself, Alejandro had enough personal authority in the organization that
he was able to convince them this was a good idea. During a two-week sprint, AI
programmers met on the day after sprint planning so that each would be aware of
what the others had committed to and would be working on. A second meeting
was held around the start of the second week, giving them a chance to compare
progress and expectations.

Alejandro introduced a community of practice, a group of like-minded or
like-skilled individuals. We saw the use of communities of practice in Chapter 4,
"Iterating Toward Agility," as the basis for the organization's Enterprise Transition
Community and the improvement communities that help the organization adopt
Scrum. We will see them in more detail in Chapter 17, "Scaling Scrum." In addi-
tion to introducing a community of practice, additional techniques for altering
exchanges are shown in Table 12.3.

I n f l uenc ing Evo lu t i on 2 2 7

Add or remove people from an exchange.

Formalize or deformalize an exchange.

Change how an exchange occurs (face-to-face conversation, document).

Change the frequency of an exchange.

TABLE 12.3
W a y s t o a l te r
e x c h a n g e s t o i n f l u -
e n c e h o w a t e a m
se l f - o rgan i zes .

N o w that we've looked at three factors that influence how a team self-
organizes around the challenge it is given, let's look at ways leaders can keep the
team or company evolving over time.

• W h o o u t s i d e t h e t e a m do y o u w i s h t h e t e a m w o u l d ta lk t o m o r e
o f t e n ? Is t h e r e a w a y t o e n c o u r a g e s u c h e x c h a n g e s ?

• D i a g r a m t h e i n t ens i t y o f i n te rac t i on a m o n g t e a m m e m b e r s . D r a w
a c i rc le fo r each pe rson . T h e n d r a w l ines b e t w e e n pai rs of t e a m
m e m b e r s w h o in te rac t . U s e co lo r or t h i c k n e s s t o ind ica te i n t ens i t y
or f r e q u e n c y . Do y o u s e e any p r o b l e m s ?

• O b s e r v e t h e t e a m care fu l l y fo r a spr in t : A r e t h e r igh t p e o p l e in-
v o l v e d in all e x c h a n g e s ? S h o u l d s o m e e x c h a n g e s invo lve m o r e (or
f e w e r) peop le?

THINGSTO
TRY NOW

Influencing Evolution
Many years ago I worked for a CIO,Jim, who was well-known in the company for
frequently reorganizing his department. A joke made the rounds that if you didn't
like Jim's current organization, you should just wait a day. He didn't reorganize us
daily, but it did feel that way at times. Jim's reorganizations are just one example
of how the company today is not the same as the company last week. Compa-
nies evolve. Organizational evolution comes in response to environmental factors,
competitive forces, strengths and weakness of employees, and other influences.

Evolution is the result of three elements: variation, selection, and retention.
Philip Anderson explains the connectedness of these three elements with the ex-
ample of the giraffe. Through a random mutation a giraffe is born with a longer-
than-normal neck. This is variation. The longer neck helps this particular giraffe
reach food that other giraffes cannot. This makes that giraffe more likely to breed
successfully, which is known as selection. Finally, the giraffe passes the gene for lon-
ger necks to its descendants, which is known as retention (1999, 120-1).

Organizations also evolve through variation, selection, and retention. An or-
ganization needs sufficient variation among employees, teams, processes, and the
like so that a variety of results can be achieved. There must also be a sufficient

2 2 8 C h a p t e r 12 Lead ing a Se l f -Organ iz ing T e a m

definition of success so that employees can distinguish between variations that
lead to desirable outcomes and those that do not. In effect, variation and selection
lead to someone in the organization noticing that "when we did more of such-
and-such, it led to better results." Finally, there must be sufficient mechanisms in
place to reinforce behaving in the new, better way. If culture or human resources
policies run counter to a new way of behaving, the new way will not be retained.

Leaders and change agents do not sit idly by while their organizations evolve.
Instead, they help guide the organization's evolution through variation, selection,
and retention.

Self-organization proceeds from the premise that effective orga-
nization is evolved, not designed. It aims to create an environ-
ment in which successful divisions of labor and routines not only
emerge but also self-adjust in response to environmental changes.
This happens because management sets up an environment and
encourages rapid evolution toward higher fitness, not because
management has mastered the art of planning and monitor ing
work flows. (Anderson 1999, 119)

Phillip Anderson suggests seven levers that leaders can use to guide an evolv-
ing organization. These are summarized in Table 12.4. We have already covered
choose people (similar to altering containers or amplifying differences) and reconfig-
ure the network (similar to exchanges) in our earlier discussion of the CDE model.
The remaining levers fo rm the basis for the sections that follow

TABLE 12.4
Techn iques a
leader can use
t o in f luence h o w
an o rgan iza t ion
evo lves.

Select the external environment.

Define performance.

Manage meaning.

Choose people.

Reconfigure the network.

Introduce vicarious selection systems.

Energize the system.

Select the External Environment
Self-organization and evolution occur in response to the environment in which
the team works. Leaders can have a significant amount of influence on that envi-
ronment. By environment I mean more than simply a team's physical work space.
There are many more important environmental factors under the influence of

In f luencing Evolut ion 229

leaders. Leaders, for example, control or influence the business the organization is
in. They determine the organization's approach to innovation: Is the company an
innovator or a fast follower? Leaders also control the type of projects to be worked
on and the rate at which new projects are introduced to the organization. Each of
these factors will influence how an organization evolves and adapts.

Julie was the general manager of a large division of a software company. She
was responsible for approximately half of her company's 500 developers. Scrum
began in a grass-roots manner within her division. When early results proved
promising, she initiated a plan to spread Scrum to all teams within a year. As part
of doing this, Julie also slowed the flow of new projects into the organization.
This wasn't because Scrum teams were developing more slowly; they were, in fact,
developing quickly. But her early experiences with Scrum helped her realize that
the organization was trying to do too many projects at the same time. Experiences
with her initial Scrum teams had proven to her the benefits of allowing people to
be dedicated to one or possibly two teams. To achieve that, she needed to match
the flow of incoming projects more closely to the rate at which projects were be-
ing completed.

SEE ALSO
T h e issue of do ing
t o o m a n y concu r ren t
p ro jec ts is d i scussed
in " P u t Peop le on O n e
P r o j e c t " in Chap te r 10.

Define Performance
Organizations and organisms evolve to fit their environments. According to the
principle of selection, those traits most likely to help an individual or group sur-
vive in the organization will be the ones retained. It is the organization's leaders
and managers who define what traits help groups or individuals survive. If agile
values such as openness and transparency lead to survival in the form of promo-
tions and public praise, those behaviors will be the ones individuals select.

Leaders and managers can exert a great deal of influence in how they define
successful performance. For example, they define the organization's attitude to-
ward trade-offs between short- and long-term performance. An organization that
favors long-term success will be more likely to invest in training, support working
at a sustainable pace, be willing to allow employees time to explore novel ideas,
and will not exchange meeting a near-term deadline for unmaintainable code.

Manage Meaning
Individuals in a self-organizing system evolve in response to the messages they
receive. Messages can be generated from within the system itself or fed into the
system from outside it. Managers and leaders manage the meaning of these mes-
sages by providing context to help employees interpret the messages. Much of this
context is provided in the stories, myths, and rituals that leaders repeat. Leaders
select and tell stories through which they wish employees to interpret current
situations.

230 Chapter 12 Leading a Self-Organizing Team

I recall my first (and last) day with what was to have been a new client. The
development director tried to impress me by saying,"Every night at 5:00 p.m., the
general manager goes outside and counts the number of cars in the parking lot.
He's going to do that every night as long as there's a problem."

This story was rapidly becoming part of the corporate folklore. It was being
told so that people would know what type of behavior was expected and accepted
by the new general manager.

I knew that if the general manager had this attitude, this company's Scrum
adoption was doomed. I couldn't resist trying to reframe the story to support the
behavior I hoped to see: "That's wonderful," I said. "I can't wait to meet him. Any
boss who would go into the parking lot at 5:00 p.m. and count the number of
people who are still there so he can send them home is someone I want to meet."
My attempt fell flat, and my later meeting with the general manager fell even flat-
ter. Even after I pointed out the environmental problems inhibiting the company's
Scrum adoption, the general manager had no desire to send a different message.

Introduce Vicarious Selection Systems
The primary selection system that should govern organizational evolution is long-
term market success. Products that generate profits should displace products that
do not; team structures that lead to profitable products should displace those that do
not; and practices that lead to profitable products should drive out those that
do not. This, of course, takes years. Additionally, with many changes occurring in
the organization simultaneously, it is impossible to fully isolate the effect of one
variation. To accelerate and improve the rate of evolution, managers can introduce
vicarious selection systems.

A vicarious selection system is a process for selecting desirable projects, prod-
ucts, or behaviors but that does so without the lengthy feedback of a market-
driven selection system. Google's policy of allowing developers to spend 20% of
their time on projects of their own choosing is a vicarious selection system. So is
Google's policy of allowing developers to move freely between teams and projects
"any time they want, no questions asked" (Yegge 2006). Because developers want
to work on projects that are successful, ground-breaking, or otherwise desirable
to Google, these are well-designed vicarious selection systems; they select in the
short term the same projects, products, or behaviors that the market would have
eventually found desirable in the long term. New projects that fail to attract at-
tention are more likely to fade away. Or, in evolutionary terms, they will not be
selected and retained.

Vicarious selection systems are common in organizations. Many organizations
have a system where one employee can nominate a coworker for a small cash bo-
nus. When not used to encourage individual over team performance, such rewards
can be useful at communicating the type of behavior desired in the organization.

I n f l uenc ing Evo lu t i on 2 3 1

Unfortunately, not all vicarious selection systems are good predictors of the
behavior that the market would select. Managers must take care when putting a
vicarious selection system in place. James, a vice president of development, did not
carefully consider one of the vicarious selection systems in use within his organi-
zation: praise. James thrived on chaos and always needed an emergency to handle.
If emergencies didn't exist, he always seemed able to stir one up. H e excelled at
handling emergencies and praised others with similar skills. James's employees
learned that their boss valued crisis resolution skills more than he valued skills that
avoided crises in the first place.

Energize the System
Teams and organizations rely on energy. Unless energy is pumped in, the team or
organization will suffer f rom entropy. Managers and leaders provide the energy
that sustains self-organization and evolution by inspiring and challenging em-
ployees. Challenges create gaps between a product's current state and one that is
envisioned, or between a group's current and desired levels of performance. W h e n
a group is inspired to accept a challenge, it self-organizes around how to achieve it.

In their book Teamwork, Larson and LaFasto focus on the power of presenting
a team with a "clear, elevating goal" (1989,27). In Hot Spots, Lynda Gratton came
to a similar conclusion, saying that high-performing teams need an "igniting pur-
pose" (2007, 3). Bill Gates's famous "Internet Tidal Wave" m e m o from May 1995
created an igniting purpose within all of Microsoft. After describing some of the
ways the Internet would change Microsoft's products and business, Gates presents
a clear, elevating goal, saying that Microsoft must "first embrace the Internet and
then extend it." He concludes with a final bit of motivation.

The Internet is a tidal wave. It changes the rules. It is an incred-
ible opportunity as well as an incredible challenge. I am looking
forward to your input on how we can improve our strategy to
continue our track record of incredible success.

In Agile Project Management, J im Highsmith stresses the importance of start-
ing each project with a charter—a short, memorable vision of why the project
is being undertaken or what it is to deliver. An appropriately chosen charter can
provide team members with a clear, elevating goal and spark an igniting purpose
in a memorable way. Highsmith provides three techniques for chartering a project:

• Wri te a one- or two-sentence summary of the project or product
(an "elevator statement").

• Design the box the product would ship in (even if it would never ship
in a box).

232 Chapter 12 Leading a Self-Organizing Team

• Write a product description constrained to fit on one page (2009).

In addition to these chartering tools, I occasionally use two others:

• Write the imaginary press release you would like to accompany the
product release.

• Write the product review you would like to appear in magazines.

One of my clients used the magazine review to great effect.This client devel-
ops antispyware software and had recently been designated as "runner-up" by a
magazine in its product-of-the-year awards. For many products, being the second
best in its class would be quite desirable. The second-best film of the year probably
does well at the box office. But for a product that most users buy only one of,
being second best is a problem.

I advised the team's ScrumMaster, Erin, to have all members involved in char-
tering the next version of the product by writing the review they would like to
read. They did. The envisioned review was then hung in a variety of strategic
places within the team's work space. Six months later the new version of the prod-
uct was released and was reviewed again by the same magazine. This time the
product was given the Editor's Choice award for best antispyware product. The
team's achievement was due in part to the ScrumMaster pumping energy into the
system in the form of a clear, elevating goal that led to an igniting purpose.

Make a list of all the v icar ious se lect ion s y s t e m s in your organiza-
t ion. W h a t fo rmal and in formal m e c h a n i s m s in f luence or dec ide
w h i c h projects, t ypes of behavior, approaches, and so on succeed
and are propagated into the fu ture? Are any of t hese at odds w i t h
adopt ing Scrum? W h a t can you do, and w h o s e help do you need, to
e l iminate t h e m ?
Is the t e a m suf f ic ient ly energized? If not, create a pro ject charter
using one of the techn iques out l ined.
Ident i fy all individuals outs ide the t e a m and the messages they are
send ing the team. Does the t e a m have the r ight con tex t in w h i c h to
in terpret t hose messages? Can you prevent the t e a m f r o m receiv-
ing incons is tent messages , especial ly about conf l ic t ing project
goals such as quality, scope, and schedule?

There's More to Leadership Than Buying Pizza
While watching a tennis match, you may notice that the player receiving the serve
stays on her toes rather than standing flat-footed. This stance allows the player
to be ready for any ball, whether the serve is left or right, deep or short. Leaders
and change agents involved in transitioning an organization to Scrum want the

THINGSTO
TRY NOW

•

•
•

Addi t ional Reading 233

organization always on its collective toes, ready to go left, right, or any which
way. An organization on its toes is ready for whatever change confronts it. Such
an organization becomes accustomed to continuous incremental change, is rarely
surprised by change, and will be able to assimilate change more quickly.

Leaders, managers, and change agents keep an organization on its toes by
altering its containers, differences, and transforming exchanges. Leaders influence
the direction in which an organization evolves by pulling one of Anderson's seven
levers.

There is more to self-organization than buying pizza and getting out of the
way. There are subtle and indirect ways through which leaders influence teams.
It is impossible for a leader to accurately predict how a team will respond to a
change, whether that change is an altered container, new standards of performance,
a vicarious selection system, or so on. Leaders do not have all the answers. What
they do have is the ability to agitate the organization toward becoming more agile.

Additional Reading
Anderson, Philip. 1999. Seven levers for guiding the evolving enterprise. In The biology
of business: Decoding the natural laws of enterprise, ed . John Henry Clippinger III, 113—152.
Jossey-Bass.

This is one of the better chapters in an excellent book. In it, Anderson lays out the
principles of organizational evolution and presents the seven levers described in the
"Influencing Evolution" section of this chapter.

Goldstein, Jeffrey. 1994. The unshackled organization: Facing the challenge of unpredictability
through spontaneous reorganization. Productivity Press.

This is one of the earliest books on self-organization within corporations. Highlights
include the multiple real and anonymized case studies of self-organization in a variety
of companies.

Olson, Edwin E., and Glenda H. Eoyang. 2001. Facilitating organization change: Lessons from
complexity science. Pfeiffer.

This excellent book builds on ideas in Eoyang s doctoral dissertation on self-
organization and applies them specifically to organization change. It presents the
model that organizational change can be influenced through the containers, differ-
ences, and exchanges that are put in place or encouraged by change agents in the
organization.

Chapter

T h e P r o d u c t B a c k l o g

he biggest question looming at the start of a project is, what exactly are we
building? We know the general shape of the system to be built. We may know, for
example, that we are building a word processor. But there are always dark corners
yet to be explored or issues yet to be settled about how specific features will work.
Will our word processor include an interactive table design feature, or will tables
be designed by entering values into a series of screens?

W h e n using a sequential development process, we try to start with a lengthy,
up-front requirements-gathering phase during which the product is presumably
fully specified. The idea is that, by thinking longer, harder, and better at the outset
of the project, no dark corners will be encountered during the main development
phase of the project.

A Scrum team forgoes a lengthy, up-front requirements phase in favor of
a just-in-time approach. High-level feature descriptions may be gathered early,
but they are minimally described at that time and are progressively refined as the
project progresses. They are documented in a product backlog, which is a list of all
desired functionality not yet in the product. It is maintained by the product owner
and kept in priority order, which is why a product backlog is sometimes called a
prioritized feature list. Unlike a traditional requirements document, a product back-
log is highly dynamic; items are added, removed, and reprioritized each sprint as
more is learned about the product, the users, the team, and so on.

In this chapter we look at three changes organizations need to make to effec-
tively work with a product backlog. First, we look at the need to shift f rom writing
about a product's features to talking about them. Second, we see why it's impor-
tant for detail to be added progressively rather than for all of it to be documented
up front. Third, we see why specification by example should be a team's preferred
approach to documenting a product's functionality. The chapter concludes with an
acronym for remembering key attributes of the product backlog.

2 3 5

236 Chapter 13 The Product Backlog

Shift from Documents to Discussions
There is a grand myth about requirements—if you write them down, users will
get exactly what they want. That's not true. At best, users will get exactly what
was written down, which may or may not be anything like what they really want.
Written words are misleading—they look more precise than they are. For ex-
ample, recently I wanted to run a three-day public training course. My assistant
and I had discussed this, so I sent her an e-mail saying, "Please book the Hyatt in
Denver," and reminded her of the dates. The next day she e-mailed me, "The ho-
tel is booked." I e-mailed back, "Thanks," and turned my attention toward other
matters.

About a week later she e-mailed me saying, "The hotel is booked on the
days you wanted. What do you want to me do? Do you want to try another
hotel in Denver? A different week? A different city?" She and I had completely
miscommunicated about the meaning of "booked."When she told me "the hotel
is booked," she meant, "The room we usually use at the Hyatt is already taken."
When I read "the hotel is booked," I took it as a confirmation that she had booked
the hotel like I had requested. Neither of us did anything wrong in this exchange.
Rather, it is an example of how easy it is to miscommunicate, especially with writ-
ten language. If we had been talking rather than e-mailing, I would have thanked
her when she told me "the hotel is booked." The happy tone of my voice would
have confused her, and we would have caught our miscommunication right then.

Beyond this problem, there are other reasons to favor discussions over
documents.

Written documents can make you suspend judgment. When something is writ-
ten, it looks official, formal, and finished, especially when fancy formatting has
been applied. Awhile back a client whose office I'd visited many times decided
we would have an off-site meeting near the company's office. The client sent me
very detailed directions from my hotel to a country club where we were to meet:

• Turn left out of your hotel onto North Commerce Parkway and go
0.4 miles

• Turn left on SW 106th Avenue and go 0.2 miles

• Turn right on Royal Palm Boulevard for 1.1 miles

• Turn left onto Town Center

But I couldn't turn left onto Town Center! After 1.1 miles on Royal Palm,
I found myself at an intersection, but Town Center went only to the right. I had
been told to turn left but that road was called Weston Hills Boulevard. I could see
the Country Club to the left, and it seemed like I should turn there. However,
the directions had been very specific and correct to this point so I continued

Shif t f r o m D o c u m e n t s to Discuss ions 237

forward. I went another two miles, watching the country club fade past me on the
left. Eventually it was clear that the one instruction had been wrong, so I turned
around and turned on Weston Hills instead of Town Center as was written in the
directions. Suppose instead of these directions my client had simply said, "Head
toward our office the same way you usually do. But when you see the country
club, turn left. I don't know the name of that street, but you can't miss the country
club."

With a written document, w e don't iterate over meaning as w e would in conversa-
tion. A few years back I read a requirements document that described a Windows
Explorer-like interface for managing folders of data. One requirement said, "The
name of the folder can be 127 characters." I was fairly certain that the require-
ment should have said that the folder name could be a maximum of 127 characters.
But this was a bioinformatics application, and there were some unusual require-
ments such as text fields that could contain only the letters A, C, G, andT.A folder
name of exactly 127 characters was a little surprising, but it was not impossible to
fathom for this particular application.

Because a specific length was given, I presumed it must have been chosen for
a good reason. It may not have been. Yet the nature of a requirements document
made me much less likely to question the "127" mandate than I would have been
had the analyst and I been talking. If we had, our conversation would have been
punctuated with exchanges such as,"So what you're saying is...,""If I understand
you, that means...," and "Doesn't that imply...." These questions are intended
to ensure that a transfer of understanding has occurred, that I understand what
you've said. This iterating over meaning is missing in documents.

Written documents decrease whole-team responsibility. One of the goals of
shifting to Scrum is to get the whole team working together toward the goal of
delivering a great product. We want to strip our development process of bad habits
that work against this goal. Written documents create sequential hand-offs, which
deprive the team of a unity of purpose. One person (or group) defines the prod-
uct; another group builds it. Two-way communication is discouraged. Through
the written document, one team member is saying, "Here's what to do," and oth-
ers are expected to do it. This type of master-and-servant relationship is unlikely
to create strong feelings of engagement on the part of the servants. Rather than
feeling responsible for the success of the product, they feel responsible for doing
what is described in the document. Discussions have the opposite effect: Whole
team discussions lead to greater buy-in by all team members.

SEE ALSO
W h o l e - t e a m respons i -
bi l i ty and t h e p r o b l e m s
w i t h hand-o f f s w e r e
cove red In Chap te r 11,
" T e a m w o r k . "

238 Chapter 13 The Product Backlog

OBJECTION
" I can ' t ge t r id o f a l l d o c u m e n t s — m y p r o j e c t has ISO 9001 (or s i m i l a r)
r e q u i r e m e n t s , a n d e v e r y t h i n g has t o be d o c u m e n t e d a n d t r a c e a b l e . "

A s I'll descr ibe in the next sect ion, you don ' t need to get rid of all docu-
ments . El iminate those you can and keep o thers as shor t as possible,
even cons ider ing w h e t h e r t hey can be automat ica l ly generated. It is also
impor tan t to recognize that you can d o c u m e n t for poster i ty, wh i l e still rely-
ing on conversat ion dur ing the project.

SEE ALSO
T h e sec t i on " L e a r n
t o Star t W i t h o u t a
Spec i f i ca t i on , " later in
th is chap te r w i l l s h o w
t h e p o w e r of spec i f y i ng
behav io r in t es t cases.

Don't Throw the Baby Out with the Documentation
These weaknesses of written communication are not to say we should abandon
written requirements documents—absolutely not. Rather, we should use docu-
ments where appropriate. Because the Agile Manifesto says that we favor "work-
ing software over comprehensive documentation" (Beck et al. 2001), agile has
been misinterpreted as being against documentation. The goal in agile develop-
ment is to find the right balance between documentation and discussion. In the
past we've often been skewed way too far toward the side of documents.

We should also remain aware that requirements documents are just one form
of documentation that may exist on a project. Other artifacts will exist: Test plans,
executable test cases, and even code document the behavior (or intended behav-
ior) of the system.

Because code and automated test cases will be produced to deliver a product,
an experienced Scrum team learns to lean heavily on these artifacts. It will aug-
ment these forms of documentation with a written requirements document to
the extent that such a document is helpful or required for regulatory, contractual,
or legal purposes. A written requirements document will still be useful on many
projects. Tom Poppendieck, coauthor of books on lean software development, has
said that "when documents are mostly to enable handoffs, they are evil.When they
capture a record of a conversation that is best not forgotten, they are valuable."

Use User Stories for the Product Backlog
User stories are the best way to shift the focus from writing about features to
talking about them. A user story is a short, simple description of a feature told
from the perspective of the person who desires the new capability, usually a user
or customer of the system. User stories are often written on index cards or sticky
notes, stored in a shoe box, and arranged on walls or tables to facilitate planning

Shif t f r o m D o c u m e n t s to Discuss ions 239

and discussion. As such, user stories strongly shift the focus from writing about
features to discussing them. User stories typically follow a simple template:

As a <type of user>, I want <somegoal> so that <some reason>.

Other t emp la tes are possible. The fo l l ow ing temp la te , for example , is
p r o m o t e d as pu t t ing the va lue of the user s tory at the f ront : In order to
ochieve value>, as <type of user>, I want <some goal>. Having used
both fo rmats , I still prefer s tar t ing w i t h as a <type of user>. For reasons
w h y , see h t tp : / /b log .mounta ingoatsof tware .com/advantages-o f - the-as-a-
user- i -want-user-story- template. M o r e impor tan t than the f o rma t of the
w r i t t e n part of the user story, though , is that the conversat ions surround-
ing the s tory occur.

User stories can be stored in a software tool (and there are many reasons why
you may choose to do so), but whenever possible I prefer to write on simple
3" X 5" index cards. Although a user story is often written on an index card or
sticky note, the text written there is only the beginning. The story card is not
meant to be a complete feature description in the same way we would view "The
system shall..." statements in a software requirements specification. Instead, the
story card serves as a two-way promise between the development team and the
product owner. Team members promise they will talk to the product owner before
beginning work on the story; the product owner promises to be available when
the team is ready to talk.

The team's promise to talk to the product owner before beginning work is
important because it frees the product owner from concerns that every last detail
must be written on the card. Indeed, this is one of the reasons for using such a
lightweight, apparently unimportant medium as index cards. They serve as a con-
stant reminder that the card does not need to hold all the details. The details will
come out during conversations between the product owner and the team.

The product owner's reciprocal promise of availability is important because it
allows the team to accept work into a sprint without having considered all details,
because doing so is impossible anyway. The product owner does not need to be
constantly available to the team, although this is helpful and does lead to higher
productivity. Rather, what the product owner is promising is to be accessible; it
won't take two weeks to schedule a phone call, for example.

http://blog.mountaingoatsoftware.com/advantages-of-the-as-a-

240 Chapter 13 The Product Backlog

" I can ' t p o s s i b l y p u t m y r e q u i r e m e n t s o n i n d e x c a r d s . "
OBJECTION

That 's f ine. Projects w i t h d is t r ibu ted teams , very large teams , traceabil-
ity requ i rements , or simi lar needs o f ten require the use of a so f twa re
tool . A good too l can improve high-level product planning, what - i f scenar io
d iscuss ions, and broad commun ica t i on . However , t e a m s using so f twa re
too ls rather than pen-and-paper are m u c h more likely to s t rugg le w i t h the
shi f t f r o m d o c u m e n t s to d iscuss ion that Sc rum requires. A t e a m using a
tool is m u c h more likely to fall into a number of dangerous t raps, inc luding

• Wr i t i ng over ly long fea ture descr ip t ions
• Having only a subse t of the t e a m (business analysts) w o r k i n g to

unders tand users ' needs
• Resist ing the need to spli t user s tor ies so that comp le te stor ies can

be del ivered w i t h i n a spr int
• Hold ing on to s tor ies that are no longer needed because it 's actu-

ally easier to keep t h e m than to de le te t h e m f r o m the tool

I w o u l d never go so far as to say you cannot be agile w h e n using a tool to
manage your p roduct backlog. I wi l l , however , say that you can be more
agile w i t h pen-and-paper than w i t h a tool . W h e n e v e r th is low- tech opt ion
is possible, use it.

" I ' m a l r e a d y g o o d w i t h use cases ; d o I rea l l y n e e d t o s w i t c h t o user
s t o r i e s ? "

Use cases are an al ternat ive m e t h o d for express ing the funct iona l i ty of a
sys tem. If y o u — a n d the rest of the t e a m including the product o w n e r —
are good w i t h use cases, there may be no reason to sw i t ch . However , use
cases w e r e in tended to be m u c h larger than is c o m m o n for a user story.

In UML Distilled, Mar t in Fowler says that use case or iginator Ivar Jacob-
sen expec ts about 20 use cases for a ten person-year project . That 's six
pe rson-mon ths per use case. Fowler goes on to say he likes smal ler use
cases, perhaps having 100 for a ten person-year project. A s s u m i n g t w o -
w e e k spr ints, a s ix-person t e a m w o u l d take more than t w o spr ints for
each Jacobsen-s ized use case. The same t e a m cou ld f in ish jus t over t w o
Fowler-s ized use cases per sprint.

This conf l ic ts w i t h data I 've co l lec ted f r o m dozens of Scrum t e a m s and
hundreds of spr ints s h o w i n g that s ix-person t e a m s average six to nine
user s tor ies per t w o - w e e k sprint. This indicates that Scrum t e a m s do best
w i t h uni ts of w o r k that are smal ler than a typical use case. So, a l though
you can have use cases on your product backlog, be aware that you ' l l prob-
ably w a n t to w r i t e far smal ler ones than w e r e in tended by their originator.

Shif t f r o m D o c u m e n t s to Discuss ions 2 4 1

" W e w r i t e b a c k - e n d s o f t w a r e t h a t n o use rs eve r see , so use r s t o r i es
d o n ' t m a k e sense f o r u s . " OBJECTION

The w o r d user in user stories makes the approach sound more l imi t ing
than it is. User s tor ies have been successfu l ly appl ied in all sor ts of do-
mains. A s tory that reads, "As the loan authorization system, I want to
receive all data as valid, well-formed XML so that I don't have to worry
about syntax checking," is per fect ly valid. Addit ional ly, a l though I f ind wr i t -
ing stor ies in the As a <type of user>, I want <some goal> so that <some
reason> f o rma t to be best , it may not be best for all projects. If that syntax
doesn ' t f i t w h a t you ' re deve lop ing, w r i t e the backlog in another fo rmat .
I 've had success w i t h Feature-Dr iven Deve lopmen t ' s fea ture syntax of

<action> <result> <object>

Examples us ing th is syntax w o u l d include the fo l low ing :

• Assess the risk of a loan.
• Author ize a cash w i t hd rawa l f r o m an account .
• Ac t iva te the "serv ice n o w " l ight on the dashboard.
• Calculate the f requency of haplotypes.

• If it doesn ' t already exist or isn ' t in good shape, w r i t e your prod-
uct backlog. Invite all pro ject part ic ipants to a mee t i ng and do th is
col laborat ively on index cards. Remind a t tendees that the tex t on
a s tory card serves as a p romise to have a fu tu re d iscuss ion; not
every detai l needs to be included.

• Print all of the d o c u m e n t s that w e r e w r i t t e n on the last project or a
typical project. W i t h everyone present , d iscuss h o w long each took
to w r i t e and maintain, w h e t h e r it w a s used later, and w h a t w o u l d
have happened (good or bad) if it had not been wr i t t en . W h i l e do ing
this, create a pile of d o c u m e n t s you agree wi l l be usefu l on t he cur-
rent project and o thers you can d ispense w i th .

• If you are current ly using a too l to manage your p roduct and spr int
backlog, give it up for at least t w o spr ints. A t the end of the p lanned
number of spr ints, use the re t rospect ive to d iscuss h o w it w e n t .
See if you can abandon the tool a l together or reduce your rel iance
on it t o w a r d the use of conversat ion or paper.

• In your next spr int re t rospect ive, ask t e a m m e m b e r s to w r i t e d o w n
the so f twa re tool they w o u l d m o s t like to s top using. W h e n every-
one has f in ished, share the answers . If one or t w o too ls have been
cons is tent ly named, d iscuss the pros and cons of e l iminat ing the
tool and then consider d u m p i n g it.

THINGSTO
TRY NOW

2 4 2 C h a p t e r 13 T h e P roduc t Back log

Progressively Refine Requirements
W h e n starting a new project, the struggles of the previous project are fresh in our
minds. In reflecting on those struggles, a common conclusion is that if we'd only
tried harder or done more of something, we might have done better. Although
this may sometimes be true, in the case of requirements-gathering it is often not.
N o matter how long or how hard we work at the start of the project to identify
all desired features, we cannot succeed. There are always some things that users
and developers cannot be expected to think of until they start to see the system
take shape.

Emergent Requirements
These features that we cannot identify in advance are called emergent requirements.
W h e n someone identifies an emergent requirement, she usually announces it to
other team members and users by saying, "Seeing that makes me think of this . . ."
or,"That gives me an idea. . ." or even occasionally,"Holy crap, we never thought
about . . . "There will always be some things that we think of only after we can see
the software. One reason Scrum puts so much emphasis on having working code
at the end of each sprint is to create a situation where emergent requirements can
be discovered sooner rather than later.

Emergent requirements exist on every nontrivial project, and they can cause
problems. For example, emergent requirements make it impossible to perfectly
predict schedules. Similarly, an up-front design phase will always be imperfect
because it will be impossible for the designers to consider the emergent require-
ments until they do, in fact, emerge.

W h e n using a sequential development process, project managers handle
emergent requirements by adding contingency buffers to the plan and by devot-
ing significant energy to proactive risk management. W h e n an emergent require-
ment appears, it is viewed as a failure of the plan. In contrast, a Scrum team accepts
that requirements will emerge, no matter how carefully team members plan. And
rather than view emergent requirements as a failure of the plan, they are viewed
as a result of planning either too early or in too much detail.

The first step in dealing with emergent requirements is to acknowledge that
we cannot think of everything. After acknowledging that some requirements will
emerge as we build the system, it is easier to accept the idea that we don't need
(and in fact cannot have) a perfect requirements document up front that specifies
all the details of the system to be built. In fact, rather than strive for this degree of
completeness, we are better off to specify features with different levels of precision
based on when the feature will be worked on.

Progressively Refine Requ i rements 243

" I u n d e r s t a n d t h a t t h i n g s w i l l c h a n g e — t h a t r e q u i r e m e n t s can e m e r g e .
Bu t I need t o s p e c i f y al l r e q u i r e m e n t s at t h e s ta r t o f t h e p r o j e c t be-
cause t h e r e q u i r e m e n t s b e c o m e pa r t o f t h e c o n t r a c t . "

OBJECTION

As m u c h as w e ' d like to lock d o w n requ i rements in a contract , w e can' t .
W e can pre tend requ i rements are locked d o w n and w o n ' t change, but
s o m e a lways do. The best cont racts ref lect th is or at least acknow ledge
that change wi l l happen. Trond Pedersen descr ibes it th is way, "Compla in -
ing about requ i rement change is like compla in ing about the weather . You
can' t really change the w a y the w o r l d is, but you can f ind w a y s to deal
w i t h it. Don ' t make an o f fe r ing to Thor [the Viking god of thunder] to make
the rain s top; get an umbre l la . "

The Product Backlog Iceberg
Fortunately, it is easy to write a product backlog that contains features written
with different levels of detail. The product backlog items that a team will work on
soon must be known in sufficient detail that each can be programmed, tested, and
integrated within a single sprint. This leads to the user stories at the top of the
product backlog being small but reasonably well understood. User stories that are
further down are larger and understood in less detail.These epic user stories are left
large, often known only in enough detail that each can be estimated approxi-
mately and then prioritized. This leads the product backlog to take on the shape
of an iceberg, as shown in Figure 13.1.

At the top of the product backlog iceberg are the small features the team can
fully implement within a sprint. As we look further down the product backlog
iceberg (and therefore further into the future), items on the backlog become

2 4 4 C h a p t e r 13 T h e P roduc t Back log

SEE ALSO
Look ing ahead d o w n
t h e p roduc t back log is
o f t e n done by ana lys ts ,
user expe r i ence
des igners , and o the rs
w i t h s imi la r ski l ls. H o w
t o do so is desc r i bed in
C h a p t e r 1 4 , " S p r i n t s , " in
t h e sec t i ons " P r e p a r e
in Th is Spr in t f o r t h e
N e x t , " and " W o r k
Toge the r T h r o u g h o u t
t h e Sp r in t . "

increasingly larger until we reach the waterline. The team has no idea what lurks
beneath there; those are features that haven't even been discussed yet.

Grooming the Product Backlog
As items are developed and removed from the top of the product backlog, the
iceberg develops a flat spot at the top and loses its shape. To counter this effect,
time must occasionally be spent grooming the product backlog. Grooming the product
backlog does not refer to combing its hair. Like me, most product backlogs have
no hair. Rather, I use groom here in the same sense that this morning's ski report
said my local mountains have "groomed, packed powder" and that the Oxford
American Dictionary defines as meaning "to look after." A team needs to groom, or
look after, its product backlog.

A good rule of thumb seems to be that about ten percent of the effort in each
sprint should be spent grooming the backlog in preparation for future sprints. This
time may come f rom one individual (perhaps an analyst) whose role on the team
is largely focused on the backlog. Or it may represent smaller efforts coming from
each team member.

Conversations about the product backlog are not limited to a single time or
meeting; they can happen any time and among any team members.

It's the conversations about user stories that enable developers
to understand what needs to be built. [A ScrumMaster needs
to] encourage conversations about the user stories to keep
happening—before planning meetings, in planning meetings, and
after planning meetings. (Davies and Sedley 2009, 75)

Your goal should not be to begin each sprint with a perfect understanding of
the product backlog items that will be developed during the sprint. A good Scrum
team does not need a perfect understanding of a feature before it starts working
on it. Rather, at the start of the sprint, the feature needs only to be sufficiently
understood that the team has a reasonably strong chance of finishing it during
the sprint. Instead of striving to understand all features up front, we want a just-
in-time, just-enough approach to understanding features on the product backlog.
Large features are split apart and details added to small features just in time as they
move up the backlog. Each is described in just-enough detail that the team can
complete it during the sprint.

This is not to say that a team cannot choose to put some time into under-
standing items further down on the product backlog iceberg. In fact, doing so is
often necessary. If the team thinks an i tem further down the product backlog may
have an impact on items above it, it can put some effort into understanding it. This
often results in the item being split into multiple, smaller product backlog items.
However, given our history of favoring up-front understanding of all features,
teams should be careful to make sure there is a real need to better understand an

Progressively Ref ine Requ i rements 245

item before putting more early effort into it than would otherwise be warranted
based on the item's position on the product backlog.

" W e ' l l n e v e r f i n d t i m e t o g r o o m t h e p r o d u c t back log . W e can b a r e l y
keep u p w i t h o u r c o d i n g t a s k s . "

R e m e m b e r that Sc rum requires you to plan for change. T ime m u s t be
budge ted for g room ing the product backlog. It may not be needed in ev-
ery spr int , but you ' l l need to do it o f ten enough to keep smal l , spr int-
s ized i tems at the top of the product backlog wh i l e defer r ing i nves tmen t
in i t ems that wi l l be w o r k e d on fu r ther in the fu ture.

OBJECTION

Why Progressively Refine Requirements?
It can be comforting to start a new project by identifying "all" of the requirements.
However, because every project has some emergent requirements, it can't be done.
Fortunately, there are advantages to progressively refining requirements, including
the following:

• Things wi l l change. Over the course of a project, priorities will shift.
Some features that were initially thought to be important will become
less so as the system is shown to potential users and customers. Other
needs will be discovered and have to be properly prioritized. If we ac-
knowledge that change is inevitable, the advantages of structuring your
product backlog like an iceberg become more apparent. The features most
likely to change are those that will be done further into the future; to ac-
count for the increased likelihood of change, these features are described
only at a high level.

• There's no need. Novelist E.L. Doctorow has written that "writing a novel
is like driving at night in the fog.You can only see as far as your headlights,
but you can make the whole trip that way." Software development is the
same way. My headlights don't illuminate everything between me and the
horizon because they don't need to. They light the way far enough for
me to see and respond at the speeds my car can safely travel.The iceberg-
shaped product backlog works similarly. Enough visibility is provided into
upcoming items that teams see far enough into the future to avoid most
issues. The faster a team goes, the further ahead in the product backlog it
will need to peer.

• Time is scarce. Nearly all projects are time constrained. We want more
than will fit in the time allotted. Treating all requirements as equivalent is
wasteful. With a limited supply of one of a project's most critical resources
(time), we need to be protective of it. If it is sufficient for now to describe

246 Chapter 13 The Product Backlog

a future feature at a high level, this is all that should be done. When that
future feature needs to be better understood—whether because it has
moved to the top of the product backlog or because we expect it to
influence the implementation of another feature—we can describe it in
more detail.

Progressive Refinement of User Stories
An agile requirements process must support the creation of requirements at the
various levels shown in the product backlog iceberg of Figure 13.1. Team mem-
bers must be able to easily create large, placeholder requirements that lie at the
bottom of the product backlog iceberg, later disaggregate them into medium-size
items, and eventually split them into small-enough pieces that each can be deliv-
ered by the team in a single sprint. Just as user stories work well in shifting the
emphasis from writing about requirements to talking about them, they also fit well
onto the product backlog iceberg. This is because of the ease with which we can
move between large and small user stories.

A large user story is typically referred to as an epic. Although there is no magic
size at which we start calling a user story an epic, generally an epic is a user story
that will take more than one or two sprints to develop and test. Because a team
must be able to completely finish a user story within the sprint in which it starts
it, this means that epics will be split into smaller user stories before work begins on
them. Let's look at an epic and how it may be split into smaller pieces. Consider
the following:

• As a user, I am required to log into the system so that my information
can only be accessed by me.

This may not appear to be an epic, and it may not be one in all cases. How-
ever, for our purposes, let's assume that the product owner clarifies that this simple
story is intended to cover everything to do with logging in—requesting a new
password, changing the password, and so on. It is about more than pressing a Login
button on one screen. Based on this, the team decides the story will probably take
two or three sprints to develop and test. This makes it an epic. Because it's an epic,
it is split into smaller stories, each of which the team thinks can be completed
within a single sprint. Here's one possible set of smaller user stories:

• As a registered user, I can log in with my username and password so that
I can trust the system.

• As a new user, I want to register by creating a username and password so
that the system can remember my personal information.

• As a registered user, I can change my password so that I can keep it
secure or make it easier to remember.

Progressively Ref ine Requ i rements 247

• As a registered user, I want the system to warn me if my password is easy
to guess so that my account is harder to break into.

• As a forgetful user, I want to be able to request a new password so that I
am not permanently locked out if I forget it.

• As a registered user, I do not want to be sure if it was the username,
password, or both that was wrong when my login attempt fails so that
someone trying to impersonate me will have a harder time doing so.

• As a registered user, I am notified if there have been three consecutive
failed attempts to access my account so that I am aware if someone is
trying to access my account.

After an epic is split into smaller stories, I recommend that you get rid of it.
Delete it from the tool you're using or rip up the index card.You may choose to
retain the epic to provide traceability, if that is needed. Or you may choose to re-
tain the epic because it can provide context for the smaller stories created from it.
In many cases, the context of the smaller user stories is obvious because the epics
should be split in a just-in-time manner as noted earlier. When an epic is ripped
up and turned into smaller user stories shortly before the team begins work on it,
remembering the context of the small stories is much easier.

Some Epics Are So Large They Split into Epics
In the case of a much larger epic than our password example, the split may occur
in multiple steps: first into some medium-sized stories (perhaps epics themselves),
then later into smaller ones. As an example of a larger epic, consider this user story
from a company developing software for use by large retail stores:

• As a vice president of marketing, I want to review the performance of
historical advertising campaigns so that I can identify profitable cam-
paigns worth repeating.

The idea was that the vice president would be able to browse through statis-
tics on various past advertising campaigns and select the best ones to repeat. For
example, which worked best: the television ads during Desperate Housetviues, the
twice-a-day radio ads, the Thursday newspaper inserts, or the e-mail campaign?

It was clear to all involved on this project that this initial story was too large to
complete in one of their two-week sprints. So the story was split in two:

• As a vice president of marketing, I want to select the time frame to use
when reviewing the performance of past advertising campaigns so that I
can identify profitable ones.

• As a vice president of marketing, I want to select which type of cam-
paigns (direct mail, TV, e-mail, radio, and so on) to include when re-
viewing the performance of historical advertising campaigns.

2 4 8 C h a p t e r 13 T h e P roduc t Back log

The team felt that these stories, while smaller, might still be too large to com-
plete within a sprint, so they were split further. The story about selecting the time
frame to use was split into three stories:

• As a vice president of marketing, I want to set simple date ranges to be
used when reviewing the performance of past advertising campaigns so
that I can pick an exact set of dates.

• As a vice president of marketing, I want to select seasons (spring, sum-
mer, winter, fall) to be used when reviewing the performance of past
advertising campaigns so that I can view trends across multiple years.

• As a vice president of marketing, I want to select a holiday period
(Easter, Christmas, and so on) to be used when reviewing the perfor-
mance of past advertising campaigns so that I can look for trends across
multiple years.

After this final split, the team felt the stories were small enough to complete
during a sprint and stopped there. Notice though that even these stories may
not be trivial to implement. Selecting holiday ranges such as "f rom Good Friday
through Easter Sunday" or f rom "Thanksgiving until Christmas" will be difficult
because the dates move around from year to year. There was a chance the team
could have considered these too big.

In many cases it will be possible to go from a large epic near the waterline of
the iceberg directly to small, implementation-size stories. Whether you choose to
go through the intermediate step of splitting a large epic into multiple smaller ep-
ics will be up to you and largely driven by the context of the project.

Adding Conditions of Satisfaction
Eventually stories are small enough that splitting them further is no longer help-
ful. At this point it is still possible to progressively refine the requirement by add-
ing conditions of satisfaction to the user story. A condition of satisfaction is simply a
high-level acceptance test that will be true after the user story is complete. As an
example, let's reconsider the following story:

• As a vice president of marketing, I want to select a holiday season to be
used when reviewing the performance of past advertising campaigns so
that I can identify profitable ones.

We've already established that this is small enough for the team to complete
in a sprint. So let's continue to progressively refine this requirement by working
with the product owner to add its conditions of satisfaction. To do so, we turn the
index card over (metaphorically if you're using a product backlog management
tool or wiki) and write the following conditions of satisfaction:

Learn to Start W i t h o u t a Speci f icat ion 249

• Make sure it works with major retail holidays: Christmas, Easter, Presi-
dent's Day, Mother's Day, Father's Day, Labor Day, New Year's Day.

• Support holidays that span two calendar years (none span three).

• Holiday seasons can be set from one holiday to the next (such as
Thanksgiving to Christmas).

• Holiday seasons can be set to be a number of days prior to the holiday.

Progressive refinement by adding conditions of satisfaction helps the team
members by telling them the product owner's expectations for that feature. These
can be expectations about what will be included and about what will not be. For
example, given the conditions of satisfaction for this story, it's clear that we do not
need to support Chinese New Year. Although I seize every opportunity to enjoy
a spicy Chinese meal, it is not exactly a big shopping holiday here in the United
States. Of course, the product owner could have made this even more obvious by
explicitly stating, "Does not need to support Chinese New Year." But even that is
probably not necessary because the conversations that support this written part of
the user story should bring out details such as that.

• Conver t your ex is t ing product backlog to user stor ies. Print each
current p roduct backlog i tem on an index card. Group similar cards
on a large table or f lat surface. For high-prior i ty groups of cards,
w r i t e individual user stor ies. Be aware that there wi l l probably not
be a one- to-one correlat ion b e t w e e n old product backlog i t ems
and n e w user stor ies. For lower-pr ior i ty groups, replace each group
w i t h a s ingle epic. Paper clip or staple the old cards behind the n e w
epic, so you ' l l have t h e m for re ference w h e n it's t i m e to spl i t the
epic into sprint-size user stor ies.

• Dur ing your next spr int p lanning mee t ing , make sure that each user
s tory you are br inging into the spr int has clearly ident i f ied condi-
t ions of sat is fact ion by the t i m e that m e e t i n g ends. Dur ing t he fol-
l ow ing spr int re t rospect ive, d iscuss w h e t h e r having these ident i f ied
w a s helpful .

Learn to Start Without a Specification
Because a Scrum team shifts its focus from writing requirements to talking about
them and then progressively refines those requirements over the course of the
project, the team is left without the comfort of starting with a traditional specifi-
cation document. Many groups—quality assurance and technical writing foremost
among them—will find this very disconcerting. Part of transitioning to Scrum
and achieving long-term success with it will be learning how to comfortably get
started on a project without a "complete" specification document.

THINGSTO
TRY NOW

2 5 0 C h a p t e r 13 T h e P roduc t Back log

First, I should be clear that the goal is not to throw out what may be a useful
document .What we want instead is to use a specification document appropriately.
Apart f rom meeting regulatory or compliance needs, the primary appropriate use
of a specification document is to convey information that is best done in writing.
Complex or detailed calculations such as might be found in scientific and math-
ematical applications are good examples, but there can be many others.

One of the dangers of specification documents is that they are seldom kept up
to date. Before you write a document, ask yourself if you are willing to commit
to updating the document. If not, either think twice about writing it or consider
putting an expiration date on the document, similar to the "best if used by" date
on a milk carton.

Specify by Example
Another thing you may want to do is change how you write your specifications.
Consider specifying a product through examples. Examples are a wonderful way
to communicate the desired behavior of a system, especially when augmented
with conversations and some small amount of explanatory written text. Gojko
Adzic, author of the book Bridging the Communication Gap, describes the value of
using examples to explain behavior.

Working with real-world examples helps us communicate better
because people will be able to relate to them more easily. It is also
easier to spot inconsistencies between realistic examples. Devel-
opers, business people, and testers all need to participate in the
discussion about examples. Developers learn about the domain
and get a solid foundation for implementation. Testers obtain the
knowledge they need firsthand, and they can influence the devel-
opment by suggesting important cases for discussion. (2009, 32)

To see how this works, suppose we are building a system for use within our
company that will automatically approve or reject requests for time off. The first
thing our product owner wants is for the system to automatically approve requests
that are for fewer days than the employee has already accrued. She writes a user
story to describe this: "As an employee, I want a request for up to my earned vacation
time to he automatically approved so that I don't need to wait for someone to approve it
manually." The product owner, perhaps working with a tester, then elaborates by
providing the examples shown in Table 13.1.

Learn to Start W i t h o u t a Speci f icat ion 2 5 1

daysaccrued daysrequested approved?

6 5 Yes

5 6 No

5 5 Yes

TABLE 13.1
Examples showing
that a request for
more t ime off than
has been accrued
wi l l not be auto-
matical ly approved.

The rows of Table 13.1 show different test cases.The first two columns show
the test data of those test cases. The final column indicates what the result of the
test should be. So, the first row describes an employee who has accrued six days
of time off and has requested five days. In the final column we can see that this
request should be approved.

This is an admittedly simple illustration of specification by example, so let's
see what happens when the product owner writes the next user story: "As an
employee who has been here more than a year, I want automatic approval of a time-off
request that is up to five days more than I've currently accrued." Specifying this through
examples, the product owner creates Table 13.2.

days_accrued daysrequested employed_over_1_year approved?

10 11 No No

10 11 Yes Yes

10 11 No No

10 15 Yes Yes

10 16 Yes No

TABLE 13.2
A sl ight ly more
involved example
begins to show the
power of specifica-
t ion by example.

Table 13.2 is still fairly simple but hopefully it starts to show the power of
specification by example.1 I won't create more detailed examples, but notice how
specification by example becomes even more helpful as the scenarios become
more complex. For example, in the preceding user stories the number of days
accrued was fixed. In many companies time off is accrued monthly. So a request
that might be rejected today could be one that would be approved if the date of
the desired time off is three months into the future. To specify a situation such as
that with examples, we would add to the table such columns as the request date,

1 This example has been intentionally kept simple so as to show how specification by
example works. A more thorough implementation of the same example but showing bet-
ter ways to construct equivalent tables has been provided by Jeff Langr, author of Agile Java.
His implementation is available at www.informit.com/articles/article.aspx?p=1393274.

http://www.informit.com/articles/article.aspx?p=1393274

2 5 2 C h a p t e r 13 T h e P roduc t Back log

SEE ALSO
Fi tNesse, available
f r o m w w w . f i t n e s s e .
org, is m y favor i te too l
for do ing th is . It a l lows
you to create and run
tes t s that spec i f y func -
t ional i ty by examp le al-
m o s t exact ly as s h o w n
here. A n o t h e r popular
too l is Cucumber .

the time off start date, and the rate of accrual. Explaining a detailed requirement
such as this through a combination of conversations and examples increases the
likelihood that what the product owner thinks she's asked for is what the develop-
ers build.

Specification by example becomes extremely powerful when the examples
can be turned into automated tests. This is not as far-fetched as it may seem.
O n e of the biggest benefits is that we can instantly tell if the specification is out
of date—run the automated tests, if they pass then the application conforms to
the specification. The tests become self-verifying specifications.They both express
detailed design decisions and automatically verify that the application conforms
to that specification.

This is exactly the approach taken by TrondWingard, an agile project manager
in Norway. Wingard's team made extensive use of TitNesse, a wiki for creating
executable tests and specifications in the fo rm of tests. His project's approach is
shown in Tigure 13.2 and described by Wingard as follows:

We have a policy that all requirements and tests should be in
TitNesse—no exceptions. Even if we find that we need some
manual tests, they too should be described in the TitNesse wiki,
not somewhere else. The front page contains a list of nine "user
epics" linked to a page for each epic. O n each of those pages, the
epic is described in user story format, followed by a list of each of
the user stories that make up this epic. Each story corresponds to
an item on the Product Backlog and is linked to the story's page.
O n a story page, the story is described followed by a grouped list
of Conditions of Satisfaction. These C O S are grouped, and each
group has its own page with TitNesse tests for them. This struc-
ture was very easy to set up and easy to grasp and is a real help for
the team.

FIGURE 13.2
A s e r i e s o f F i t N e s s e
w i k i p a g e s t h a t g o
f r o m h i g h - l e v e l re-
q u i r e m e n t s w r i t t e n
as e p i c s a l l t h e w a y
t o t e s t cases f o r
e a c h use r s t o r y .

r s i • • • •

9 £f io5

J

/{As a uíer, I ivanf..
^ ¿'roup o^ COS

COS
COS

As a MSê want...
A? a MSê want...
A? a MSê want...

>

4 r&Heííe +65+5

http://www.fitnesse

M a k e t h e P r o d u c t Back log DEEP 2 5 3

Cross-Functional Teams Reduce Documentation Needs
A common objection to getting rid of or reducing the scope of specification
documents is that these documents are the only way some groups learn what
is expected of the system. A Q A group, for example, may reason that without a
specification document it will not know which behavior is expected and which is
buggy. In an organization's pre-Scrum days this would likely have been true. The
programmers may have met on their own, made decisions, and then relayed the
decisions to the testers through specification documents. After years of exposure
to working this way, it would be fair for testers to assert that without the specifica-
tions they won't know what to test.

O n a Scrum project, however, the programmers and testers work as one team.
There is no programming team that hands off work to a testing team. Instead,
there is a cross-functional, multidisciplinary team. The testers don't need the same
type of documents because work isn't handed off to them in the same way it was
in the past. In fact, work isn't handed off to them at all. A tester should be part
of the discussion whenever what would have gone in the document is discussed.

Back in my pre-agile days, I often found myself in the middle of arguments
between the programmers and testers on a project. The testers complained that
programmers weren't keeping documents up to date; the programmers com-
plained that they didn't benefit f rom the documents. After hearing these same
arguments repeated on a handful of projects, I came to the realization that those
who benefit f rom a document should be the ones to write it. Because the testers
were the ones who claimed to benefit f rom the detailed specifications that the
programmers were not maintaining, they became the ones responsible for writing
and maintaining the document. N o t only did this solve my problem, it introduced
the additional benefit of forcing the programmers and testers to talk earlier and
more frequently so the testers would have the information they needed to write
their document. Johannes Brodwall reports using a similar strategy.

Testers were used to getting very vague, yet very detailed docu-
ments and had to try to reinterpret these as test cases. Wi th a
more agile approach, the tester is actually the one who's respon-
sible for writing the detailed specification in the first place. Today,
we have the tester write the "specification" in terms of testable
scenarios at the beginning of an iteration.

Make the Product Backlog DEEP
R o m a n Pichler, author of Agile Product Management with Scrum: Creating Products
That Customers Love, and I use the acronym DEEP to summarize key attributes of
a good product backlog.

254 Chapter 13 The Product Backlog

• Detailed Appropriately. User stories on the product backlog that will be
done soon need to be sufficiently well understood that they can be com-
pleted in the coming sprint. Stories that will not be developed for awhile
should be described with less detail.

• Estimated. The product backlog is more than a list of all work to be done;
it is also a useful planning tool. Because items further down the backlog
are not as well understood (yet), the estimates associated with them will
be less precise than estimates given items at the top.

• Emergent. A product backlog is not static. It will change over time. As
more is learned, user stories on the product backlog will be added, re-
moved, or reprioritized.

• Prioritized. The product backlog should be sorted with the most valuable
items at the top and the least valuable at the bottom. By always working
in priority order, the team is able to maximize the value of the product
or system being developed.

Don't Forget to Talk
Although a project's product backlog will be written somewhere—typically on
index cards or entered into a software tool—the product backlog is not a one-
to-one replacement for a traditional project's requirements document or use case
model. Just as important as what is written in the actual product backlog are the
conversations that surround it. These conversations occur when the team and
product owner work together to brainstorm items for the initial product backlog
And they happen during a sprint as the team and product owner progressively
refine their understanding of a feature. In looking to improve your team's use of
the product backlog, don't forget the importance of these conversations.

Additional Reading
Adzic, Gojko. 2009. Bridging the communication gap: Specification by example and agile accep-
tance testing. N e u r i Limited.

This excellent book describes the reasons why communicat ing about requirements is
difficult. It then proposes specification by example as the solution. Particularly valu-
able is the chapter on selecting examples. T h e book also includes a chapter on tools
that facilitate specification by example.

Cao, Lan, and Balasubramaniam Ramesh. 2008. Agile requirements engineering prac-
tices: An empirical study. IEEE Software, January/February, 60—67.

T h e authors of this academic research paper studied requirements gathering at 16
software development organizations that were using agile approaches. From this study

Addit ional Reading 255

they identified the benefits and challenges of using a handful of specific agile require-
ments practices.

Cohn , Mike. 2004. User stories applied: For agile software development. Addison-Wesley
Professional.

This book is a thorough explanation of working wi th user stories. In it I wri te about
identifying user roles, wri t ing user stories, conducting story-writ ing workshops, the
six attributes of good user stories, and even h o w to plan a project wi th user stories.

Mugridge, Rick , and Ward Cunningham. 2005. Fit for developing software: Framework for
integrated tests. Prentice Hall.

Fit, the Framework for Integrated Tests, is an open source product. It can be used to
create human-readable automated tests that can specify behavior through examples,
similar to the tables shown in the last section of this chapter. T h e first 180 pages are
readable by anyone on the project, technical or not, and show h o w Fit can benefit
a projec t .The next 150 or so pages are meant for those wi th a programming back-
ground and dive into the specifics of using Fit.

Chapter ^

S p r i n t s

ike all of the agile processes, Scrum is an iterative and incremental approach
to software development. Although the terms iterative and incremental each have a
unique meaning, they are often used together. Let's briefly tease them apart so we
can better understand their meanings.

Incremental development involves building a system piece by piece. First one
part is developed, then a next is added to the first, and so on. Alistair Cockburn
describes incremental development as primarily a "staging and scheduling strat-
egy" (2008). An incremental approach to developing an online auction site might
involve first developing the capability to create accounts on the site, next develop-
ing the capability to list items for sale, and then developing the capability to bid
on items, and so on.

By contrast, iterative development is what Cockburn refers to as a "rework
scheduling strategy" (2008). An iterative development process acknowledges the
impossibility (or at least improbability) of getting a feature right the first time. In
building an online auction site iteratively, we may first develop a preliminary ver-
sion of the full site, get feedback on it, develop a subsequent version of the full site
that incorporates the feedback, and repeat the process as needed.

So in an incremental process, we fully develop one feature and then move
onto the next. In an iterative process, we build the entire system but do so imper-
fectly at first, using subsequent passes across the entire system to improve it. The
weaknesses inherent in being only iterative or only incremental disappear when
they are combined, as they are in Scrum.

In this chapter we examine how Scrum's sprints combine iterative and in-
cremental development. We consider the importance of ending each sprint with
working software that is valuable to the system's users or customers. You will see
why it's necessary for the whole team to work together during the sprint. Along
the way, we also look at how a Scrum team ensures that it finishes one sprint
prepared for the next, the importance of setting and sticking with a goal for the
sprint, and the need to timebox how long the team has to achieve a goal.

2 5 7

258 Chapter 14 Spr ints

SEE ALSO
Feature and c o m -
p o n e n t t e a m s w e r e
desc r i bed in Chap te r 10,
" T e a m S t r u c t u r e . "

SEE ALSO
M o r e on ad jus t ing
s c o p e can be f o u n d
in t he sec t i on "Favo r
S c o p e Changes W h e n
P o s s i b l e " in Chap te r 15,
" P l a n n i n g . "

Deliver Working Software Each Sprint
By the end of each sprint, a Scrum team is required to produce working soft-
ware. Working software is software that is both complete and potentially shippable.
Working software is required from both feature teams and component teams.
Learning how to deliver working software each sprint is one of the biggest chal-
lenges that a new Scrum team must overcome.Yet doing so is critical to becoming
agile. In fact, it's so important that one of the four values given in the Agile Mani-
festo states that we are to value "working software over comprehensive documen-
tation" (Beck et al. 2001). Agile methodologies emphasize working software for
three key reasons:

• Working software encourages feedback. A team can collect more and
better feedback if it shows (or better, gives) a functioning but partial prod-
uct to users than if it provides those users with a document about what
the product will do. Not only will users provide better feedback from be-
ing able to see and touch the product, they will be more likely to engage
in the request to provide feedback in the first place. A 50-page product
specification is too likely to get buried and ignored.

• Working software helps a team gauge its progress. One of the biggest
risks on a project is not knowing how much remains to be done. When
too much of a system is allowed to linger too long in an unfinished state,
it is extremely difficult to know how much effort will be required to
bring the system to a shippable state. By emphasizing working software
and requiring the delivery of some portion of user value in each sprint,
Scrum teams avoid this problem.

• Working software allows the product to ship early if desired. In today's
competitive and rapidly changing world, the option to ship early (even
if that means delivering fewer features) can be very valuable. Putting the
software in or near this position at the end of every sprint provides this
option.

Defining Potentially Shippable
In the mid-1990s, it became popular for teams doing iterative and incremental
development to set the target of periodically bringing the application to a "Zero
Defect (ZD) milestone." Jim McCarthy, former director of the Microsoft Visual
C + + group, wrote and spoke often about ZD milestones.

Zero defects does not mean that the product does not have bugs,
or missing functionality; it means that the product achieves the
quality level that had been set for that milestone. The product is
tested to that effect. The essential point of ZD milestones is that

Del iver W o r k i n g S o f t w a r e Each Spr in t 2 5 9

nobody makes the milestone until everybody does, and nobody
leaves it until everybody does. This enables the team to discover
what aspects of the project are in trouble.

At a milestone, the team and its leadership also have the op-
portunity to perceive the whole project status simultaneously,
to draw conclusions about erroneous practices, to remedy bad
design decisions, and to reorganize for peak performance. . .The
team develops extraordinary focus and introspection about each
and every milestone. (2004)

Although McCarthy's Z D milestone is still a good target for many teams,
Scrum teams set their sights higher and target the delivery of potentially ship-
pable software at the end of each sprint. But what does potentially shippable mean?
To fully define potentially shippable would require knowledge of the domain and
application that only the team, including its product owner and ScrumMaster,
will have. In fact, one thing any new team should do is discuss and agree on a
definition of done that defines a potentially shippable product increment appro-
priate for its environment. Each product backlog item brought into a sprint will
then be expected to comply with these criteria before being considered complete.
Chapter 13, "The Product Backlog," introduced the idea of conditions of satisfac-
tion as acceptance criteria for individual user stories. In many ways, the elements
that comprise a team's definition of done are like conditions of satisfaction that are
applied across all user stories on the product backlog.

As an example, ePlan Services, which offers retirement accounts to small com-
panies, defines done to include "coded, tested, checked-in, well-written, integrated,
and has automated tests." Each product backlog item the team works on needs
to comply with these expectations in addition to its item-specific conditions of
satisfaction. Consider this ePlan Services user story: "As a user, I can pay account
maintenance fees by credit card so that fees are not taken from my after-tax retirement ac-
count. " For this user story, let's say that the product owner provided the following
conditions of satisfaction:

• Accept Visa, MasterCard, and American Express.

• D o not store credit card information in our system.

• Process all transactions in a secure manner.

So not only would these conditions of satisfaction have to be met, but also
the conditions set forth in the project-specific definition of done (coded, tested,
checked-in, well-written, integrated, and has automated tests) would need to be met.

260 Chapter 14 Spr ints

" O u r a p p l i c a t i o n is t o o c o m p l e x t o be d e v e l o p e d i n c r e m e n t a l l y . "
OBJECTION

Usually th is a r g u m e n t means that it 's too hard to th ink of w a y s to bui ld
the product incremental ly , rather than it is actual ly imposs ib le to do. W h e n
I am presen ted w i t h th is a rgumen t , I ask the person mak ing it to tel l m e
w h e r e s o m e natural breakpoints are in the appl icat ion. She wi l l usually
provide m e w i t h th ree or four parts of the sys tem, and she wi l l be correct
that each is too large to f i t into a sprint. However , once she acknow ledges
that w e can w o r k incrementa l ly (even if the i nc remen ts are too large at
th is point in the discussion), I 've w o n the a rgumen t that "ou r appl icat ion is
too comp lex to be deve loped incrementa l ly . " A t that point w e both agree
it is possib le; w e just need to f ind w a y s to spli t the logical p ieces of func-
t ional i ty so that each can be deve loped w i t h i n a sprint.

Next , I make the point that wh i l e w e w a n t to del iver potent ia l ly shippable
p ieces of the product each spr int , w e do not need to end each spr int w i t h
a cohes ive product . That is, wh i l e the product needs to be sol id at the end
of each spr int , w e call it potentially sh ippable as a reminder that the devel-
oped fea tures may not be su f f i c ien t ye t to be t ru ly shippable.

Identifying Potentially Shippable Guidelines
Although it is up to the organization or team to establish an appropriate definition
of done for its context, there are certain guidelines that are applicable across most
Scrum projects in most organizations.

Potentially shippable means tested. Although the exact definition of what con-
stitutes potentially shippable belongs either to the organization or the team, I
can't think of a situation in which it would be OK for the team to leave testing
out of this definition. By the end of the sprint, we must have the expectation that
new features are bug free and that no bugs were introduced into old features. For
some products, we may not be 100% sure of this, but we would always like to be
as close to sure as possible. That being said, special-purpose types of testing such
as integration testing, performance testing, usability testing, and so on may not be
performed every sprint. Rather, these types of testing can be performed in release
sprints that may be inserted following every handful or so of regular sprints.

As an example of the proper use of a release sprint, consider a bank I worked
with that had a large legacy application on a mainframe. It consisted of a few mil-
lion lines of COBOL code that was being maintained by a handful of developers
using the same sequential process they'd used for two decades. There was little ac-
tive development on this part of the system, which was fortunate because testing
this beast took three weeks of manual effort.

Deliver W o r k i n g So f twa re Each Sprint 2 6 1

The bank also had a relatively small, 300,000-line Java application that pro-
vided web-based access to the same financial data. Both applications shared the
same database. This meant that it was possible for the web application to write
data to the database that would adversely affect the COBOL application.The web
application had been written mostly by a Scrum team.

As a good Scrum team should, the web team targeted a potentially ship-
pable product at the end of each sprint. Members defined potentially shippable as
well-written and tested to a point that they were reasonably sure no important
(money-affecting) bugs remained. This involved writing the best code they could
and adding to and then running a complete set of automated tests on the web
application. This put the web application in a potentially shippable state in their
minds. Going from potentially shippable to shippable required an occasional re-
lease sprint during which the three weeks of manual testing of the mainframe
application was performed.

Potentially shippable does not necessarily mean cohesive. Just because a prod-
uct is potentially shippable doesn't mean anyone wants us to actually ship it yet.
Sometimes it takes two, three, or more sprints for a feature set to come together in
a minimally useful manner. However, during the sprints leading up to that point,
the team should still strive to put the product into a potentially shippable state by
the end of each sprint.

As an example, consider a company that was adding printing and print pre-
view to its product. During sprint planning, the team decided it could not add
printing and print preview within the same sprint. With the product owner's
blessing, the team elected to work on print preview first. It successfully completed
print preview by the end of the sprint. At that time, print preview was rock solid;
it was well-written, thoroughly tested, and the product could have been shipped
with it. However, who would want a product with print preview but without
printing? Still, the lack of a cohesive feature set after that first sprint does not pre-
vent the product from being potentially shippable. If someone had wanted it with
only print preview, the team could have shipped it.

Potentially shippable means integrated. A potentially shippable product does not
exist as 14 different collections of source code. On a multiteam project, the teams
should define done such that it includes integrating development streams. To the
extent possible, integration should be done continuously throughout the sprint.

SEE ALSO
For m o r e on in tegra t ing
t h e w o r k of mu l t i p le
t e a m s , s e e Chap te r 17,
"Sca l i ng S c r u m . "

262 Chapter 14 Spr ints

OBJECTION
W e can ' t r un s p r i n t s at t h e s ta r t o f o u r p r o j e c t ; a ce r ta in a m o u n t o f
i n f r a s t r u c t u r e needs t o be b u i l t f i rs t .

Deve lopers n e w to Scrum wi l l o f ten concede that i terat ive and incremen-
tal d e v e l o p m e n t s e e m feasib le af ter a suf f ic ient a m o u n t of the appl icat ion
has already been w r i t t e n but wi l l be imposs ib le unti l then. I d isagree. Even
infrastructural e l emen ts can be buil t incremental ly . Dur ing early spr ints
it is o f ten necessary to w o r k mos t l y or ent i re ly on the infrastructural as-
pects of the product . I'll concede that it is o f ten d i f f icu l t to f ind w a y s to
demons t ra te the value of th is w o r k to end users, but it 's OK to s o m e t i m e s
s t ruggle in that regard, especial ly early on. Jus t because s o m e t h i n g is
hard is no reason to abandon it. Instead, f ind w a y s to spli t t hose early
infrastructural p ieces into smal ler p ieces that can f i t w i t h i n a sprint. One
w a y I do th is is to th ink about the natural po ints w h e r e I m igh t call a co-
w o r k e r over and say, "Hey , check out the cool n e w th ing I jus t got wo rk -
ing." W h e n e v e r s o m e t h i n g is done enough that a coworke r can provide
feedback (even if it 's jus t the posi t ive re in fo rcement of " g o o d job ") , it is
l ikely to be a reasonable chunk of funct iona l i ty to target for an early sprint.

Finding these natural points can help ensure that even a team 's earl iest
spr ints w i l l sti l l conta in s o m e t h i n g v is ib le or of value to a user or cus tomer ,
w h i c h is the topic of the next sect ion.

THINGSTO
TRY NOW

• Have the product o w n e r and t e a m d iscuss and agree on w h a t done
means for the end of a sprint. Post the def in i t ion w h e r e all can see
it daily.

• A s a t eam, make a list of all the p rob lems you have individual ly
exper ienced on past pro jects by le t t ing a product get too far f r o m
shippable. Discuss w h a t could be done to o v e r c o m e these prob-
lems.

Deliver Something Valuable Each Sprint
As though making sure each sprint ends with working software isn't challenging
enough, Scrum teams are also required to deliver something valuable to the system
or product's users or customers each sprint. The definition of what is valuable to
users or customers can be stretched quite easily and maliciously. For example, a
team can say that upgrading all developer desktops to the newest version of their
preferred operating system allows them to develop more quickly so that new
features make it to customers more quickly. Although this may very well be true,
the intent is that each sprint should deliver something of immediate value to users
or customers that they can see. Because one of the benefits of working in sprints

Deliver Some th ing Valuable Each Sprint 263

is the ability to generate feedback from users and customers at the end of each
sprint, a team will get better feedback if at least some of the work done each sprint
results in features that users can see.

As an example of what I mean by user-visible features, suppose that a single
team is developing a website that will allow people to search for houses for sale.
At one of the sprint planning meetings, the product owner wants to add the abil-
ity for users to enter any combination of 20 search parameters and see a nicely
presented list of matching houses.The team tells the product owner that this is too
much to complete in a single sprint. The work must be split and done over two
sprints. The team and product owner discuss it and come up with the following
options of what they could complete in the coming sprint:

1. The team focuses only on the back-end search. At the sprint review,
users will see text-only results of searches run from a command line.

2. The team focuses only on the user interface. At the sprint review, users
will see fully functional screens but only with mocked-up data rather
than data retrieved from the database.

3. The team splits its time between the back-end search and the user
interface. At the sprint review, the team shows an application that sup-
ports 10 of the 20 planned search fields and a user interface that, while
functional, is incomplete.

Which of these approaches is best? First, let me state that there are times when
each may be appropriate. However, in general, the third approach listed here is the
one you should prefer. In that approach the team has sent what Andy Hunt and
Dave Thomas call a "tracer bullet" through the application. According to Dave
Thomas, a tracer bullet is an attempt to "produce something really early on that
we can actually give to the user to see how close we will be to the target. As time
goes on, we can adjust our aim slightly by seeing where we are in relation to our
user's target" (Venners 2003).

But what about options one and two? If I were coaching this team I might
allow either of these approaches, but only if it we could not find a way to send a
tracer bullet through the feature, as with the third option. Of the first two choices,
I vastly prefer the first (delivering the back-end and showing that it works through
a command-line interface). In that scenario, the team is able to demonstrate that
the desired feature works; it just isn't pretty yet and hasn't been added to a web
page. If shown this in a sprint review, most users or customers would agree that
the functionality represents a step forward.

The second choice—developing only the user interface—is not appealing
to me. Although it can be argued that completing only the back-end or only the
front-end of a feature are two sides of the same coin, I do think there's a difference.
When the team shows only the back-end functionality, no one will mistakenly

264 Chapter 14 Spr ints

SEE ALSO
See Chapte r 1 0 f o r a dis-
cuss ion of t he re lat ive
me r i t s of f ea tu re and
c o m p o n e n t t e a m s .

think the feature is done. Minimally, some stakeholder may think "all we need to
do is slap a user interface on it." But in the case where a team presents only the
user interface part of a feature, it will be tempting for some stakeholders to think
that the feature is done since they can see it.

So, although the first two options here do provide value to users of the system,
teams should prefer sending a tracer bullet through the application. I mention the
alternatives but consider them valid only in the case when a team absolutely can-
not instead send a tracer bullet through the application.

Unobservable Features
Although not all products include functionality that is visible to end users, every
product does have functionality that is visible to someone. For example, suppose
that, instead of one team, five teams are working on our houses-for-sale website.
Four are feature teams developing functionality that site visitors will see. The fifth
team is a component team building a common data access layer that is being used
by the feature teams.

This fifth team may be tempted to think that nothing it is building is user
visible. The fallacy in this thinking is obvious when that team realizes that its users
are the other four teams, rather than the end users.The fifth team, which we'll call
the data access team, is interested in getting feedback from its users—the program-
mers and testers on the four other teams. So it is to those teams that functionality
should be visible. This means that in its sprint review, the data access team could
demonstrate a purely technical feature (such as a cascading delete in the database)
that we would not want a feature team to demonstrate in its sprint review

Johannes Brodwall worked on a project for a new version of a system for
batch processing of payments sent in electronic files. Although this system had
tremendous value to its customers, it is a good example of a system with not much
to see. Brodwall describes how the team members solved the problem.

For our most recent sprint review, we ran four weeks of data
from the production system on the new system. The demo was a
web page that collected the output of the new system and com-
pared it to the output of the old system. The web page listed the
number of transactions that had differing results as a table. These
transactions were categorized into varying groups of deviation
by column (for example, some things should be processed dif-
ferently) and by each individual day on the rows. Each cell was
clickable to show the exact transactions that had deviated. Even
though we didn't "show the system," we did show this report.
This helped the team and product owner build confidence that
the new software would work when shipped.

Deliver Some th ing Valuable Each Sprint

I have seen many situations like the one Brodwall describes. The team takes
on a slight bit of extra work to produce something more demonstrable and engag-
ing for the sprint review. What always intrigues me is how often this slight detour
proves valuable to the team as well. Often this small bit of extra effort helps the
team test the system and more easily investigate unexpected test results.

" O u r d e a d l i n e is 18 m o n t h s a w a y ; t h e o v e r h e a d o f d e l i v e r i n g v a l u e in
e v e r y s p r i n t is u n n e c e s s a r y . "

A person mak ing th is a rgumen t does not ye t see the va lue of w o r k i n g
iteratively. Done properly, w o r k i n g i terat ively does not require a great deal
of overhead. Yes, a u t o m a t e d tes ts wi l l be needed so that t e a m s don ' t
w a s t e w e e k s manual ly re tes t ing every sprint. But w o r k i n g i terat ively does
not require a t e a m to do a great deal of addi t ional w o r k at the end of each
spr int that it shou ld not do anyway. All that is necessary is that the t e a m
f ind logical breakpoin ts w h e r e w o r k can be t ied up and demons t ra ted .

" W e can ' t d e l i v e r v a l u e f o r t h e f i r s t f e w m o n t h s . "

265

OBJECTION

This bel ief is very c o m m o n on pro jects of a year or more. W h e n counter-
ing th is posi t ion it is impor tan t to r e m e m b e r that the t w o pr imary benef i ts
of del iver ing value each spr int are the abil i ty to sol ici t feedback as early as
possib le and the assurance that the t e a m m e m b e r s are never in a posi t ion
to dece ive t hemse l ves (even unintent ional ly) about their progress.

I wi l l grant that on s o m e pro jects w e may not be able to ge t usefu l end-
user feedback for a f e w mon ths , but I still w a n t comp le te , wo rk ing , t es ted
funct iona l i ty each spr int . If that funct ional i ty is not qui te ye t s o m e t h i n g
that m y end users wi l l be able to see (or see the value of), t hen I make
sure that m y product o w n e r can unders tand the value of wha t ' s been
comp le ted . W i t h the product o w n e r act ing as a r igorous judge of w h e t h e r
the t e a m has taken a s tep in the r ight d i rect ion (always prefer r ing wo rk -
ing so f twa re over documenta t ion) , the t e a m is unl ikely to take s teps that
result in a lot of act iv i ty but l itt le f o r w a r d progress.

• A t the end of each of the next th ree to f ive spr ints, make sure
your so f twa re is in the hands of real users. If a fo rmal release isn' t
practical for your t ype of product , f ind f r iendly f i rst users w h o can
provide feedback on the n e w funct ional i ty. A f te r the f inal spr int ,
cons ider w h e t h e r th is w a s useful .

• For each product backlog i t em you deve lop in the next th ree spr ints,
have the t e a m expl ic i t ly ident i fy a person or aud ience to w h o m that
i tem wi l l be valuable. A f t e r th ree spr ints, d iscuss w h a t you learned
f r o m do ing th is and w h e t h e r it w a s valuable to you.

THINGSTO
TRY NOW

266 Chapter 14 Spr ints

Prepare in This Sprint for the Next
I got a call from a development director who needed some coaching for her three
teams. Their early use of Scrum was going well except that sprint planning was
taking each team three days. I couldn't fathom how this was possible, so I was anx-
ious to visit these teams and see what they were doing. I pictured them locked in a
conference room for the entire three days, either endlessly debating how to break
out the tasks of each product backlog item they were working on or breaking
each task out in unnecessary detail. What I found instead were billiard ball sprints.

SEE ALSO
G r o o m i n g t h e p roduc t
back log, as desc r i bed
in Chap te r 13, is o n e w a y
t i m e is s p e n t in th is
sp r in t p repar ing fo r t h e
next .

Billiard Ball Sprints
Shoot a billiard ball across the table and into another ball and—whack!—the sec-
ond ball is sent rolling across the table. With billiard ball sprints, the team finishes
one sprint, isn't ready to start the next, and—whack!—the start of the next sprint
is pushed into the future. The second sprint often starts in name, but the team is so
unprepared to do the work of that sprint that it spends days learning about what is
expected. This is what was occurring at my client who called with the complaint
of three-day sprint planning meetings.

The best way to avoid billiard bill sprints is to follow the Boy Scout motto: Be
prepared. Expend a little effort in each sprint preparing for the following sprint.
Ken Schwaber recommends allocating about 10% of a team's available time in any
sprint toward preparing for the next sprint (2009). I've found this to generally be
about the right amount as well. The team should, of course, adjust this amount up
or down based on its experience.

Only Pull into a Sprint What Can Be Completed
We already know that a team should not pull a user story or other product back-
log item into a sprint if it is clearly too large to be completed. An epic user story
that will take months to complete should be split into much smaller pieces so that
each can be completed within a sprint.The same is true of user stories that are too
vague; if a story is not sufficiently well understood that it can be completed in a
sprint, it should not be brought into the sprint. Instead, the team needs to spend
some effort learning about the story first.

Notice I used the phrase sufficiently understood rather than fully understood.
A user story on the product backlog does not need to be fully thought through,
with every last detail worked out, before it is pulled into a sprint. In fact, we don't
even want items to be fully thought through. The product owner and other team
members will still collaborate on the story during the sprint. But, each user story
pulled into the sprint must be understood in enough detail that, when augmented
by discussions during the sprint, it can be completed during the sprint.

Prepare in Th is Spr in t fo r t h e N e x t 2 6 7

To see how this works, let's consider the case of user experience design. Some
user stories need a lot of user experience design; others do not. For example, sup-
pose the team has chosen to implement a user story that says, "As a user, I can view
an About dialog with copyright, version number, and company contact information so that I
can find contact information for the company." I suspect that even within a short, two-
week sprint, the user experience designers can mock up a few screens, run them
by a few users, incorporate any feedback, and have screen designs programmed
and tested. In other words, this user story is fine as is. A short description scrawled
on an index card is sufficient for that story to be designed, coded, and tested
within one sprint.

Next , consider a team adding features to a recently launched eCommerce site.
The team is shown a new user story: "As an existing customer, I can cancel an order
that has not yet shipped so that I can change my mind without cost." This involves new
workflows that have not been considered as part of launching the basic, initial
eCommerce site. Dur ing the sprint planning meeting, the team's user experience
designers identify the following tasks:

• Create three initial mock-ups in Photoshop, 12 hours each

• Schedule demos with 15 users, 2 hours

• Conduct four demo sessions, 8 hours total

• Meet to discuss design changes, 4 hours

• Create new design in Photoshop, 8 hours

• Schedule second round of demos, 2 hours

• Conduct four second demo sessions, 8 hours total

• Wri te H T M L and CSS incorporating final changes, 16 hours

This is quite a bit more work than was needed on the story for the About dia-
log. Team members discuss this and decide that it will not be possible to do all of
this work, plus code the full screen into the application and test it, all within one
sprint. But they reason that if at least the first demo sessions were done this sprint,
they would be able to complete the user story in the next sprint. And so, this is
what the team decides to do.

Notice that when the second sprint starts and the team pulls this story into its
sprint, it is are still not starting with a fully specified user story. Final details will be
worked out during the sprint. The amount of detail that must accompany a prod-
uct backlog item as it is pulled into a sprint is the min imum amount necessary so
that the item can go from product backlog item to running, tested feature in one
sprint. This will be different for each product backlog item.

268 Chapter 14 Spr ints

" T h i s d o e s n ' t s o u n d l ike S c r u m . S c r u m t e a m s a re s u p p o s e d t o p ro -
d u c e a p o t e n t i a l l y s h i p p a b l e p r o d u c t i n c r e m e n t e v e r y s p r i n t . "

The t e a m is still expec ted to produce a potent ia l ly shippable product in-
c rement . But it is shor ts igh ted to th ink that all of a team 's t i m e dur ing a
spr int shou ld be spen t d i rect ly on that spr int 's p roduct increment . Team
m e m b e r s spend t i m e on all sor ts of valuable act iv i t ies that are unre la ted
to creat ing the current spr int 's product increment . In te rv iew ing prospec-
t ive n e w t e a m m e m b e r s , for example , is invest ing t i m e that w i l l not be
paid back unti l a f ter the n e w m e m b e r jo ins the t e a m (and is up to speed).
Est imat ing product backlog i t ems so that the product o w n e r can priorit ize
the product backlog is not d i rec ted at th is spr int 's p roduct inc rement , ye t
is valuable. T ime spent mak ing sure that enough w o r k is unders tood in
just enough detai l that it can be c o m p l e t e d in t he next spr int is similar to
these cases.

• Discuss the product backlog. Ident i fy the top f ive i t ems in need of
advance th ink ing. For each, d iscuss w h o needs to th ink about it (an
archi tect? user exper ience designer? database designer? other?)
and dec ide h o w many spr ints in advance that shou ld begin.

• In your next th ree spr int rev iews, d iscuss w h e t h e r each product
backlog i tem inc luded jus t -enough detai l and w h e t h e r it w a s added
jus t in t ime.

• For a spr int or t w o , t rack the a m o u n t of t i m e spent th ink ing ahead.
Is it enough? too much? R e m e m b e r that normal ly about 10% of a
t eam 's available t i m e shou ld be spen t looking ahead.

Work Together Throughout the Sprint
Apple has always been known as a highly innovative company. Its Apple II, Mac-
intosh, and iPod were some of the most significant innovations in the personal
computer era. Steve Jobs, founder of Apple, was asked how the company had so
consistently innovated great products. He answered in the form of a story.

You know how you see a show car, and it's really cool, and then
four years later you see the production car, and it sucks? And you
go,What happened? They had it! They had it in the palm of their
hands! They grabbed defeat from the jaws of victory! What hap-
pened was, the designers came up with this really great idea. Then
they take it to the engineers, and the engineers go,"Nah, we can't
do that. That's impossible." And so it gets a lot worse. Then they

OBJECTION

THINGS TO
TRY NOW

W o r k Together Th roughou t the Sprint 269

take it to the manufacturing people, and they go, "We can't build
that!" And it gets a lot worse. (Grossman 2005, 68)

What Jobs is referring to is the deep collaboration that should exist on an
experienced Scrum team. Rather than handing off work from group to group,
a Scrum project is characterized by cross-functional teams working together. At
Apple "products don't pass from team to team. There aren't discrete, sequential
development stages. Instead, it's simultaneous and organic. Products get worked
on in parallel by all departments at once—design, hardware, software—in endless
rounds of interdisciplinary design reviews" (Grossman 2005, 68).

This is, of course, easier said than done. One of the easiest traps to fall into is
performing work serially within the sprints. A team in this trap may decide that
the first week of a sprint will be for analysis, the second week for design, the third
for coding, and the fourth for testing. A serial approach to completing the work of
a sprint is clearly inefficient.There's too much sitting around, too much specializa-
tion, and too many hand-offs. Fortunately, even though many Scrum teams start
this way, most quickly see the problems. When they do, they start to look for ways
to overlap work. The goal should be to overlap as much as possible the various
activities required to go from idea to shippable feature.

At first, finding ways to improve the overlap of activities will seem difficult.
But most teams soon realize that many of the agile engineering practices help.
Writing automated unit tests, for example, reduces the number of bugs, which
allows programming to continue later into the sprint while still allowing time for
other testing. Test-driven development (especially acceptance test-driven devel-
opment) merges analysis, design, and coding activities with testing.

Avoid Activity-Specific Sprints
A good ScrumMaster will continually nudge team members toward adopting
improved technical practices that help them learn how to overlap their work. If
a team doesn't learn effective ways to do this, team members may settle on a less
desirable approach: activity-specific sprints. An activity-specific sprint is as bad a
practice as it would be an acronym. In this approach, the team decides to use one
sprint for analysis and design, a second sprint for coding, and a third for testing, as
shown in Figure 14.1. In this approach, the team is split in thirds with the analysts
working one sprint ahead of the programmers and the testers working one sprint
behind them.

This can be a very alluring approach. Not only does it seemingly solve the
problem of how to overlap work but it also allows each type of specialist to work
mostly with others of their own kind, which many may prefer until they become
used to the close collaboration of a Scrum team. Unfortunately, the same disadvan-
tages apply to activity-specific sprints as apply to activity-specific teams: too many

SEE ALSO
The sec t i on " D o a Lit-
t le Bit of Eve ry th ing Al l
t h e T i m e " in Chap te r 11,
"Teamwork , " o f fe red
s u g g e s t i o n s on h o w
t e a m m e m b e r s can
over lap the i r w o r k .

SEE ALSO
I n fo rma t ion on t h e s e
prac t ices w a s p rov ided
in Chap te r 9, "Technica l
Pract ices."

2 7 0 Chapter 14 Sprints

SEE ALSO
For m o r e on the
p rob lems w i t h act iv i ty-
speci f ic t eams , see
"Favor Feature T e a m s "
in Chapter 10.

hand-offs and a lack of whole-team responsibility. Activity-specific sprints also have
three additional disadvantages:

• There is increased schedule risk. Planning how much work can be done
in a sprint will be more error prone because the effort is highly dependent
on the quality of the work done in the prior sprint. The programmers,
for example, will not know how much of their time will be needed in a
testing sprint until the testers start testing.This means those programmers
won't know how much work to pull into their concurrent coding sprint.
It takes longer to go from idea to running, tested feature. Not only is this
bad itself, it will also extend the time it takes to get feedback from cus-
tomers, users, or others.
It doesn't really solve the problem of overlapping work. When all work is
done within one sprint, the entire team moves at the same pace. Team
members help each other and work outside their disciplines to ensure
they complete their work. When we introduce activity-specific sprints we
allow the different subteams to progress at different rates.This causes work
to build up in front of some subteams. Not only is effort wasted in having
teams go faster than the slowest team, but the work that piles up may
contain defects that will not be discovered until the work is processed by
downstream teams.

FIGURE 14.1
A c t i v i t y - s p e c i f i c
s p r i n t s a r e a b a d
i d e a .

A-fialijSiS
sprints

f e a t u r e f e a t u r e
S e t 1 S e t 2

PeSign & Ooáe,
sprints

"Feature
S e t 1

"Feature
S e t 2

Test
Sprint?

"Feature "Feature
S e t 1 S e t 2

Replace Finish-to-Start Relationships with Finish-to-Finish Ones
One of the biggest problems with activity-specific sprints is that they create what
are known as finish-to-start relationships. In a finish-to-start relationship, one task
must finish before the next can start. For example, a Gantt chart on a sequential
project may show that analysis must finish before coding can start and that coding
must finish before testing can start. Good Scrum teams learn that this is not true;
many activities can be overlapped. What is important is not when tasks start but

W o r k Together Th roughou t the Sprint 2 7 1

when they finish. Coding cannot finish until analysis finishes and testing cannot
finish until coding finishes. These are known as finish-to-finish relationships and
are reinforced by Scrum's sprint mechanism. All work is done at the end of the
sprint, or it is returned to the product backlog.

With a little experience, most teams are able to see how to overlap some types
of work and create fmish-to-fmish relationships between them. Teams easily find
ways to overlap discussions of what users need and programming. They also soon
find ways to overlap programming and testing. These activities lend themselves to
iterative and incremental approaches: Get a few details from the users about what
they need and then build a little of it; build a little and then test what you've built.

Other activities do not appear to be as amenable to an iterative, incremental
approach. User experience design, database design, and architecture are often cited
as work that needs to be done up front. Failing to view these activities holistically
will, the argument goes, lead to downstream problems.

Overlapping User Experience Design
Let's look more closely at user experience design (UED) to see how some Scrum
teams have successfully integrated user experience designers into their sprints.
Understanding how this has been done for UED will also provide guidance on
how to do this with database design, architecture, or other activities that may not
initially seem as well suited to agile development.

On traditionally managed projects, UED is generally viewed as an up-front
activity, preferably completed before other software development activities begin.
UED work progresses in its own series of phased activities, typically starting with
an assessment of current work practices and user needs and concluding with the
creation of user interface designs. Eventually, user interface designs are created
and assessed in an iterative manner. A variety of potential interfaces is shown to
likely users, feedback is collected, and revisions are made, which are again shown
to likely users. So, user experience designers are somewhat accustomed to work-
ing in an iterative manner. It's just that they're used to executing those iterations
in advance of the rest of the project beginning. On a Scrum project, however, we
don't want to start with an up-front UED phase.We instead want user experience
designers working alongside other team members. The importance of designers
working closely with the rest of the team is confirmed by Desiree Sy, an agile
interaction designer at Autodesk.

In addition to keeping in touch with the whole agile team
through the daily scrum, we work with developers very closely
throughout design and development.... Interaction designers
need to communicate every day with developers. This is not only
to ensure that designs are being implemented correctly, but also

272 Chapter 14 Spr ints

so that we have a thorough understanding of technical constraints
that affect design decisions. (2007, 126)

During a sprint we want all team members, regardless of personal specialty,
working together. But remember that during a sprint, the team has two goals:
complete the planned work of the current sprint but also prepare for the coming
sprint. Naturally, different team members will spend unequal amounts of their
time on these different goals. Most programmers spend the majority of their time
adding new features. User experience designers, on the other hand, will likely
spend the majority of their time learning about upcoming features. They will be
creating the additional detail that gets attached to complex product backlog items.
But—and this is critical—they also spend time refining and answering questions
about designs being programmed and tested in the current sprint. Even though
a team's designers (or architects or technical designers) may spend time looking
ahead, they remain members of the team working on this sprint.

The result is something like what is shown in Figure 14.2. This figure shows
that while coding and testing one part of the product backlog, the user experience
designers will spend some of their time (perhaps a majority of it) looking further
down the product backlog at upcoming items. Yet, it remains one team working
on one sprint at a time.

FIGURE 14.2
U s e r e x p e r i e n c e
d e s i g n e r s a r e o n
t h e c u r r e n t s p r i n t
b u t s p e n d s o m e o f
t h e i r t i m e l o o k i n g
f o r w a r d .

if ii g
ifixz I J Spr in t 1

I S Sprint 2

* * * * V t F * * r-z V 1 I Spr int 3

* i
fue-v

1 1 Spr in t 4

W o r k Together Th roughou t the Sprint 273

Think Holistically, Work Incrementally
But what about the concern that UED (and similar work like architecture and
database design) must be done holistically? The answer comes in how work is
selected from the product backlog. Figure 14.2 shows how the user experience
designers on a team often put some (or even most) of their effort toward work
in a later sprint. On an application with significant UED concerns, the product
owner (with guidance from knowledgeable team members) needs to prioritize
the backlog with an eye toward resolving open UED issues.

The product owner and designers think holistically about the system, decid-
ing where they most need to acquire new knowledge. These areas become the
focal points for the UED work of the next sprint. Designers then work on the
system in what agile interaction designer Desiree Sy refers to as "design chunks"
(2007,120). A design chunk is a small, sprint-sized piece of the system that builds
into the overall design. Sy says that "interaction designers are trained to consider
experiences holistically, so breaking designs into pieces—especially into pieces
that do not initially support workflows—can be difficult at first, but it is a skill that
comes with practice. Design chunking yields many benefits" (2007, 120).

One of the benefits to working iteratively in design chunks is that it reduces
the amount of wasted effort that would sometimes go into features that are later
dropped. Working this way allows a team to shift user experience designers (or
architects or database designers) to the most important problems at just the right
times. Sy found that just-in-time design ultimately results in better designs.

We have found that the new agile user-centered design methods
produce better-designed products than the "waterfall" versions of
the same techniques. Agile communication modes have allowed
us to narrow the gap between uncovering usability issues and
acting on those issues by incorporating changes into the product.
(2007, 112)

Lynn Miller, the director of user interface development at Autodesk, believes
there are advantages to designers looking ahead on the product backlog and de-
signing for those user stories slightly in advance of the rest of the team working on
them. She identifies three benefits: First, there is no wasted time "creating designs
that [are] not used." Second, "usability testing of features and contextual inquiry
for design [can be done] on the same customer trips." Third, because designers are
able to get "timely feedback," if there is "a sudden change in the market (like new
competing software being released)," they can find out about it "right away and...
act accordingly" (2005,232).

These benefits are echoed by Marissa Mayer, Google's vice president for
search products and user experience.

274 Chapter 14 Spr ints

In the case of the Toolbar Beta, several of the key features (cus-
tom buttons, shared bookmarks) were prototyped in less than a
week. In fact, during the brainstorming phase, we tried out about
five times as many key features—many of which we discarded
after a week of prototyping. Since only 1 in every 5 to 10 ideas
work out, the strategy of constraining how quickly ideas must be
proven allows us to try out more ideas faster, increasing our odds
of success. (Porter 2006)

In many ways, this manner of working through a design is no different from
what good designers have always done. No user experience designer locks the
door, spends weeks coming up with the "perfect design," and then emerges to
hand it over ready for implementation. A good designer instead thinks about the
overall design and identifies the open issues that will have the most impact on
the ultimate design. The good designer then seeks to address those open issues
through discussions with users, prototypes, design reviews, and even quiet con-
templation. As one set of open issues is resolved (or at least narrowed to a smaller
set of options), the next set of issues is tackled. The skilled and experienced de-
signer is already doing what I've described: thinking holistically but working it-
eratively toward solutions.

Architecture and Database Design
I've claimed that user experience design, architecture, and database design are
three specialized cases of the same general problem: working iteratively on activi-
ties that have traditionally been completed in an early phase of a sequential de-
velopment process. To support this claim, let's look at how architectural decisions
were made on a commercial product developed in an agile way.

Klaus was the architect at a medium-sized company that was beginning to
develop a product to manage workflows of scientific data. Although the product
owner, Robin, had strong opinions of what needed to be in the product, she knew
that it would be important to start development on a solid foundation. With that
in mind, while prioritizing work for the early sprints she carefully considered
Klaus' suggestions about which user stories should be developed early to provide
that solid foundation.

In the first sprint, the team added functionality to read comma-separated
value (CSV) files. The product would eventually need to read many different file
formats, but Klaus and the others suggested starting simple. The work of this first
sprint didn't eliminate many architectural uncertainties, but it did start the team
off with a successful first sprint. It also gave it the ability to easily get data into the
system, which everyone involved knew would benefit the team during subsequent
sprints.

W o r k Together Th roughou t the Sprint 275

For the second sprint, the team could have continued by adding support for
reading all the other file formats that would eventually be needed. But Klaus was
not very concerned with those. From his perspective these were not big archi-
tectural risks or areas of uncertainty. If the system could load a CSV file, it could
eventually load an XML file, and so on. What did worry Klaus were the exten-
sive data visualization needs for the product. The hope was to use a commercial
visualization package. But, if that didn't deliver the needed performance on the
product's extremely large data sets, the backup plan was to write the visualization
features themselves. So, for sprint two, the team and product owner agreed to in-
corporate two different visualization libraries that were being considered and to
create one simple visualization with each. This wouldn't resolve Klaus' concerns
about achieving acceptable performance, but it would teach the team what was
involved in using each of the two commercial products.

For sprint three, Klaus recommended developing a complicated visualization
with each third-party product. This would enable the team to gauge the perfor-
mance and suitability of each. Fortunately, one of the commercial products per-
formed at the required level. So, in the fourth sprint, the team used that product
to develop two other complicated but very different visualizations as a further test
of the product.

Also, during the fourth sprint, the team began work on some of the math ca-
pabilities needed in the product. For example, as Klaus explained it in an e-mail to
me, users needed to be able to instruct the system to "add the values in the fourth
and ninth fields of an imported file and then filter the data set to include only
items where that sum is at least twice the value in the first field." The viability of
doing this was not a concern to Klaus, but he suggested to the product owner that
it be started early for two reasons. First, while there were many ways to design this
type of functionality, the approach selected would influence many subsequent de-
sign decisions. Second, there were hundreds of various rules such as this to add to
the product, and developing the first few now would allow them to add two addi-
tional teams who would focus solely on the development and testing of the many
rules. Table 14. 1 summarizes the work done in each sprint and the reasons why.

As you can see from this example, Klaus kept the overall architecture and
design of the product in mind but used the sprints to iteratively address the deci-
sions that needed to be made. Work was always prioritized by the product owner,
and each sprint delivered some new amount of working software. But, some of
the functionality to be developed each sprint was done at the suggestion of the
project's architect and his teammates. Database design and user experience design
considerations can be similarly factored into decisions about what to work on.

276 Chapter 14 Spr ints

TABLE 14.1
A r c h i t e c t u r a l r i sk
a n d u n c e r t a i n t y c a n
i n f l u e n c e h o w w o r k
is s e q u e n c e d .

Sprint Goal Reason

1 Import data from comma-
separated files.

Start simple. Be able to easily get data
into the system since all subsequent
work relied on having data to act on.

2 Create the same simple data
visualization using two sepa-
rate commercial packages.

Start to see what was involved in us-
ing the two candidate products.

3 Develop a complicated visu-
alization with each product.

See if one of the products could
handle complex visualization needs.

4 Develop two new but very
different visualizations.
Add initial math functions.

Confirm suitability of selected visual-
ization product.
Determine best approach for add-
ing math functions and create base
for rapidly adding similar rules by a
second team.

Keep Timeboxes Regular and Strict
When I first started doing iterative and incremental development (even a bit be-
fore doing what today we'd call agile development), I made the mistake of not
having all of our sprints be the same length. We would meet at the start of a sprint
to plan the work of that sprint. One item on the agenda of those early sprint plan-
ning meetings was to decide how long that sprint would be. We would bounce
around in a seemingly random manner between lengths of two to six weeks.

We would make the decision about how long each sprint should be based on
how big we felt the work was, how much of it we needed to deliver before our us-
ers could see it, who was planning to be out of the office ("We better make this a
three-week sprint as Kristy is gone the entire second week."), and how energized
or tired we felt. There were a lot more six-week sprints at the start of the project.
(There were a lot more long lunches then as well.) And there were a lot more
two-week sprints near the end.

Allowing our sprint lengths to vary seemed right at the time—and I have to
admit it wasn't a conscious decision; we just did it without ever discussing whether
it was a good idea. It was later that I discovered the benefits of fixed sprint lengths:

• Teams benefit from a regular cadence. When sprint lengths vary, team
members are often a little unsure of the schedule. "Is this the last week?"
and "Do we ship this Thursday or next Thursday?" become common

Keep T imeboxes Regular and Str ict 277

questions. Having a regular cadence of anything from one to four weeks
helps teams settle into a work rhythm most suited to them.

• Sprint planning becomes easier. Both Sprint planning and release plan-
ning are simplified when teams stick with a constant sprint length. Sprint
planning is easier because over the course of typically two to five sprints,
the team learns about how many hours of work can be planned into a
sprint.

• Release planning becomes easier. As we will see in the next chapter,
Scrum teams derive their release plans empirically (whenever possible).
They estimate the size of the work to be done on a project and then
measure the amount completed per sprint. If sprint lengths shift around,
measuring a team's velocity becomes harder: There is no guarantee that
a four-week sprint will complete exactly twice as much as a two-week
sprint. Normalizing velocity to be "velocity per week" works somewhat
but is needless extra work when sprints are kept the same length.

• It's what Richard Feynman would do. Nobel-prize winning physicist
Richard Feynman recounts the story of getting tired of having to choose
what to have for dessert each evening. From that point on, he resolved he
would always choose chocolate ice cream (1997,235). Choosing a sprint
length at the start of each sprint is a waste of energy. Experiment with a
couple of lengths, make a decision, and stick with it until there is a sig-
nificant reason to change.

In stressing that your sprints should all be the same length, I am not suggesting
you become obsessive about this. Pick a day of the week that works well in your
environment and start all sprints on that day. I like starting sprints on Fridays so
that we can pack that day full with the sprint review, retrospective, and planning
meetings. Putting all of these on Mondays makes us dread Monday even more
than usual.

But there may be occasions when it would be best to deviate slightly from this
schedule. Holidays can be a common cause of this. In the United States it is com-
mon for individuals to take extra time off around the Thanksgiving and Christmas
holidays. A team that routinely does two-week sprints may find itself with half the
number of person-days during a sprint that includes one of these holidays. In that
case, the team may benefit from a three-calendar-week sprint, as this would yield
closer to the usual number of person days.

278 Chapter 14 Spr ints

OBJECTION
" T h e r e a re t i m e s w h e n c h a n g i n g s p r i n t l e n g t h m a k e s sense. I d o n ' t
w a n t a r i g i d ru le t o p r e v e n t us f r o m d o i n g i t . "

Granted. No guidel ine such as th is needs to be tu rned into an unwaver ing
rule. Suppose w e are do ing t w o - w e e k spr in ts and have th ree w e e k s left
before a big t rade s h o w at w h i c h w e w a n t to s h o w our product . W e w o u l d
very reasonably be able to run ei ther a single t h ree -week spr int or f o l l o w
the usual t w o - w e e k spr int w i t h a one -week sprint. It w o u l d be unneces-
sarily r igid for us to lose the chance to put one more w e e k of funct iona l i ty
into the product just because of h o w spr int end dates line up w i t h the
t rade s h o w schedule.

Never Extend a Sprint
A second mistake you can make in how you execute sprints is not treating the
timeboxes as strict. N o matter what, sprints finish on time. Do not arrive at the
planned finish date and decide you need to add a couple of more days to finish
the work.

Now in the grand scheme of let's say a year-long project, does extending the
deadline of the first sprint by a couple of days really hurt? Yes, absolutely. If the
team members decide to extend that first sprint, they have just learned that it is
OK to miss deadlines. It's not OK to miss deadlines, even deadlines so early in the
project that missing them may not appear to have a big impact.

Keeping sprints strictly timeboxed reinforces the idea of continually moving
the project forward. Every so many weeks the team must deliver some new po-
tentially shippable product increment. If the timeboxes are allowed to vary ("Let's
run a six-week sprint this time because we're working on architectural elements")
or are occasionally extended ("We just need three more days"), this valuable dis-
cipline is lost.

To strictly enforce the sprint deadlines means that teams will occasionally
need to drop work they had planned on completing during the sprint. Hopefully
they can somewhat offset this unfortunate but realistic situation by occasionally
adding work to a sprint. As we will discuss in Chapter 15, dropping work is not the
end of the world as long as work is done in priority order.

As soon as there is any indication that not all planned work can be completed,
the product owner meets with the rest of the team to discuss what to do. Hope-
fully this meeting occurs early enough in a sprint that the product owner can
make choices about what should be completed and what should be dropped. If
the team doesn't discover the problem until the 18th day of a 20-day sprint, the
product owner will not have much leeway in what to drop; the product owner
will need to drop whatever feature isn't yet finished.

Don ' t Change the Goal 279

" W e n e e d t h e f l e x i b i l i t y t o r e s p o n d t o c l i en t o r c u s t o m e r p r e s s u r e s . "

Being highly respons ive to bug repor ts or fea ture reques ts is a goal many
organizat ions set. This is o f ten a good goal, but it is impor tan t to under-
s tand that the real goal is to respond quick ly overall and over t i m e rather
than to one speci f ic request . (Understanding, of course, that s o m e t i m e s
the one speci f ic request is f r o m the cus tomer w h o represents 8 0 % of
your business.) In fact , mo re impor tan t to m o s t cus tomers than an oc-
casional quick f ix f r o m us is con f idence in the date by w h i c h w e p romise
to have a fix. W o r k i n g in str ict t imeboxes a l lows us to bet ter have th is
predictabi l i ty: w e k n o w the dates on w h i c h our next spr ints wi l l c o m e out ,
so it b e c o m e s a quest ion mere ly of in w h i c h spr int w e wi l l w o r k on the
request .

• If y o u ' v e been using var iable- length spr ints, pick wha teve r length
s e e m s best and c o m m i t to s t ick ing w i t h it for the next t w o mon ths .
A t that t i m e evaluate if you should change.

• If y o u ' v e been doing fou r -week or mon th l y spr ints, t ry go ing to t w o -
w e e k spr ints. They m igh t fee l too fast at f i rst , so c o m m i t to running
th ree before dec id ing w h e t h e r to make the change permanent .

• Break m y guidel ine against vaci l lat ing b e t w e e n d i f fe ren t spr int
lengths by running t w o one -week spr ints. A th le tes t ra in ing to run
a mara thon mix in s o m e a m o u n t of speed w o r k dur ing w h i c h they
run faster than their in tended mara thon pace. Occasional ly go ing
faster than normal helps improve our long- term susta inable pace.
A t the re t rospect ive, d iscuss h o w the one -week spr int w e n t and
see if there are th ings f r o m it you can incorporate w h e n return ing
to your regular spr int length.

Don't Change the Goal
Some of my early experiences as a programmer were in the litigation consulting
department of a large consulting company. One challenge of working in that do-
main was the inevitability of change. Our bosses—the attorneys running a case—
would have us begin a project that was to take a few weeks. Inevitably, though,
partway through that project they would come running into our programming
bullpen yelling, "Stop what you're doing! The other side has asked for such-and-
such. Now we need you to . . . " and they would redirect us toward a new project
that would need to be completed before we could return to the original project.

Because of this background, one of the initial things I found appealing about
Scrum was its emphasis on leaving the goal of the sprint alone. Scrum takes a

2 8 0 C h a p t e r 14 Sp r in t s

two-pronged approach to change. Noth ing is allowed to change within the sprint.
The team commits to a set of work on the first day and then expects its priorities
to remain unchanged for the length of the sprint. However, although no changes
are allowed into the sprint, the entire world may be changing outside it.

Scrum's stance against mid-sprint change may seem detrimental to the suc-
cess of the project. After all, sometimes the changes are so important that they
need to be done. And other times new information may make worthless the work
the team is currently engaged in. In both cases I encourage you to take—at least
initially—Scrum's hard-line stance against mid-sprint change.

To see why, let's consider examples of both types of these seemingly legitimate
causes of mid-sprint change. First let's consider the case of the product owner dis-
covering some important new requirement that she says needs to be done instead
of the work the team is engaged in. Sometimes this will happen. W h e n it does I
suggest making the change in sprint goal visible. Scrum does this by having the
team announce an abnormal termination to the sprint, which is followed by imme-
diately planning a new sprint to include the newly discovered, high-importance
feature. Raising the visibility of changes in sprint goals is important because it
makes them less likely to happen. In too many organizations, the only ones who
see the constant redirection of the team are the team members themselves. Scrum's
approach of not letting change into a sprint but being willing to abnormally ter-
minate and start a new one raises the visibility of the cost and frequency of change.
This will cut down on the mid-sprint changes thrown at the team. Only the most
important changes will justify abnormally terminating.

What about the case where new information is learned that makes the planned
work of the sprint less desirable? As in the prior case, yes sometimes a team will
learn something that means it should stop work on some part of a sprint. For ex-
ample, a goal of the current sprint may be to add a particular feature specifically
to help make a sale to a large client. In the middle of the sprint the client tells you
his company has had a budget freeze and can't buy your product even if it has the
new feature, or that it's been acquired and will be forced to use your competitor's
product, or any of a number of similar situations. In these cases it may absolutely
make sense to stop work on this feature, depending on its general desirability to
other customers and how far along the work is. However, situations like these hap-
pen less often than most people who are new to Scrum think.

A far more common situation is the one Janis found herself in. As the product
owner for a bioinformatics application, she had worked with the team to design
a very involved screen for searching for complex data. It wasn't perfect, but no
one had any better ideas, and everyone was generally happy with the screen. At
the next sprint planning meeting, everyone agreed to develop the search screen
as prototyped.

Don ' t Change the Goal 2 8 1

Progress went well during the first half of the team's two-week sprint. On the
morning of the seventh day,Janis announced that she'd had an epiphany the night
before. She showed the developers a sketch she'd done of a better search screen.
It was completely different from what the team was seven days into. And it was
undeniably better. Everyone agreed. At this point, Janis and the rest of the team
had a decision to make:

• Cancel the current sprint and start a new sprint focused on the search
screen that everyone agreed was better.

• Continue work on the one that just seven days earlier everyone felt was
good enough.

Some might think this an easy decision: The new screen was undeniably bet-
ter, so the developers should shift to working on it. However, Scrum helped them
ask the question a bit differently: Ship the product with the good-enough search
screen plus seven days of additional features, or ship it with only the better search
screen? The decision was Janis's but the whole team weighed in with opinions.
Collectively, the team decided to finish the good-enough search screen. The im-
proved search screen was added nine months later in a subsequent version.

" O u r b u s i n e s s is i n t e r r u p t - d r i v e n s o t h e d e v e l o p e r s n e e d t o b e ,
t o o . "

A t rue interrupt-dr iven organizat ion is like a hospital emergency room.
Changes are constant ly popp ing up, and the real focus b e c o m e s success-
ful ly t r iaging oppor tun i t ies to ensure w e are a lways w o r k i n g on the m o s t
impor tant . F e w organizat ions are in industr ies that change so rapidly that
they cannot set pr ior i t ies at the start of a t w o - w e e k spr int and then leave
t h e m alone. Many organizat ions may th ink they exist in that env i ronment ;
they don ' t . It is usual ly a mat te r of becom ing a c c u s t o m e d to th ink ing
ahead. If your organizat ion is one for w h o m sudden, near-constant change
is a fact of l i f e—much like t he l i t igation suppor t examp le that began th is
sec t i on—you may w a n t to consider using shor ter spr ints.

Break the Habit of Redirecting a Team
Through years of being allowed to constantly redirect their teams, organizations
have become addicted to doing so. Often teams are interrupted not because the
product owner discovered a critical, sudden customer need or other valid in-
terruption but because the product owner or other stakeholders failed to think
ahead. They've become used to working this way and aren't aware of the negative
impact it has on their development teams.

282 Chapter 14 Spr ints

I noticed this at one company that sold business-to-business services. Much of
its business was created through relationships with partners. Adding a new partner
involved five to ten hours of work from the development team. The team had
come to view this work as unplannable because it didn't know how many partners
the salesperson would need added during one of their two-week sprints.

I decided this was hurting the throughput of the team, so I met with the
salesperson. I told him that from then on the team would only add partners who
had signed contracts prior to the start of the sprint. He surprised me by saying that
wouldn't be a problem with him. He told me that a big selling point to partners
was that the company updated its website every two weeks. Prospective partners
would understand that partner launches would now be tied to the updates and
that if they wanted to launch by a given date they would need the contract signed
by the start of that sprint. This salesperson had no problem working in a way that
was more beneficial to the team; he just wasn't doing it before then because no
one had asked or made the cost of the current way of working visible to him.

Relax the Hard-Line Stance Later
I usually advise Scrum teams to start by taking a firm stance against mid-sprint
changes. This is not because I am opposed to redirecting a team or because I want
to slavishly obey a Scrum rule. It is because I want to help those outside the team
learn that there is a cost to redirecting the team. Of course, sometimes redirecting
a team mid-sprint is necessary. But, all too often teams are redirected because it's
easy to do and because someone didn't think ahead. I relax this hard-line stance
against change after I see that the organization no longer thinks of every new re-
quest as an emergency worthy of a mid-sprint change.

" B e i n g r e s p o n s i v e is w h a t has m a d e us s u c c e s s f u l , a n d users e x p e c t
t h a t o f u s . "

Indeed, many organizat ions have buil t success fu l re lat ionships w i t h their
users or cus tomers by being except ional ly respons ive to their requests.
However , many of t hese organizat ions also f ind t hemse l ves w e i g h e d
d o w n by need ing to be constant ly hyper-responsive. From m y exper ience
w h a t cus tomers really w a n t is predictabi l i ty. M o s t unders tand that non-
crit ical bugs cannot be f i xed instantly. They unders tand w h e n to ld some-
th ing like, "Th is is def in i te ly an impor tan t issue and w e w a n t to get to it as
quickly as possible. W e make s y s t e m patch releases available every t w o
w e e k s . It's too late to schedu le th is into the release go ing ou t on Friday,
but you ' l l have th is in the release t w o w e e k s af ter tha t . " Because they
have not rece ived th is level of predictabi l i ty f r o m so f twa re deve lopmen t
organizat ions in the past, t hey ' ve learned that the best th ing to do is to
c lamor for all f ixes now.

Get Feedback, Learn, and Adap t 283

" S c r u m is a b o u t b e i n g f l e x i b l e ; if a c h a n g e a r i ses in t h e m i d d l e o f a
s p r i n t w e s h o u l d be a b l e t o m a k e i t . "

Scrum is also about max imiz ing the del ivery of value by a t e a m over an
ex tended period. One good w a y of do ing so is to a l low the t e a m to retain
focus on one goal before redi rect ing it t o w a r d another. Improv ing an or-
ganizat ion's f lexibi l i ty in respond ing to st rategic changes is d i f fe ren t f r o m
becom ing over ly respons ive to the shor t t e rm , w h i c h o f ten leads to unsat-
is fy ing long- term results.

OBJECTION

Get Feedback, Learn, and Adapt
Each sprint can be viewed as an experiment.The product owner and team meet at
the start of the sprint to identify the most valuable experiment they can perform.
The experiment involves the creation of some amount of new functionality in
the form of working software. This new increment of the product is held to the
standard of being potentially shippable so that feedback on the experiment can
be maximized. At the end of a sprint, the experiment is evaluated. The team as a
whole learns from it.

Much of the learning will be about the product: What do users like? What
do they dislike? What do they find confusing? What do they want next? What
features does the new increment help them think of that they hadn't thought of
before? But perhaps an equal part of the learning will be about the team's use of
Scrum itself: How much work can we do in a sprint? What gets in our way? What
could help us go faster? Are we achieving "done" software every sprint?

Most of this learning would be useless if Scrum were not also iterative. Sprint
by sprint, the product owner, team, and ScrumMaster are able to revisit partially
satisfactory but working implementations and improve upon them. Additional
fields are added to the data search screen. A user interface is taken from acceptable
to excellent based on the feedback received. Performance is tuned in the most
important parts of the system based on data collected. Plans are updated and work
reprioritized based on a better understanding of how much can be completed
within the three-month deadline.

Iterative and incremental development is about generating feedback, learn-
ing from it, and then adapting what we are building and how we are building it.
Sprints provide teams the mechanisms for doing this.

284 Chapter 14 Spr ints

Additional Reading
Appelo, Jurgen. 2008. We increment to adapt, we iterate to improve. Methods & Tools,
Summer, 9—22.

Appelo s article presents excellent descriptions of what iterative and incremental
development are and describes h o w each brings something important but different to
agile development.

Cockburn , Alistair. 2008. Using bo th incremental and iterative development. Crosstalk,
May, 27-30.

This article provides excellent definitions for bo th incremental and iterative develop-
ment and argues for why they should be used together.

Larman, Craig, and Victor R . Basili. 2003. Iterative and incremental development: A brief
history. IEEE Computer, June, 47—56.

A survey of iterative and incremental development tracing its roots back to the 1950s
and proving that incremental and iterative development is not a passing fad.

Sy, Desiree. 2007. Adapting usability investigations for agile user-centered design. Journal
of Usability Studies 2 (3): 112—132.

T h e best description available of h o w to integrate user experience design into an
agile process.

Chapter

P l a n n i n g

" W e're agile; we don't plan" and "We'll be done when we're done" were com-
mon statements in the early years following the publication of the Agile Manifesto.
I suspect that many people on some of the early agile teams that took this stance
knew that they were giving up something valuable when they threw planning out
the window But, theirs was a natural reaction to the prior cultures in which they'd
worked. Too many developers hated planning because the plan had never been of
any personal benefit to them. Instead, plans were often weapons used against the
developers: "You said you'd be done by June; it's June. Make it happen."

As inappropriate as it was for some organizations to use plans as weapons,
it was equally inappropriate to throw planning out altogether. As a former vice
president of engineering for a handful of companies where agile development had
been central to our success, I also knew that Scrum teams could and should plan.
In fact, not only can agile and Scrum teams plan, according to research by Kjetil
Molokken-Ostvold and Magne Jorgensen, agile teams often plan more accurately
than teams using a sequential process (2005).

Planning is a fundamental aspect of Scrum. Scrum teams commit to always
working on the features with the highest value. To do this, the team and product
owner must have an estimate of how much a feature will cost to develop; other-
wise they are prioritizing on desirability alone. Similarly, it is important to estimate
how long a feature will take to develop—a feature that misses a critical market
window will deliver much less value. Clearly, for a Scrum team to live up to its
promise of working in priority order, planning must be an essential practice.

In this chapter we look beyond the basics and consider some planning chal-
lenges I see many organizations still facing well into their adoption of Scrum. We
start by looking at the need to progressively refine plans rather than starting with
fully detailed plans. We next look at why overtime is not a solution to schedule
problems. After that, I make the argument that organizations should learn to fa-
vor changing scope rather than the other critical project planning parameters
of schedule, resources, or quality. Finally, the chapter concludes with advice on
separating the estimates created by a team from the commitments the team makes.

2 8 5

2 8 6 C h a p t e r 15 P lann ing

Progressively Refine Plans
In Chapter 13,"The Product Backlog," we learned that the product backlog should
be progressively refined. Capabilities that will be added well into the future are
initially put on the product backlog as epics and later split into smaller user sto-
ries. Eventually these stories are so small that they do not need to be split further.
But they are then refined one last time by adding conditions of satisfaction that
describe high-level tests, which will be used to determine whether the story has
been completed.

A good Scrum team takes a similar approach to planning. Just as an epic
describes the essence of a feature but leaves out specifics, an early plan captures
the essence of what will be delivered but leaves the specifics for later. Subsequent
plans add the necessary details but only when that detail can be supported by the
knowledge gained through the project thus far. Leaving details out of an initial
plan does not mean we cannot make commitments about what will be included
when a project is finished. We can still make commitments, but those commit-
ments must leave room for changes commensurate with the amount of uncer-
tainty on the project.

For example, consider the case of a team developing a new web-based geneal-
ogy product. The team has a firm deadline in six months and needs to be able to
convey exactly what will be delivered by then. The team can provide a lot of detail
about the most important features (which will have been prioritized highest on
the product backlog). If manually drawing family trees is a high priority, the initial
plan will include a great deal of detail about that feature. The product backlog
might mention showing a layout grid, snapping items to a grid, showing rulers,
manually inserting page breaks, and so on.

A feature further down the product backlog will include less detail.We might
write, "As a user, I want to upload photos so that I can attach theni to a person in the

family tree." This gives the team and product owner the flexibility later to support
only J P G and GIF files even though the initial hope had been to support seven or
eight image formats.

OBJECTION
" W e d o o u t s o u r c e d , c o n t r a c t d e v e l o p m e n t . O u r c u s t o m e r s w a n t t o
k n o w b e f o r e t h e y s i g n t h e c o n t r a c t w h i c h f i l e f o r m a t s t h e y ' l l g e t . 1
c a n ' t l e a v e d e t a i l s l i ke t h a t o u t . "

A l t h o u g h de fe r r i ng i m p l e m e n t a t i o n de ta i l s a l l o w s t h e t e a m m o r e f lex ib i l i t y
in f i nd i ng t h e b e s t so lu t i on , y o u d o n ' t n e e d t o p rog ress i ve l y re f ine all fea-
t u re desc r i p t i ons . If i m a g e f i le f o r m a t s are cr i t ica l t o you r c u s t o m e r s , t h e n
y o u ' r e r ight . T h e s e s h o u l d be d e t a i l e d in t h e p r o d u c t back log a n d p lans
t h a t a c c o m p a n y t h e con t rac t . O ther , less cr i t ical f ea tu res can be re f i ned
as t h e y r ise t o t h e t o p of t h e p r o d u c t back log.

Don ' t Plan on Ove r t ime to Salvage a Plan 287

There are many advantages to progressively refining a plan. Chief among
them are the following:

• It minimizes the time investment. Planning is necessary, but it can be time
consuming. The time spent estimating and planning is best viewed as an
investment; we want to invest in planning only to the extent that our
effort is rewarded. If we create a detailed project plan at the start of the
project, that plan will be based on many assumptions. As the project pro-
gresses, we'll find that some of our assumptions were wrong, which will
invalidate plans based on them.

• It al lows decisions to be made at the optimal time. Progressively refining
the plan helps the team avoid falling into the trap of making too many
decisions at the outset of the project. Project participants become more
knowledgeable about their project day by day. If a decision does not need
to be made today and can be safely deferred until tomorrow, we should
defer making that decision until everyone is one day smarter.

• It a l l o w s US to m a k e c o u r s e c h a n g e s . One thing we can always be cer-
tain of is that things change. Planning enough that we know the general
direction but not all of the specifics leaves the team with the flexibility
to alter course as more is learned. Notice that I've carefully avoided the
common phrase course correction. There is no one "correct course" that is
known in advance.

• It helps us avoid falling into the trap of believing our plans. N o matter
how well we understand that the unexpected can happen and that no
plan is safe from change, a thorough, well-documented plan can fool us
into believing everything has been thought of Progressively refining a
plan reinforces the idea that even the best plan is subject to change.

• Rev iew a current release plan. Ident i fy parts of the plan that are
premature ly precise or detai led.

• Make a list of the reasons w h y your organizat ion creates plans that
are p remature ly precise. Are there speci f ic individuals or g roups
that d e m a n d such plans? Could they be persuaded to start w i t h
less detail? If so, m e e t w i t h t h e m and present the reasons for do-
ing so.

Don't Plan on Overtime to Salvage a Plan
Long ago, when I first started managing software developers, I thought it would be
the easiest job in the world. In my experience, and as a programmer, it seemed that
programmers routinely underestimated how long things would take. I thought
that all I would need to do as a manager would be ask individuals to create their
own estimates and then keep the heat on them to meet those estimates. Because

THINGSTO
TRY NOW

2 8 8 C h a p t e r 15 P lann ing

the estimates would be low more often than not, I reasoned that we'd finish earlier
than if I prepared a schedule for the team.

This worked quite well for the first few months. As a non-Scrum team back
in the 1980s, many of the first tasks on the schedule had loosely defined deliv-
erables. Analysis was done when we called it done. Design was done when the
deadline for design being done arrived. The first few features to be programmed
were finished on schedule. I made a few team members work overtime to meet
the deadlines—after all, they were the ones who gave those estimates, not me. The
overtime wasn't excessive: a few extra hours this week, maybe half a day next Sat-
urday. But after a few months of this I noticed we were working more overtime
and it wasn't helping as much. Corners we had cut during earlier crunch periods
were coming back to haunt us. We were also either finding or making more bugs
than before.

My solution back then? More overtime.
No, it didn't work. It also didn't work on the next few projects where I re-

peated the cycle. But I did eventually learn that teams cannot be pushed infinitely
hard and that beyond a certain point, working more hours in a week will move
the team backward rather than forward.

In the early days of Extreme Programming this was known as the forty-hour
workweek, based on the eight-hour day common in the United States. Soon,
though, the principle was renamed to sustainable pace to reflect that many coun-
tries have a standard different f rom 40 hours and that it is sometimes acceptable to
work longer than 40 hours in a week. Watch any marathon, and each runner will
seem to be running at a personally sustainable pace. After all, the runner will keep
it up for 26.2 miles. Look more closely, however, and you'll notice that the pace is
not entirely consistent f rom mile to mile. Each works a little harder going up the
hill and maybe recovers slightly coming down it. At the finish line, most accelerate
and sprint at a pace that is not sustainable beyond the finish line.

Sustainable pace should mean the same to a Scrum team: Most of the time
the team runs at a nice, even pace, but every now and then team members need
to kick it up a gear, such as when nearing a finish line or perhaps attacking a criti-
cal, user-reported defect. Working overtime occasionally does not violate the goal
of working at a sustainable pace. Authors of Extreme Programming Explained Kent
Beck and Cynthia Andres concur.

Overtime is a symptom of a serious problem on the project. The
X P rule is simple—you can't work a second week of overtime.
For one week, fine, crank and put in some extra hours. If you
come in on Monday and say "To meet our goals, we'll have to
work late again," then you already have a problem that can't be
solved by working more hours. (2004, 60)

Don ' t Plan on Ove r t ime to Salvage a Plan 289

Learning the Hard Way
When Clinton Keith was the C T O of High Moon Studios, a developer ofTriple-
A video games, he learned the hard way to take seriously this admonishment
against more than one week of overtime. The video game industry is one of the
few that still has a dominant annual trade show Theirs is called the Electronic
Entertainment Expo, or E3. Important upcoming titles are shown at E3, and deals
are struck between studios and publishers. It is natural for teams to put in over-
time leading up to the biggest showcase of the year for their games. Not only do
team members want their games to show well to the press and possible business
partners, but they also want to impress their friends from other companies who
will be at the show

For years, Keith had encouraged his teams to work overtime for the months
leading up to E3. But, now that he and High Moon had embraced Scrum, teams
had been working at a consistent and sustainable pace. Still, old habits die hard.
With a few weeks left before the show, Keith asked his teams for some mandatory
overtime. As Kent Beck might have predicted, velocity did go up in the first week,
as shown in Figure 15.1. But in the second week, although velocity was still
higher than without the overtime, it was below that of the first week. By the third
week, velocity was insignificantly above the pre-overtime pace. In the fourth week
of overtime, velocity was actually below what the team had been achieving at its
sustainable pace (Keith 2006).

FIGURE 15.1
H i g h M o o n S t u d i o s
f o u n d t h a t s u b -
s e q u e n t w e e k s o f
o v e r t i m e a c t u a l l y
l o w e r e d v e l o c i t y .
P r i n t e d w i t h per -
m i s s i o n o f C l i n t o n
K e i t h , A g i l e G a m e
D e v e l o p m e n t .

Although ingrained habits might be difficult to break, after a manager expe-
riences something like this and sees hard evidence from his teams that extended
periods of overtime are counterproductive, the lesson finally sinks in.

2 9 0 Chapter 15 Planning

Getting There
The argument in favor of working at a sustainable pace says that teams get more
done that way than they do when cycling between an unsustainable pace and a
recovery period. Graphically, this is shown in Figure 15.2.The team working at a
sustainable pace completes the same amount of work each period of time. The
team working at an unsustainable pace exceeds that amount of work during some
periods. But during other periods it is recovering from having worked unsustain-
ably and complete less work. In Figure 15.2 the question is whether the area un-
der the sustainable pace curve (representing the total work done by that team) is
greater than the area under the unsustainable pace curve. Another way to think
about this is if you have five kilometers to run, will you be faster running at a
consistent pace or alternating periods of all-out sprinting and walking?

FIGURE 15.2
T h e a m o u n t o f
w o r k c o m p l e t e d is
s h o w n b y t h e a r e a
u n d e r e a c h l i n e .

Work,

Sustainable pace

Unsustainable pace

Time

Intellectual arguments that working at a sustainable pace is most productive
are unlikely to convince most doubters. After all, do you really believe a tortoise
(at its sustainable pace) could beat a hare (with its sprint/sleep strategy)? I know
Aesop's fables are supposed to reinforce great truths, but I'd have to see it to be-
lieve it. The same can be said of the truth of sustainable pace; most organizations
need to collect their own data to be convinced that overtime is not a solution to
long-term schedule problems. After you see the data for your teams (like Clinton
Keith did in Figure 15.1),it's easy to see that prolonged overtime does not increase
productivity

Unfortunately, getting people to try working at a sustainable pace so that you
can even collect that data is no easy feat. I've found the following arguments help-
ful in pleading that case:

• Working at a sustainable pace leaves extra capacity for when you need
it. If a team is constantly running at an all-out pace, it will not have the
extra reserve of energy for the time when extra effort is truly necessary

Don ' t Plan on Ove r t ime to Salvage a Plan 2 9 1

• It leaves time for more creativity. Real productivity comes not just from
working more hours but from occasionally coming up with creative solu-
tions that either dramatically shorten the schedule or vastly improve the
product. Teams working at a sustainable pace will be more likely to have
the mental energy to come up with these ideas.

• Stop arguing that our brains are exhausted after six hours a day. Teams
need to stop telling management that their brains are exhausted after six
hours of hard thinking and that working beyond that is impossible. Many
executives work 12 hours or more per day. Maybe that work is less brain
intensive, but developers will get nowhere telling such executives that
it is impossible to program for more than six hours. Besides, how many
developers who make this argument during their day jobs go home and
contribute at night to an open source project for fun? As passion increases,
so does productivity.

• It's worth a try. If an experiment will result in useful, objective data, most
decision makers will support the experiment, as long as it's done at the
right time. Early in the project, when there's less apparent time pressure,
start collecting data about the team's velocity when working at a sustain-
able pace. Later, when overtime is mandated, don't argue against it. In-
stead, try to gain the agreement that you'll continue the overtime more
than a few weeks only if the data shows that velocity has increased.

If Not Overtime, What?
Extended overtime is a popular tool because it's cheap, easy, and occasionally ef-
fective. It takes nothing more than a manager saying, "I expect you here on Satur-
day," and has an immediate cost of no more than an occasional pizza. If we wish
to establish a culture in which we eliminate such an attractive, seemingly free tool
as overtime, we need to offer something in its place.

Tony Schwartz and Catherine McCarthy of the Energy Project believe they
have the solution. They point out that time is a finite resource—we cannot add
hours to our day. Energy is different, they say: We can add energy. We know this
intuitively. There are days we come into the office energized and are hyperpro-
ductive. And then there are the days we do little more than watch the clock. If
we can add energy to the team, it will have more of the former and fewer of the
latter days (2007).

One of the best ways of adding energy is increasing passion. The more pas-
sionate people are about their projects, the more likely they are to fully engage on
them each day. The product owner is the key here. Product owners need to convey
a compelling vision around the product being developed so that team members
are enthusiastic about working on it.

SEE ALSO
S u g g e s t i o n s on h o w to
c o n v e y th is c o m p e l l i n g
v i s ion w e r e g iven in
t h e sec t ion , "Ener -
gize t h e S y s t e m , " in
Chap te r 12, " L e a d i n g a
Se l f -Organ iz ing T e a m . "

292 Chapter 15 Planning

Another good technique advocated by Schwartz and McCarthy is to take
brief but regular breaks (2007). A 20-minute walk outside or a quick chat with a
coworker works to restore focus and energy to the main task. As a personal ex-
ample, I used 30-minute sprints to write this book. At the start of each writing
sprint I would turn off all distractions such as e-mail and my phone. I would then
turn over a 30-minute sand timer. At the end of each half hour I could either turn
the timer immediately back over if the writing was going well, or I could grant
myself five or ten minutes to check e-mail, return a call, or just look outside.

Francesco Cirillo has long advocated a similar approach he calls "pomodoro,"
which is Italian for tomato. In Cirillo's pomodoro approach, team members work
in 30-minute increments. At the start of each increment, a tomato-shaped kitchen
timer is set for 25 minutes. The team works diligently during that time with no
distractions from e-mail, the phone, or so on.When the timer goes off, team mem-
bers take a five-minute break. During these five minutes they can walk around,
stretch, share stories, and so on but are discouraged from doing things like talking
about work or checking e-mail. Every fourth pomodoro, Cirillo encourages a
longer break of from 15 to 30 minutes (2007).

Cirillo's advice of a longer mental break twice a day fits with human ultra-
dian rhythms. These are 90- to 120-minute cycles during which the body moves
between high- and low-energy states. Psychologist Ernest Rossi says that "the
basic idea is that every hour and a half or so you need to take a rest break—if you
don't...you get tired and lose your mental focus, you tend to make mistakes, get
irritable and have accidents" (2002).

THINGST0
TRY NOW

•

•

C o m m i t to running the next t w o or th ree spr ints w i t h o u t any over-
t ime. A f te r do ing that , evaluate h o w m u c h w o r k w a s comp le ted ,
the qual i ty of that wo rk , and the creat iv i ty and energy of t e a m
m e m b e r s dur ing the sprint.
Consider t ry ing Ciril lo's p o m o d o r o approach or a less rigid var iat ion
of it. W o r k for 30 or 60 m inu tes w i t h o u t interrupt ion. Then take a
f ive- or t en -m inu te break to look outs ide, wa l k around the bui lding,
or talk to coworke rs .

Favor Scope Changes When Possible
The Project Management Institute (PMI) has long drawn the "iron triangle"
shown in Figure 15.3. The iron triangle is meant to show the interdependent
relationships between scope, cost (resources), and schedule. It is often drawn by a
project manager and handed to the project's customer accompanied by the words,
"Pick any two." By this the project manager means that as long as he has some
flexibility in one of the three dimensions, he can meet the customer's expectations
on the other two.

Favor Scope Changes W h e n Possible 293

T h e i r o n t r i a n g l e
i l l u s t r a t e s t h e re l a -
t i o n s h i p b e t w e e n
s c o p e , r e s o u r c e s ,
a n d s c h e d u l e .

FIGURE 15.3

^eÇoKrc-eÇ

Shown in the center of the iron triangle of Figure 15.3 is quality. This is
because quality—like the federal agents who arrested A1 Capone—is considered
untouchable. Unfortunately, this is rarely the case; as such, quality is often used as
a fourth side of the iron "triangle."

As part of transitioning to Scrum, key project stakeholders, developers, and
product owners will need to learn to make changing scope their first choice. It is
far easier to lock down the schedule, resources, and quality of a project. This does
not mean that we don't sometimes instead fix the scope of the project and allow
the schedule or resources to vary. However, our bias should be toward adjusting
scope to fit available resources and schedule.

Considering the Alternatives
To see why we should favor changing scope over the other options, suppose we
are part of a team that has just finished the ninth month of what we expected
to be a 12-month project. At this point everyone realizes that the full scope of
the project cannot be delivered on schedule with the current team. What are our
choices?

Perhaps we should cut some quality corners—skip a little testing, leave a few bugs
unfixed. Reducing quality is rarely explicitly considered, yet it is often the go-to
option when the project is running behind. If we reduce quality, perhaps by al-
tering our definition of what bugs must be fixed before we ship and perhaps by
skipping the stress testing, in our scenario we may succeed in finishing the project
in three months. The problem is that reducing quality is short sighted. These deci-
sions, if made, will come back to haunt the team on the next release.The team will
probably be under equivalent deadline pressure then but will also have to find a
way to pay off the technical debt they racked up to meet the last deadline.

Cut Quality?

2 9 4 C h a p t e r 15 P lann ing

Scrum teams have learned that the best way to go fast is by keeping the qual-
ity of the system high throughout its development. In 1979, Philip Crosby wrote
that "quality is free" and that "what costs money are the unquality things—all the
actions that involve not doing jobs right the first t ime" (1). So if we try to meet
our deadline in three months by cutting quality between now and then, there is a
good chance that we will only succeed in slowing ourselves down because of the
rework and instability in the system, even over the short term.

A further problem with cutting quality is deciding how much and what to
cut. It is hard to predict the impact of shortcutting quality. And if Crosby is right,
attempts to shortcut quality could result in a longer schedule. Imagine for a m o -
ment that you've been asked to move a deadline up from six months to five and
that for some reason everyone (including you) agrees that cutting quality is the way
to do this. H o w much quality would you need to cut to shorten the schedule by a
month? Specifically, which items would you choose to test less and how much less?
Which validation steps would you skip? The difficulty of these questions illustrates
how unpredictable cutting quality is as an attempt to shorten a schedule.

Add Resources?
What about meeting the planned schedule by adding resources? Tossing a few (or
a few dozen) more developers onto the team ought to bring the schedule in, many
will think. Unfortunately, it's not that simple. In The Mythical Man-Month, Fred
Brooks wrote that "adding manpower to a late software project makes it later"
(1995,25).With 3 months left in our 12-month project, it is quite possible that the
time spent training the new team members, the additional communication over-
head, and so on will negate the benefit the additional developers bring over such
a short period. If we were 1 month into our 12-month project when we realized
we wouldn't be able to deliver everything on schedule, adding people may have
made more sense, because they would have had longer to contribute.

Even if we were to debate the relative merits of adding people and when it is
too late to do so, what we cannot debate is that the impact of adding people is u n -
predictable. Because we cannot be positive of the impact, adding resources is risky.

Extend the Schedule?
So if we can't ensure success on our hypothetical project by either reducing qual-
ity or increasing resources, that leaves us with changing the scope or the schedule.
Let's first consider changing the schedule. From the development team's per-
spective, changing the schedule is a wonderful option. If our project cannot be
delivered in the originally planned three remaining months, all we need to do is
estimate how much additional time is needed and then announce that as the new
schedule. Apart f rom the difficulty of successfully re-estimating the completion
date, there is little risk to the developers in adjusting the schedule.

Favor Scope Changes W h e n Possible 295

Unfortunately, adjusting the date can be very hard for the business. Commit-
ments have often been made to customers or investors. Advertising plans, includ-
ing the big Super Bowl commercial, have been timed to coincide with the release
date. New personnel may have been hired to handle increased calls to sales or sup-
port. Training sessions may have been scheduled. And so on. Although changing
the deadline is a wonderful, easy-to-implement option for the development team,
it is not always feasible. When it is an option, though, it should be considered.

Adjust the Scope?
Finally, what about changing the scope of the release? Yes, yes, "changing scope" is
a polite way of saying "dropping things." However, is dropping something always
so bad? When our project was first planned we drew the line after a set of features
and said, "That's what you'll get." Suppose we drew this line after the 100th fea-
ture. Fm positive that the product owner was disappointed that the team would
not commit to delivering item 101 on the product backlog. That feature was
dropped even before the project began.

And so the product owner is entitled now to be disappointed that we have
discovered that we can finish only the first 95, not 100, items on the product
backlog. However, this is not the end of the world. At least it's not if the team has
been working in priority order. If the five items being dropped from the release
are the five items of lowest priority, and if we assume (as we generally should)
that the team did the best work it was capable of under the circumstances, then
the product owner is receiving the best possible product in the amount of time
provided and with the team available.

Is dropping features disappointing? Absolutely. Would it have been better if we
could have better predicted how much would be completed by the target date?
Definitely. Is it realistic to expect perfection in these predictions? Sadly, no.

So, then, back to our example of realizing we will not finish everything in
the three months remaining on our hypothetical project. Is dropping scope a valid
response in this situation? From the development team's perspective, absolutely. If
it isn't going to finish all of the desired work, simply figure out what it is likely
to finish and don't do the work past there. If the team is behaving agilely—in
particular, driving the system to a potentially shippable state by the end of each
sprint—the team will have no challenges in dropping some scope.

From the business's perspective, dropping scope is always a bad thing. But
what alternatives are there? We've established that reducing quality to meet the
deadline is not a good thing. We've also established that the effect of adding people
is unpredictable. That leaves the business with extending the deadline or dropping
scope. Because of the likely issues with changing the deadline, reducing scope is
often the preferred option, again assuming that features have been worked on in
priority order.

SEE ALSO
Spec i f i c adv ice on
e s t i m a t i n g h o w m u c h
func t iona l i t y can be
de l i ve red and by w h e n
w i l l be p rov ided in t h e
nex t sec t ion , "Sepa-
rate Es t ima t i ng f r o m
C o m m i t t i n g . "

SEE ALSO
For m o r e on t h e im-
po r t ance of dr iv ing to
a po ten t ia l l y sh ippab le
s t a te at t he end of
each spr in t , s e e Chap-
te r 14, " S p r i n t s . "

296

OBJECTION

Chapter 15 Planning

Project Context Is Key
Making the appropriate trade-offs between the items on the iron triangle is all
about making the appropriate decisions within the context of your project. I ' m
not advocating that scope always be the first thing to go. I ' m certainly not advo-
cating that reducing scope can be taken lightly. What I do want organizations to
learn is that changing scope is often more feasible than we may have realized in
the past, and that it is often the best side of the iron triangle to adjust.

" T h i s p r o d u c t is l ike a car ; a car is no g o o d if i t has an e n g i n e bu t no
brakes. I need it a l l . "

True: There are a certain number of mandato ry fea tures on a car. I'll even
grant that on all cars made s ince Fred Fl intstone w a s dr iv ing, both an en-
gine and brakes have been mandatory. However , there are many o ther fea-
tures, even on a car, that are op t iona l—sun roof, air condi t ion ing, t ract ion
sensors , and so on. Again, r e m e m b e r that the t e a m shou ld be w o r k i n g in
priori ty order. This means that the so f twa re equiva lents of the eng ine and
the brakes are done f irst. Then w h e n w e realize w e can ' t del iver all des i red
scope, t he fea tures on the chopp ing block are the ones that are undeni-
ably nice to have but are not t ru ly fundamenta l . If a project is in a posi t ion
w h e r e the deadl ine can only be m e t by dropp ing t ru ly mandato ry fea tures
(engine, brakes, and so on), then it really is t i m e to consider other alterna-
t ives, possibly including cancel ing the project.

" I f t h e p r o d u c t i n c l u d e s less t h a n w h a t w e ' v e p l a n n e d , n o o n e w i l l
b u y i t . "

This is really the same si tuat ion as the car. The real p rob lem here is that
the plan w a s created w i t h o u t a suf f ic ient marg in of safety. I m o s t com-
mon ly hear th is ob ject ion w h e n the project p lanning process cons is ted of
creat ing the product backlog, de te rm in ing the earl iest possible date that
all that w o r k m igh t be comp le ted , and c o m m i t t i n g that date to cus tomers
or users. If the product t ru ly needs fea tures that cannot be de l ivered by
the c o m m i t t e d date, then th is is one of the occas ions w h e n ex tend ing the
date is necessary. The p rob lem in th is case is more that the pro ject w a s
improper ly p lanned than anyth ing else.

Separate Estimating from Committing
A fundamental and common problem in many organizations is that estimates
and commitments are considered equivalent. A development team (agile or not)
estimates that delivering a desired set of capabilities will take seven months with

Separate Est imat ing f r o m C o m m i t t i n g 297

the available resources. Team members provide this estimate to their manager who
passes the estimate along to a vice president who informs the client. And in some
cases the estimate is cut along the way to provide the team with a "stretch goal."

The problem here is not that the team's estimate of seven months is right
or wrong. The problem is that the estimate was turned into a commitment. "We
estimate this will take seven months" was translated into "We commit to finishing
in seven months." Estimating and committing are both important, but they should
be viewed as separate activities.

I need to pick up my daughter from swim practice tonight. I asked her what
time she'd be done (which we defined as finished swimming, showered, and ready
to go home). She said,"I should be ready by 5:15."That was her estimate. If I had
asked for a firm commitment—be outside the facility by the stated time or I'll
drive away without you—she might have committed to 5:25 to allow herself time
to recover from any problems, such as a slightly longer practice, the coach's watch
being off by five minutes, a line at the showers, and so on. To determine a time
she could commit to, my daughter would still have formed an estimate. But rather
than telling me her estimate directly, she would have converted into it a deadline
she could commit to.

The Right Data to Do This
A good organization learns to separate estimating from committing. We estimate
first and then, based on how confident we are of the estimate, we convert it into
a commitment. But without a good estimate to start with, a team's commitment
will be meaningless. To come up with a good estimate, the product owner and
team must be equipped with the right data. Most important, they need to know
two critical things:

• The size of the work to be performed

• The team's expected rate of progress through that work

To size the user stories on the product backlog, most teams use either story
points or ideal days, as described in Agile Estimating and Planning (Cohn 2005).The
rate at which product backlog items are completed is known as velocity.Velocity
is simply the sum of the story-point or ideal-day estimates of the product backlog
items completed in each sprint, with most teams using a rule of no partial credit.
Working with these values, the product owner is able to see how much function-
ality can be delivered by various dates. Let's see how the product owner can use
this information to make informed scope/schedule trade-off decisions.

An Example
Consider Table 15.1, which shows the actual velocities of a team I worked with.
The first thing you should notice is that velocity is volatile—it can bounce around

298 Chapter 15 Planning

quite a bit from sprint to sprint. This is because it is impossible to perfectly assign
estimates to user stories on the product backlog; some will turn out bigger than
estimated and some smaller. Similarly, teams might encounter more interruptions
in some sprints or have greater focus in others. I equate a team's velocity to the
number of points scored by a sports team in a sequence of games. My favorite
sports team is the Los Angeles Lakers. In their last nine basketball games they
scored 101, 94, 102, 102, 107, 93, 114, 117, and 97 points. Compare the volatility
of those scores with the volatility shown in Table 15.1.

TABLE 15.1
T h e v e l o c i t y o f a
t e a m w i l l v a r y f r o m
s p r i n t t o s p r i n t , as
t h i s t e a m ' s d a t a
s h o w s .

Sprint Number Velocity

1 34

2 41

3 27

4 45

5 35

6 38

7 40

8 39

9 40

Because a team's velocity will vary (perhaps somewhat dramatically) from
sprint to sprint, I do not rely heavily on a single value.What I 'm interested in is the
likely range of future velocities, or what a statistician would call a confidence interval.
As an example of a confidence interval, global warming between 2000 and 2030
is estimated to be between 0.1°C and 0.3°C per decade. In 2030, we'll be able to
look back and calculate a precise value—say 0.21°C—but looking forward we use
a range. Scientists have studied this and are 90% confident that the actual value
(when we can calculate it in 2030) will fall between 0.1°C and 0.3°C per decade.

I'd like to know the same thing about a team's velocity. I'd like, for example,
to say that my team is 90% likely to experience a velocity between 18 and 26 over
the remaining 5 sprints of a project. Fortunately, putting a confidence interval
around a team's velocity is not hard to do.

Start by gathering velocity data for as many past sprints as you can. You will
need at least 5 sprints to calculate a 90% confidence interval. Throw out data from
sprints that you do not think accurately represent the team as it will be going for-
ward. For example, if new people were added to the team 8 sprints ago, I would

Separate Est imat ing f r o m C o m m i t t i n g 299

look back at only the last 8 sprints. But, if team size has fluctuated between 5 and
7 people for the last 13 sprints and I expect it to continue to fluctuate like that,
then I would include all 13 sprints. Use your judgment, but try to avoid bias in
throwing out values that help you get the predicted range you want.

Once you have past velocity values, sort them from lowest to highest. Sorting
the values from Table 15.1 produces the following list:

27 ,34 ,35 ,38 ,39 ,40 ,40 ,41 ,45
Next, we want to use these sorted velocities to find a range that we are 90%

confident contains the velocity the team will experience going forward. To do
this, we will use Table 15.2, which shows which 2 data points in our sorted set of
velocities to use to determine the 90% confidence interval. For example, in Table
15.1 we had 9 observed velocities. Looking at the first column ofTable 15.2, we
see two choices near to 9: 8 and 1 l.We round down and choose 8. Looking across
from 8, we find the number 2 in the second column. This means we create a con-
fidence interval using the second observation from the bottom and the second
from the top in our sorted list of velocities. These values are 34 and 41. Therefore,
we are 90% confident that this team's average velocity will fall between 34 and 41.

TABLE 15.2
T h e nth l o w e s t a n d
nth h i g h e s t o b s e r -
v a t i o n in a s o r t e d
l is t o f v e l o c i t i e s
c a n be u s e d t o f i n d
a 9 0 % c o n f i d e n c e
i n t e r v a l .

Number of Velocity
Observations

r r Velocity Obsevation

5 1

8 2

11 3

13 4

16 5

18 6

21 7

23 8

26 9

We can now use this confidence interval to predict how much functionality
can be provided by a given date. We can then use that knowledge to decide what
scope and schedule to commit to. Suppose that the team in Table 15.1 has 5 sprints
remaining before a release. To see how much the team is likely to complete in that
time, we can multiply the number of sprints, 5, by the values of the confidence
interval (34 and 41).We then count down that many story points into the product

300 Chapter 15 Planning

backlog and point to the range of functionality the team is likely to deliver. This
can be seen in Figure 15.4, which also shows an arrow pointing at the team's me-
dian value (39).

FIGURE 15.4
W e c a n p r e d i c t
t h e a m o u n t o f
w o r k t h a t w i l l be
c o m p l e t e d i n f i v e
s p r i n t s f o r t h e t e a m
w h o s e v e l o c i t y w a s
s h o w n in T a b l e
15.1.

z :

^ — We'll aimoii oer+a'mlq qeA -to here (5 x 34).

Art our median Veloc-'&iy we'll end here (5 x 39) .

This the mo{-t we oould plan on (5 x 41).

Product 13aohlog

Going from Estimate to Commitment
The three arrows in Figure 15.4 still show only estimates. For many projects, it
will be necessary to translate those estimates into commitments. I would ideally
like to convert these estimates into a commitment by saying something like, "In
the next 5 sprints we believe we can commit to delivering between 170 [5 x 34]
and 205 [5 x 41] story points, which means we'll deliver between here [top ar-
row] and there [bottom arrow] on the product backlog."This is the most realistic
and accurate commitment. However, in many cases, product owners and their
teams are asked to give a point estimate—"We commit to finishing exactly here."
This is often the case for an organization doing outsourced, contract development
work that needs to commit to a specific amount of functionality for a fixed-date
contract.

When asked to turn a range like 170-205 story points into a point estimate
that will be used as a commitment, it is tempting to react by saying, "Well, if you
want a guarantee of what we can commit to, then it's the 170." If this is all you are
willing to commit to, you will probably be able to achieve it, but you are taking on
the risk right now of angering the person you are committing to.This type of de-
cision can be viewed as trading long-term risk (there isn't much risk of delivering
less than that amount of functionality) for short-term risk (your client, customer,
or boss could be angry at you now if this is all you can commit to).

An alternative—committing to deliver the amount indicated by the high
end of the confidence interval—makes the opposite trade-off. There is a lot of

Separate Est imat ing f r o m C o m m i t t i n g 3 0 1

long-term risk (you might not be able to deliver that much) but very little short-
term risk (everyone will think you're a superstar today for being able to commit
to that much).

So, the three arrows of Figure 15.4 do not tell us what commitment to make.
They tell us the likely range for our commitment. As an example, a contract de-
velopment company with a lot of people on the bench might want to commit at
or near the bottom arrow; the company's goal is likely to get people off the bench
and back onto client engagements, even if the company takes on some risk to
make that happen. Alternatively, a contract development company that has all of
its developers fully engaged may commit near the top arrow for the next project.

For a f ixed-scope project , s imi lar analysis can be done to de te rm ine the
likely range of h o w many spr ints the project wi l l take. To do this, s u m
the es t ima tes of the required scope and divide that by both of the values
that make up your con f idence interval.

NOTE

Historical Velocity Forms the Basis for Committing
When I present information such as this to my clients, a common complaint is
that they would love to do this type of analysis, but they cannot because they don't
have the data.There's a very simple solution to this: Get the data. Doing so is easier
than you think. Let's see how you can do this in two common problematic situa-
tions: when you have a completely new team that has never worked together and
when the team size is changing or will change during the project.

The Team Has Never Worked Together
If a team has never worked together, it has no historical velocity data. The best
solution in this case is to turn the team members loose on the project and let them
run at least one sprint before making commitments. Running two or three sprints
would be even better, of course. I understand that running one sprint before com-
mitting is not always possible, so here's an alternative approach.

Starting with a product backlog that has been estimated in story points or
ideal days, pull the team together. Have members conduct a sprint planning meet-
ing. Have them select one user story at a time from the product backlog, identify
the tasks necessary to complete it, estimate each task in hours, and then decide
whether they can commit to completing that user story in a sprint.They can select
user stories in any order; we're not planning a real sprint but are instead trying to
see how much work they can likely do in a sprint. In fact, this works best if the
team grabs user stories more or less randomly from the product backlog. Encour-
age the team to make whatever assumptions it would like about the state of the
system if they grab a user story that would be technically challenging if done in
an early sprint. When team members have committed to a set of user stories and

302 Chapter 15 Planning

OBJECTION

say they cannot commit to any more, add up the story-point or ideal-day estimates
that were assigned earlier to the selected user stories. This becomes one estimate
of the team's velocity. If you can get the team to do it, have it plan a second sprint
this way and average the results. This decreases the impact of a bad estimate or two
in the first sprint.

" T h e t e a m d o e s n ' t e v e n ex i s t ye t . W e ' l l h i re p e o p l e if it l ooks l ike w e
can d o t h e p r o j e c t in t h e d e s i r e d t i m e f r a m e . "

Find o thers in the organizat ion w h o have similar skil ls and exper ience to
those y o u ' d hire for the team. If you th ink you ' l l eventual ly hire t w o good
p rog rammers , one great p rogrammer , t w o sol id tes ters , a top-no tch user
exper ience designer, and one database engineer w i t h f ive years of experi-
ence, then f ind a s o m e w h a t simi lar group of individuals. Invite t h e m to
a mee t i ng and ask t h e m to imagine they are the t e a m ass igned to th is
n e w project. Encourage t h e m to take the es t imat ing ser ious ly—af ter all,
maybe s o m e of t h e m wi l l end up on the team.

W h e n the mee t i ng is over, you may w a n t to adjust the der ived ve loc i ty
es t ima te up or d o w n based on h o w you th ink t he eventua l t e a m wi l l com-
pare to the es t imato rs and based on h o w ser iously you th ink the est ima-
tors p e r f o r m e d the job.

Calculating an initial velocity this way is a first step, but we need to turn it
into a range, as we did when we had historical data and created a confidence inter-
val. One way to put a range around the estimated velocity is to use your intuition,
perhaps raising and lowering the estimate by 25%, or more if you think the team
took the exercise less seriously than it should have.

Another way to put a range around the estimated velocity is to adjust it based
on the relative standard deviation calculated from velocities of other teams. Rela-
tive standard deviation is simply standard deviation expressed in percentage terms.
Looking back at Table 15.1, we can calculate the standard deviation of those veloc-
ity values as 5.1. The average velocity of that data was 37.6. Dividing 5.1 by 37.6
and rounding the result gives 14%, which is the relative standard deviation. If you
have data, like that shown in Table 15.1, for a number of teams, you can calculate
the relative standard deviation for each team and then take the average of those
values and apply it to the estimated velocity. This will give you a reasonable ex-
pectation of the new team's velocity as a range. Although this approach does work
reasonably well, I want to reiterate that it would be better to have historical data
for that team or to run a sprint or two before making a commitment. I am pre-
senting this alternative approach for the times when neither of those is possible.

Separate Est imat ing f r o m Commi t t i ng 303

Team Size Changes Frequently
A different type of problem occurs when team size changes or is expected to
change frequently. As in the previous case, my first answer is an easy one: Stop
changing the team. Teams benefit tremendously from having a stable member-
ship. Of course, team composition will change over the long term, but try not
to exacerbate the problem by moving people back and forth between teams as is
common in many organizations.

My second answer is again to collect data so that you are prepared and can
anticipate the impact of team size changes. To do this, have someone in the orga-
nization keep track of the percentage change in velocity for the first few sprints
following any change in team size. You want to track the change for a couple of
sprints following a change of team size because velocity almost always drops in the
first sprint, even when team size goes up. This is the result of increased commu-
nication, productive team members taking time to get a new member productive,
and so on. In my experience, the long-term impact of the change is apparent by
the third sprint after the change.

My recommendation is to calculate the change in velocity not against the
last sprint prior to the change but against the average value from the preceding
five sprints.You could look back further, but often that isn't possible. Remember,
we're trying to solve a problem in an environment where team sizes are changing
frequently. So if we try to look back eight sprints, we might find that the team size
changed over that interval.

What this leads to is something like Table 15.3.This table shows that the team
in the first row went from six members to seven and experienced a 20% drop in
velocity in the first sprint after the change, a 4% drop in the next sprint, followed
by a 12% increase in velocity in the third sprint. The team in the last row has
increased from seven to eight members but has only completed one sprint since
doing so. The remaining columns of the last row will be filled in at the end of the
next two sprints.

A spreadsheet like this can be kept up to date in no more than a few minutes
per sprint, even when tracking dozens of teams. It is intentionally kept simple—I
do not, for example, track whether it was a programmer or tester or other who
moved onto or off the project. It is entirely likely that you already have a great
deal of the raw data needed to create a spreadsheet like Table 15.3. If each team
has been tracking its velocity and knows who was on the team during each sprint,
you could re-create quite a bit of historical data.

SEE ALSO
This t y p e of
o rgan iza t i on -w ide
me t r i c is a good th i ng
for t h e Project M a n a g e -
m e n t O f f i c e (PMO) t o
co l lect . The P M O is
d i scussed in Chap te r
20, " H u m a n Resources ,
Faci l i t ies, and t h e
PMO."

SEE ALSO
You can d o w n l o a d
a sp readshee t fo r
t rack ing th is t y p e
of data f r o m w w w .
S u c c e e d i n g W i t h A g i l e .

304 Chapter 15 Planning

TABLE 15.3
C o l l e c t i n g d a t a o n
t h e e f f e c t o f c h a n g -
i n g t e a m s ize.

Initial Team
Size

New Team
Size

Sprint +1 Sprint +2 Sprint +3

6 7 - 2 0 % - 4 % + 12%

6 7 0% - 6 % + 15%

7 5 - 1 2 % - 8 % - 8 %

8 6 - 2 0 % - 2 0 % - 1 6 %

7 8 - 1 5 %

You can use data like this to answer a wide variety of questions such as these:

• What will this team's velocity be if we add two people?

• How soon could we get this project done if we added a person to each
team?

• If I want this set of projects done by the end of the year, how many
people would we need to add?

• What would be the impact of not approving the new employees in the
budget?

• What would be the impact of a 15% layoff?

As a simple example using only the data in Table 15.3, suppose you have been
asked to estimate how much more work could be completed in the next seven
sprints if the team were to grow from six to seven people. By averaging the first
two rows in Table 15.3,1 you estimate that velocity will go down about 10% in
the first sprint, be down about 5% in the second sprint, but then be up about 13%
from then on as the new member is fully assimilated. These values are shown in
Table 15.4.

TABLE 15.4
C a l c u l a t i n g t h e i m - Sprint Velocity Change
p a c t o f g o i n g f r o m
s i x t o s e v e n t e a m 1 -10%

m e m b e r s . 2 - 5 %

3 - 7 + 13%

1 For simplicity, Table 15.3 has only two rows for teams increasing from six to seven
people. For a real project, I would want more data than this before starting to base deci-
sions on it.

Addi t ional Reading 305

By averaging the velocity changes, we calculate that the velocity is expected
to change by just over 7% over seven sprints. You can now answer your boss by
saying that going from six to seven people (a 17% increase in head count and pos-
sibly budget) will allow you to deliver approximately 7% more functionality over
the planned seven sprints. The product owner should be able to use this informa-
tion to determine whether the increased cost is worthwhile.

• Start co l lect ing data re levant to your s i tuat ion. Min imal ly , start
a spreadsheet to capture the ve loc i ty of each t e a m each sprint.
Consider including data about t e a m size changes or o ther fac tors if
such changes are relevant in your organizat ion.

• A f t e r y o u ' v e ga thered enough data on historical veloci ty, star t
p roduc ing a chart like Figure 15.4 so that it can be used by each
project 's p roduct o w n e r to make scope versus schedu le t rade-of f
decis ions.

THINGSTO
TRY NOW

Summary
Becoming proficient at planning is a critical skill for any Scrum team. In this
chapter we looked at ways for a team to move beyond the basics of sprint and
release planning and achieve greater benefits by

• Progressively refining plans

• Working at a sustainable pace

• Looking first at changing scope when it's impossible to complete every-
thing in the desired time frame

• Treating estimates as separate from commitments

Additional Reading
Cohn , Mike. 2005. Agile estimating and planning. Addison- Wesley Professional.

T h e most thorough book on bo th estimating and planning on agile projects. It covers
the advantages and disadvantages of bo th story points and ideal days, the two most
c o m m o n units for estimating by Scrum teams. It introduces the popular Planning
Poker technique for estimating. Also covered in detail are prioritizing and planning in
a variety of circumstances.

306 Chapter 15 Planning

Molokken-Ostvold , Kjetil, and Magne Jorgensen, 2005. A comparison of software
project overruns: Flexible versus sequential development methods. IEEE Transactions on
Software Engineering, September, 754—766.

This paper was wri t ten by two respected researchers from the Simula Research Lab.
It describes an in-depth survey of software development projects and concludes that
agile projects have smaller effort overruns than projects using a sequential develop-
ment process. A number of possible reasons are cited, including better requirements
specifications (a product backlog) and improved customer communication.

Chapter I '

Q u a l i t y

arly into my career as a programmer, I left my large, stable employer for an
eight-person start-up. I went from a well-funded environment where we had a
separate testing and quality assurance organization to a company where I was only
the second programmer; there was not a tester in sight. Sometime during my first
week at my new job, it hit me: I would be responsible for my own quality. There
were no testers who would check my work or who would be a safety net for my
meager attempts at unit testing. And then the bigger realizations hit: Without a
tester, I would look like a fool to our customers (although none would know me
personally), and I would also look like a fool to my boss, which could cost me my
job.

I panicked. But fortunately so did another programmer who started two weeks
after I did. Rather than be paralyzed by our panic, we created a wonderful suite
of tools and techniques for testing our computer telephony application. Twenty
years later I can look back on the systems we built at that time and continue to
say they were some of the most thoroughly and amazingly tested applications I've
worked on. And it was all because the company was too cash strapped at first to
hire a tester, forcing us programmers to be responsible for the quality of what we
were building.

By the time we did hire testers, the attitude that quality is a whole-team
responsibility pervaded our growing development team. Since then, I've made
an effort to instill that same mind-set in every development organization I work
with. In this chapter, I describe the importance of integrating testing into the pro-
cess rather than leaving it as something to be done later. I also introduce the test
automation pyramid and describe how test automation efforts at most companies
go awry because they fail to consider one-third of the pyramid. Finally, we look
at the importance of doing acceptance test-driven development and of paying off
technical debt.

307

308 Chapter 16 Qual i ty

Integrate Testing into the Process
I buy new cars infrequently, typically every 10 to 12 years. So when I bought a
new car in 2003 I was surprised at the many advances in technology since I'd
purchased my previous car, a 1993 Honda. One advance I was particularly pleased
with was a sensor that automatically detects low air pressure in my tires. It is
sometimes hard to tell by looking at a tire if its pressure is low, and checking tires
manually is a dirty job, so I did it infrequently. A continuous test of tire pressure
was, I thought, a tremendous invention.

During the same period in which car manufacturers invented ways to test
tire pressure continuously, software development teams learned that testing their
products continuously was also a good idea. In the early days, back when we wrote
programs by rubbing sticks together, we thought of testing as something we did
at the end. It wasn't quite an afterthought, but testing was intended to verify that
no bugs had been introduced during the prior steps in the development process.
It was kind of like making sure the oven is off, the windows are closed, and the
front door is locked before heading out for a vacation. Of course, after we saw all
the things that had gone wrong during the prior steps of the development process
(how could they not?) testing came to be viewed not as a verification step but as
a way of adding quality to a product.

It wasn't long before some teams realized that testing quality at the end was
both inefficient and insufficient. Such teams typically shifted toward iterative de-
velopment. In doing so, they split the lengthy, end-of-project test phase into mul-
tiple smaller test phases, each of which followed a phase of analysis-design-code.
This was an improvement, but it wasn't enough.

And so with Scrum we go even further.
Scrum teams make testing a central practice and part of the development pro-

cess rather than something that happens after the developers are "done." Rather
than trying to test quality after a product has been built, we build quality into the
process and product as it is being developed. W. Edwards Deming was an Ameri-
can professor and consultant best known for his work in Japan emphasizing the
impact of quality on cost and productivity. He maintained that quality could not
be added to a product later. He wrote that we should "cease dependence on mass
inspection to achieve quality. Improve the process and build quality into the prod-
uct in the first place" (2000,23).

Why Testing at the End Doesn't Work
There are many reasons why the traditional approach of deferring testing until the
end does not work:

• It is hard to improve the quality of an existing product. It has always
seemed to me that it is easy to lower the quality of a product but that it

Integrate Test ing into t he Process 309

is difficult and time consuming to improve it. Think about a time in your
past when you were working on an application that had already shipped.
Let's say you were asked to add a new set of features while simultaneously
improving the existing application's quality. Despite lots of good work on
your part, it is likely that months or even a year or more passed before
quality improved enough that users could notice. Yet this is exactly what
we try to do when we test quality into a product at the end.

• Mistakes continue unnoticed. Only after something is tested do we know
that it really works. Until then you may be making the same mistake over
and over again without realizing it. Let me give you an example. Geoff led
the development of a website that was getting far more traffic than origi-
nally planned. He had an idea that he thought would improve the per-
formance of every page on the site, so he implemented the change. This
involved him writing some new Java code in one place and then going
into the code for each page and adding one line to take advantage of the
new, performance-improving code. It was tedious and time consuming.
Geoff spent nearly an entire two-week sprint on these changes. After all
that, Geoff tested and found that the performance gains were negligible.
Geoff's mistake was in not testing the theoretical performance gains on
the first few pages he modified. Testing along the way avoids unpleasant
surprises like this at the end.

• The S t a t e of t h e p r o j e c t i s d i f f i c u l t t o g a u g e . Suppose I ask you to estimate
two things for me: first, a handful of new features; and second, how long it
will take to test and fix the bugs in a product that has been in development
for six months and is now ready for its first round of testing. Most people
will agree that estimating the new work is far easier and more likely to
be accurate. Periodic (or better yet, continuous) testing of a product is a
probe into that product that lets us know how far along we are.

• Feedback opportunities are lost. An obvious benefit of using Scrum is
that the team can get feedback on what it's built at least at the end of
every sprint. The product can be deployed onto restricted-access servers
or made available for download to select customers. If the product is at a
sufficient quality level for doing this only near the end of a release cycle,
the team misses great opportunities to gain valuable feedback earlier.

• Testing is more likely to be cut. Because of deadline pressure, work that
is planned to happen at the end of a project is more likely to be dropped
or reduced.

310 Chapter 16 Qual i ty

OBJECTION
" I t w i l l t ake t o o m u c h t i m e t o tes t c o n t i n u o u s l y . W e n e e d t o be real is-
t i c a n d a c k n o w l e d g e t h a t i t 's be t te r t o t es t e v e r y f i f t h o r s i x t h s p r i n t . "

W h e n it s e e m s bet ter to tes t less o f ten , th is usual ly indicates that tes t ing
takes too long to do. Typically th is is the case on appl icat ions that have
rel ied on manual tes t ing in the past and are n o w sh i f t ing to Scrum. If the
cost of tes t ing is so high that tes ts cannot be run every spr int , that cos t
needs to be aggress ive ly dr iven d o w n , in th is case by creat ing a u t o m a t e d
tes ts to replace the manual ones. A lack of a u t o m a t e d tes ts is a f o r m of
technical debt , w h i c h a later sect ion in th is chapter descr ibes h o w to pay
of f .

" I t ' s m o r e e f f i c i en t t o h a v e t es te r s w o r k i n g o n e s p r i n t b e h i n d t h e p ro -
g r a m m e r s . "

If the tes te rs w o r k one spr int beh ind the p rog rammers , w h o wi l l t hey go
to w h e n they have quest ions? Wi l l that be e f f i c ien t for the p rog rammers
in that spr int? Wi l l the tes te rs be able to e f fec t ive ly take part in the spr int
if the rest of the t e a m is d iscuss ing h o w the next round of fea tures shou ld
be added wh i l e they are tes t ing the ones added already? For more on
w o r k i n g toge ther dur ing a spr int , see Chapter 14, "Spr in ts . "

SEE ALSO
Test -dr iven deve lop-
m e n t , pair p rog ram-
m ing , re fac tor ing , and
c o n t i n u o u s in tegra t ion
w e r e desc r i bed in
Chap te r 9, "Techn ica l
P rac t i ces . "

What Building In Quality Looks Like
A team that has integrated testing into its day-to-day work will look and behave
very differently from a team that attempts to test quality at the end. Some of the
observable traits of a team that builds quality in include the following:

• Most obvious wi l l be the use of good engineering practices. A team fo-
cused on building in quality will do whatever it can to write the highest
quality code possible. This will include pair programming or thorough
code inspections for at least the most complex parts of the system. There
will be a strong focus on automated unit testing, if not test-driven de-
velopment. Refactoring will happen continuously and as needed rather
than in large, noticeable spurts. Code will be continuously integrated, and
failures in the build will be treated with almost the same urgency as a
customer-reported critical bug.You'll also notice that code will be owned
collectively by the team rather than by individuals so that anyone noticing
an opportunity to improve quality can take it.

• The hand-offs between programmers and testers (if they exist at all) wi l l
be SO small as not to be noticeable. Chapter 11, "Teamwork," described
how doing a little of everything (designing, coding, testing, and so on) all
the time helps teams work together. When working that way, a program-
mer and tester talk about which capability (or partial capability) will be

A u t o m a t e at D i f fe ren t Levels 3 1 1

added to the product next. Then the tester creates automated tests and
the programmer programs. When both are done the results are integrated.
Although it may be correct to still think of there being hand-offs between
the programmer and tester, in this case, the cycle should be so short that
the hand-offs are of insignificant size.

• There should be as much test activity on the first day of a sprint as on the
last day. A team that is building quality in avoids working in the minia-
ture waterfalls that were described in Chapter 14. There are no distinct
analysis, design, coding, or testing phases within a sprint. Testers (and pro-
grammers and other specialists) are as busy on the first day of a sprint as
they are on the last. The type of work may differ between the first and last
day of a sprint. For example, testers may be specifying test cases and pre-
paring test data on the first day and then executing automated tests on the
last, but they are equally busy throughout.

• Dur ing the next spr int , t rack the number of bugs repor ted by day.
Track all of t h e m — t h e ones that go into the de fec t sys tem, the
ones that tu rn into n e w i tems on your product backlog, the ones
that ge t added into the spr int backlog, and even the ones w h e r e a
tes ter jus t te l ls a p rog rammer about the bug and it ge ts f i xed im-
mediately. If t es t ing is buil t into the process, the number of bugs
f ound per day shou ld be fairly cons is ten t across the sprint.

• Devo te the next re t rospect ive to d iscuss ing w a y s to improve
quality.

THINGSTO
TRY NOW

Automate at Different Levels
Even before the ascendancy of agile methodologies like Scrum, we knew we
should automate our tests. But we didn't. Automated tests were considered expen-
sive to write and were often written months, or in some cases years, after a feature
had been programmed. One reason teams found it difficult to write tests sooner
was because they were automating at the wrong level. An effective test automation
strategy calls for automating tests at three different levels, as shown in Figure 16.1,
which depicts the test automation pyramid.

At the base of the test automation pyramid is unit testing. Unit testing should
be the foundation of a solid test automation strategy and as such represents the
largest part of the pyramid. Automated unit tests are wonderful because they give
specific data to a programmer—there is a bug and it's on line 47. Programmers
have learned that the bug may really be on line 51 or 42, but it's much nicer to
have an automated unit test narrow it down than it is to have a tester say, "There's
a bug in how you're retrieving member records from the database," which might

312 Chapter 16 Qual i ty

represent 1,000 or more lines of code. Also, because unit tests are usually written
in the same language as the system, programmers are often most comfortable writ-
ing them.

Let's skip for a moment the middle of the test automation pyramid and jump
right to the top; the user interface level. Automated user interface testing is placed
at the top of the test automation pyramid because we want to do as little of it as
possible. We want this because user interface tests often have the following nega-
tive attributes:

Brittle. A small change in the user interface can break many tests. When
this is repeated many times over the course of a project, teams simply give
up and stop correcting tests every time the user interface changes.
Expensive to write. A quick capture-and-playback approach to recording
user interface tests can work, but tests recorded this way are usually the
most brittle. Writing a good user interface test that will remain useful and
valid takes time.
Time consuming. Tests run through the user interface often take a long
time to run. I 've seen numerous teams with impressive suites of automat-
ed user interface tests that take so long to run they cannot be run every
night, much less multiple times per day.

Suppose we wish to test a very simple calculator that allows a user to enter
two integers, click either a multiply or divide button, and then see the result of that
operation. To test this through the user interface, we would script a series of tests
to drive the user interface, type the appropriate values into the fields, press the
multiply or divide button, and then compare expected and actual values. Testing
in this manner would certainly work but would be prone to the brittleness and
expense problems previously noted.

Additionally, testing an application this way is partially redundant—think
about how many times a suite of tests like this will test the user interface. Each test
case will invoke the code that connects the multiply or divide button to the code

FIGURE 16.1
T h e tes t a u t o m a -
t i o n p y r a m i d .

A u t o m a t e at D i f fe ren t Levels 313

in the guts of the application that does the math. Each test case will also test the
code that displays results. And so on. Testing through the user interface like this is
expensive and should be minimized. Although there are many test cases that need
to be invoked, not all need to be run through the user interface.

And this is where the service layer of the test automation pyramid comes in.
Although I refer to the middle layer of the test automation pyramid as the

service layer, I am not restricting us to using only a service-oriented architecture.
All applications are made up of various services. In the way I 'm using it, a service
is something the application does in response to some input or set of inputs. Our
example calculator involves two services: multiply and divide.

Service-level testing is about testing the services of an application separately
from its user interface. So instead of running a dozen or so multiplication test cases
through the calculator's user interface, we instead perform those tests at the ser-
vice level. To see how this might work, suppose we create a spreadsheet like Table
16.1, where each row represents one test case.The first two columns represent the
numbers to be multiplied, the third column is the expected result, and the fourth
column contains explanatory notes that will not be used by the test but that make
the tests more readable.

SEE ALSO
Serv ice- leve l t es t i ng
w a s a lso desc r i bed as
a t e c h n i q u e fo r spec i f y -
ing t h e behav ior of a
s y s t e m t h r o u g h e x a m -
p les in Chap te r 13, " T h e
Produc t Back log . "

multiplier multiplicand product? notes

5 1 5 Multiply by 1

5 2 10

2 5 10 Swap the order of prior test

5 5 25 Multiply a number by itself

1 1 1

5 0 0 Multiply by 0

TABLE 16.1
A s p r e a d s h e e t
s h o w i n g a s u b s e t
o f t h e m u l t i p l i c a -
t i o n s e r v i c e tes ts .

What's needed next is a simple program that can read the rows of this spread-
sheet, pass the data columns to the right service within your application, and
verify that the right results occur. Despite this simplistic example where the result
is simple calculation, the result could be anything—data updated in the database,
an e-mail sent to a specific recipient, money transferred between bank accounts,
and so on.

The Remaining Role of User Interface Tests
But don't we need to do some user interface testing? Absolutely, but far less of it
than any other test type. In our calculator example, we no longer need to run all

NOTE
A l t h o u g h w r i t i n g a
too l t o read a spread-
s h e e t and pass data
t o spec i f i c se rv i ces
w i t h i n y o u r appl ica-
t ion is s o m e t h i n g t h e
p r o g r a m m e r s on t h e
t e a m cou ld easi ly
w r i t e , t he re are a l ready
exce l l en t t oo l s to do
th is . F i tNesse, avai lable
a t w w w . f i t n e s s e . o r g , is
t h e m o s t popu lar s u c h
too l .

http://www.fitnesse.org

3 1 4 C h a p t e r 16 Qua l i t y

multiplication tests through the user interface. Instead, we run the majority of tests
(such as boundary tests) through the service layer, invoking the multiply and divide
methods (services) directly to confirm that the math is working properly. At the
user interface level what's left is testing to confirm that the services are hooked up
to the right buttons and that the values are displaying properly in the result field.
To do this we need a much smaller set of tests to run through the user interface
layer.

Where many organizations have gone wrong in their test automation efforts
over the years has been in ignoring this whole middle layer of service testing.
Although automated unit testing is wonderful, it can cover only so much of an
application's testing needs. Without service-level testing to fill the gap between
unit and user interface testing, all other testing ends up being performed through
the user interface, resulting in tests that are expensive to run, expensive to write,
and brittle.

The Role of Manual Testing
It is impossible to fully automate all tests for all environments. Further, some tests
are prohibitively expensive to automate. Many tests that we cannot or choose not
to automate involve hardware or integration to external systems. A photocopier
company I consulted to had a number of tests that needed human intervention
before they ran. For example, making sure there were exactly five pieces of paper
in the paper tray was easier to do manually than to automate.

In general, manual testing should be viewed primarily as a way of doing ex-
ploratory testing. This type of testing involves a rapid cycle through the steps of
test planning, test design, and test execution. Exploratory testing should feature
short, feedback-generating cycles through these steps in a manner analogous to
test-driven development's short cycle of test-code-refactor.

Beyond finding bugs, exploratory testing can also identify missing test cases.
These can then be added at the appropriate level of the test automation pyramid.
Further, exploratory testing can uncover ideas that are missing from the user story
as initially understood. It can also help a team discover things that seemed like a
good idea at the time but seem like bad ideas now that the feature has been de-
veloped. These situations usually result in new items being added to the product
backlog.

Automate Within the Sprint
Automation on a Scrum project is not optional. For a team to sprint effectively
(and therefore deliver value quickly), it needs to rely heavily on test automation.
Automated tests provide cheap insurance that what used to work correctly still
does. Further, an always-growing suite of automated tests provides insight into the
state of the product (and the process). If the automated test suite hasn't been run

A u t o m a t e at D i f fe rent Levels 315

successfully for two weeks, that should be a great big warning sign. On the other
hand, if the automated test suite is growing daily and has run without error every
night of this sprint, the team is probably in good shape.

Scrum teams approach test automation differently than do teams using a se-
quential development process. A highly automated test suite is considered manda-
tory by Scrum teams; it is considered a luxury by traditional teams. One reason
why traditional teams have struggled to see the value in automation is that they
don't automate early enough.Tests are often automated months after the code was
initially written. Teams new to Scrum often make the same mistake, falling into
a pattern of writing code in one sprint and then automating tests of that code in
a later one. When tests are automated long after the code is written, much of the
value of automating is lost. Code is changing most frequently while it is being
actively developed, so automated tests are most useful during that time.

Figure 16.2 illustrates the value of automating early. The cost of automation
resembles the familiar s curve: The cost does not rise for a couple of sprints; after
that though, costs rise significantly before plateauing. Anyone who has ever tried
to retrofit automated tests onto an existing application knows that it is harder to
do than if the tests are added when the design of those tests could have still influ-
enced the design of the product. When adding tests late, we are often forced to
over-rely on the top level of the test automation pyramid; adding automated unit
and service-level tests is too difficult until some significant refactoring of the ap-
plication occurs.

SEE ALSO
If you fee l like it is
imposs ib le to code,
t hen tes t , and t hen
a u t o m a t e all w i t h i n a
spr int , see " D o a Lit t le
Bit of Every th ing All t he
T i m e " in Chapter 11.

Çenejï-f"

FIGURE 16.2
T h e c o s t s a n d b e n -
e f i t s o f a u t o m a t i n g
a tes t o v e r t i m e .

1 — r
Number of Çprm+Ç a f t e r

feature ¡Ç developed

Although the initial flatness of the cost curve may tempt you into deferring
automation for a sprint or two, don't. The steep drop-off in the benefits of au-
tomation should encourage you to automate as early as possible. Over time, the
benefits of automation drop because the likelihood and frequency of changes
affecting that area of the application drop. Eventually a product may be so stable

316 Chapter 16 Qual i ty

and its expected remaining life so short that the cost of automating outweighs the
benefits. This is the argument made by many traditional teams or by teams who
put automation off entirely.

What should be clear from Figure 16.2 is that the maximum benefit can be
gained by automating in the same sprint a new feature is added to the system. This
provides the most value and does it at the lowest cost.

Sampling the Benefits
To see how significant the benefits can be of testing across all levels of the test
automation pyramid, consider the case ofSalesforce.com. Salesforce.com provides
Software as a Service for customer relationship management. Nine months after
adopting Scrum, Salesforce.com had achieved the following reductions:

• Reduced the number of staff involved in its nine deployments of the
application by 65% (to 15 people)

• Reduced the amount of time spent on final go-live tests—two to three
hours of manual effort became ten minutes of automated testing

• Reduced the amount of time on post-release sanity tests—three to four
hours of manual testing became 45 minutes of running over 200 auto-
mated tests

• Reduced the number of people involved in patch releases by almost
80% (to approximately five people)

• Saved over 300 person hours per major release and hundreds more for
all patch releases (Greene 2007)

These results are not unusual for an organization that takes automated testing
seriously. Use them as starting goals for your own automation efforts.

" W h i l e t h e p r o g r a m m e r s are w o r k i n g o n a f e a t u r e , t h i n g s a re c h a n g -
ing m u c h t o o qu i ck l y f o r t h e t e s t e r s t o a u t o m a t e tests."

To address this, let 's cons ider the th ree t ypes of tes t au tomat ion that
w e r e s h o w n in the tes t au tomat ion pyramid and should be occurr ing.
Clearly, t he unit t es ts shou ld be wr i t t en dur ing the spr int , perhaps even
in a test-dr iven manner. Exper ience s h o w s us that it is rare for a program-
mer to c o m e back later into wo rk i ng code and add unit tests . It is usually
our past h is tory w i t h capture-and-playback sty le a u t o m a t e d tes t ing that
leads us to th ink that w e can only au toma te once a feature is comp le te . It
is t rue that a tes ter cannot f in ish running the a u t o m a t e d service- level and
user inter face tes ts unti l the p rog rammers f in ish coding, but th is does not
mean that deve lopmen t of t h e m cannot be s tar ted in parallel. Exactly h o w
to do so is t he top ic of the next sect ion.

Do A c c e p t a n c e T e s t - D r i v e n D e v e l o p m e n t 3 1 7

• In y o u r n e x t r e t r o s p e c t i v e , d i s c u s s t h e t h r e e leve ls of t h e t e s t
a u t o m a t i o n p y r a m i d . W h e r e is t e s t i n g h a p p e n i n g n o w ? W h a t t y p e s
of y o u r c u r r e n t t e s t s w o u l d be b e t t e r d o n e w i t h a d i f f e r e n t t y p e of
a u t o m a t i o n ? Try t o i den t i f y t w o or t h r e e w a y s t o g e t s t a r t e d w i t h
t e s t a u t o m a t i o n in t h e c o m i n g spr in t .

Do Acceptance Test-Driven Development
Scrum teams have learned to smooth the flow of work through a sprint by doing
acceptance test-driven development (ATDD). In ATDD, work occurs in response
to acceptance tests. Acceptance tests serve as a record of the decisions made about
the implementation of a feature. As such they are writ ten throughout the sprint as
those conversations occur.

A T D D can be thought of as analogous to the test-driven development (TDD)
of Chapter 9. Lasse Koskela, author of Test Driven: Practical TDD and Acceptance
TDD for Java Developers, shows the relationship between A T D D and TDD, as
shown in Figure 16.3. I've amended Koskela 's original diagram to show only the
role of the conditions of satisfaction in this cycle.

THINGS TO
TRY NOW

SEE ALSO
Cond i t i ons of sat is fac-
t ion w e r e desc r i bed in
Chapter 13.

FIGURE 16.3
T h e r e l a t i o n s h i p
b e t w e e n a c c e p -
t a n c e t e s t - d r i v e n
d e v e l o p m e n t a n d
t e s t - d r i v e n d e v e l -
o p m e n t . (A d a p t e d
f r o m K o s k e l a 2007.

As described in Chapter 13, C O S are meant to convey a product owner's
high-level expectations about a user story. As such, they typically reside a lev-
el above specific acceptance-test cases, which makes them ideal for driving the
A T D D process itself.

The use of conditions of satisfaction in the cycle shown in Figure 16.3 frees
the product owner from the need to be involved constantly throughout the A T D D
cycle. A product owner can convey the C O S for a user story either at the start of
the sprint or when the team is ready to begin work on the story.To the extent that
the subsequently identified acceptance tests are in line with the product owner's

318 Chapter 16 Qual i ty

expectations, acceptance tests can be written by testers, analysts, or perhaps other
team members, without involvement from the product owner.

In an ideal world, the product owner would show up at the sprint planning
meeting having recently identified the conditions of satisfaction for each high-
priority user story on the product backlog. Having done this, the product owner
will be in a much better position to answer the usual type of questions asked dur-
ing the planning meeting. So, minimally, doing ATDD and starting with the COS
helps reduce the amount of time spent in planning meetings.

Unfortunately, the real world sometimes intrudes on our plans, and product
owners may not always come to the sprint planning meeting with the conditions
of satisfaction preidentified. For example, a crisis near the end of one sprint may
prevent the product owner from preparing for the next. Or during the planning
meeting the team may request to work on a user story a bit further down the
product backlog and for which the product owner has not yet identified condi-
tions of satisfaction (because they should be identified as close to implementation
as possible).

Situations such as these do not preclude doing ATDD. When conditions of
satisfaction do not yet exist, the product owner and team have two choices. The
first is to use the sprint planning meeting to identify the COS for the product
backlog items that don't have them. The second option is to identify them as one
of the first activities of the new sprint. Either approach is acceptable, but the first
is preferable in most cases and whenever time permits.

The Right Level of Detail
It may sound like a lot of work to identify conditions of satisfaction shortly in
advance of each sprint planning meeting. However, keep in mind that COS repre-
sent the high-level things that must be true of a user story for it to be considered
done at the end of the sprint.The goal is to discuss the high-level acceptance tests
that provide guidance to the developers about the product owner's expectations,
not to identify every small test case that will eventually be needed.

For example, a team I worked with was creating a website to be used by
active stock traders. Its product included many different ways for the traders to
visualize data about stocks and stock prices. One chart, called a treemap, showed
companies as small rectangles placed within a larger rectangle. Each of the small
rectangles was sized to reflect the total market value of the stock of the company. If
a company had a market value twice that of another company, its rectangle would
be twice as big. An example is shown in Figure 16.4. Users could select whether
they wanted to view the entire stock market, one segment of it (such as software
companies), or other comparative sets.

Do Accep tance Tes t -Dr iven Deve lopmen t 319

M\oroÇoff Oraole

FIGURE 16.4
A t r e e m a p in
w h i c h t h e s ize o f
e a c h r e c t a n g l e
r e p r e s e n t s t h e
m a r k e t v a l u e o f a
c o m p a n y .

At first glance, placing small rectangles inside larger ones may seem like an
easy problem. But, it's actually harder than it might look. Imagine one of those
games where you're given a few dozen blocks of various shapes and are asked to
put them together into a fixed shape with no gaps. Creating these rectangles is
a bit like that but with potentially thousands of pieces. During this team's sprint
planning meeting its product owner described the following conditions of satis-
faction to the team:

• Rectangles should be as close to square as possible; target is an average
ratio of long side to short of 1.1.

• The system must be able to generate five treemaps of a specified com-
plexity per second on the planned hardware.

• Support up to 5,000 items in one treemap.

• Support up to 500 groups in one treemap.

You'll notice how high level these conditions of satisfaction are. That's one
of the reasons why COS has caught on for describing the "tests" applied to a
user story or product backlog items. Conditions of satisfaction often are one level
above a true acceptance test. For example, to make a true acceptance test of "sup-
port up to 5,000 items in one treemap," we would need to know more about
those items; making a treemap of 5,000 identically sized items is trivial; doing the
same for 5,000 widely varying items is not.

320 Chapter 16 Qual i ty

THINGSTO
TRY NOW

Information about the 5,000 items will be added during the sprint.The tester
will take the product owner's high-level expectations (expressed as conditions of
satisfaction) and turn them into specific tests. The tester will also add all the spe-
cific tests implied but not stated by the product owner. For example, in the case of
the treemap, our product owner clearly wanted a treemap to render correctly even
if it had only one data point. She didn't tell the team that because it was obvious.
But it was still something that needed to be coded for and tested during the sprint.

Doing acceptance test-driven development keeps a team continuously fo-
cused on the objectives of the product owner. Starting a sprint with conditions of
satisfaction identified for each user story to be worked on (or identifying them as
early as possible within the sprint) helps teams from going astray ("Oh, I thought
you wanted such-and-such") and from being tempted to gold-plate a feature ("I
thought this would be cool to have as well").Acceptance test-driven development
provides the additional benefit of stimulating additional early conversation be-
tween testers and the other developers on a team at a time when testers might
otherwise be tempted to wonder what their responsibilities are.

• Select a product backlog i t em being w o r k e d on in the current sprint.
Ask each t e a m m e m b e r (including the product owner) to pr ivately
w r i t e the cond i t ions of sat is fact ion for that i tem. Then, star t ing w i t h
the COS w r i t t e n by the product owner , share all the other i tems. It
wi l l be possible that the product o w n e r fai led to ident i fy a f e w key
condi t ions. (After all, w e ' r e not go ing to spend a lot of t i m e on th is
exercise.) But it w i l l be even more likely that there wi l l be s o m e
conf l ic t ing cond i t ions a m o n g t e a m m e m b e r s or s o m e surpr is ing
realizations of w h a t is essent ia l in the backlog i tem.

Pay Off Technical Debt
Technical debt, a concept originated by Ward Cunningham, referred originally to
the increased cost of working on an application with "immature" or "not-quite-
right" code (1992). The term is now generally used to refer to the cost of working
on a system that is poorly designed, poorly written, includes unfinished work, or
is deficient in any of a number of ways. Cunningham warns of the consequences
of accumulating technical debt.

Danger occurs when the debt is not repaid. Every minute spent
on not-quite-right code counts as interest on that debt. Entire
engineering organizations can be brought to a standstill under
the debt load of an unconsolidated implementation. (1992)

Pay Off Technical Debt 321

Technical debt is often the result of a rushed implementation. This is not
always bad. As Cunningham writes, "Shipping first-time code is like going into
debt. A little debt speeds development so long as it is paid back promptly with a
rewrite" (1992).The key is that the debt must be paid back quickly.This doesn't
always happen, and as such many teams are left with huge accumulations of tech-
nical debt. Because Scrum teams take a long-term view of the life of their prod-
ucts, paying down technical debt becomes a serious consideration.

Some technical debt is obvious: Unexpected data in the database that causes
the application to crash is clearly technical debt. Fragile code that is broken by any
programmer who touches it is also clearly debt. But what about the case of a team
that has not upgraded to last month's release of a new version of Java? This, too,
is technical debt. It's probably not a problem that the team has not yet upgraded,
and I certainly don't want to imply that every team should upgrade instantly to
every new tool released. But, using even a slightly outdated language, library, or
tool is debt.The debt will need to be paid eventually. Keep in mind Cunningham's
observation: "A little debt speeds development so long as it is paid back promptly."

Paying Down Testing Debt in Three Steps
It is not necessary for a team to pay off all incurred technical debt for them to
become and remain agile. Doing so would be nice, but it's not always realistic or
appropriate. However, enough of the debt must be paid down that the team is not
crushed under its weight. As an example of how a team can pay down its technical
debt, let's consider how to handle one of the most common forms of technical
debt: a critical lack of automated tests.

When a team that has relied mostly or entirely on manual testing decides to
adopt Scrum, it will quickly discover how hard it is to run short sprints when
there's a lot of manual testing to be done each sprint. It will also realize that unless
it does something drastic, the technical debt will continue to accumulate.Teams in
this situation can follow a three-step process (as shown in Figure 16.5) to extricate
themselves from at least the worst of these problems:

1. Stop the bleeding.

2. Stay current.

3. Catch up.

The first priority of a team with technical debt in the form of an over-
reliance on manual testing is to stop the bleeding, stop things from getting worse.
The best tourniquet is to find ways to automate some of what is being tested
manually. To mix metaphors, teams should find the low-hanging fruit: tests that
will be easy to automate but save a lot of manual effort. Brian Marick, a leading
authority on testing and coauthor of the Agile Manifesto, observes that "the real
low-hanging fruit is often not automating some test execution but automating

322 Chapter 16 Qual i ty

other testing tasks, like populating databases or automatic navigation to the page
where you'll start manual testing. You're not reducing the number of manual tests,
but you're reducing the total time it takes to run them."

FIGURE 16.5
T h e t h r e e s t e p s t o
p a y i n g d o w n t h e
c o s t o f m a n u a l
t e s t i n g .

Peotelon io adopf Sorum

Time

While team members are doing triage, they are also gaining proficiency with
automated testing, which may be a new skill for some individuals. Test servers and
test environments have to be configured and tools selected. It will take a con-
siderable investment of time. But if it is not done, every new bit of functionality
added to the system will only add to the amount of time manual testing will take,
compounding the technical debt. What takes 20 hours this sprint may take 21
hours the next sprint. Eventually, the project will collapse under the burden of the
technical debt from manual testing.

After the bleeding has been stopped, the situation will no longer be getting
worse from sprint to sprint. Manual tests still will be added each sprint but the
team is finding enough low-hanging fruit each sprint to offset the time needed
to run the new manual tests. At this point, it is time to move to step two: learning
to stay current. During this phase, the team focuses on learning how to write and
automate tests for whatever new features are added during the sprint. While doing
this, no more debt is accumulating, so the situation isn't getting any worse, but
it's not yet getting any better either. Learning to add automated tests in the same
sprint as the feature will be a new skill for the team. It won't be as hard to learn as
the initial skills were during the first phase but will require new discipline.

Eventually the team enters the final phase, which is when it catches up on
additional outstanding testing debt. This can be seen by the descending line of
Figure 16.5.1 generally tell teams that I coach that I don't care how rapidly that
line descends as long as it is now moving in the right direction. Obviously, I would
prefer the debt to come down as fast as possible. But, by stating it this way I am
emphasizing that what I am most concerned with are the first two steps.

Addi t ional Reading 323

Quality Is a Team Effort
An emphasis on quality can have dramatic results. Nine months after adopting
Scrum and taking the steps recommended here, Steve Greene ofSalesforce.com
says that his company had already achieved "over 300 person hours saved per ma-
jor release, and hundreds more across the lifespan of all the patch releases. That is a
lot of time we now spend on features, automation, design, basically all things good
and productive" (2007).

As impressive as these results are, they are not unusual and can be matched by
any committed Scrum team. Just as all customers suffer if a product is of low qual-
ity, the entire team suffers if testing is not integrated into the process or is not done
at the right levels. Acquiring new testing skills, learning how to apply them within
the strict timeboxes of Scrum, and paying off technical debt are the responsibility
of the whole team. These are not challenges to be sloughed off onto the testers.
A good Scrum team will be constantly vigilant of the state of its testing practices,
always looking for ways to improve.

Additional Reading
Adzic, Gojko. 2009. Bridging the communication gap: Specification by example and agile accep-
tance testing. N e u r i Limited.

An excellent book that strives to improve communicat ion between project stakehold-
ers and team members through the use of specification by example and identifying
conditions of satisfaction.

Crispin, Lisa, and Janet Gregory. 2009. Agile testing: A practical guide for testers and agile
teams. Addison-Wesley Professional.

This book is for anyone seeking to understand h o w to integrate testing into an agile
project. Testing is split into four quadrants (somewhat similar to the layers of the test
automation pyramid), and the types of testing done in each are described. T h e book
equips agile testers wi th the mind-set and skills needed for their new roles.

Mugridge, Rick , and Ward Cunningham. 2005. Fit for developing software: Framework for
integrated tests. Prentice Hall.

This book starts out with the basics and then progresses into a case study. T h e first
180 pages are meant for anyone—programmers, testers, business people, etc.—and
will show you h o w Fit can benefit your develop projects .The next 150 or so pages
are meant for those wi th a programming background and describe h o w to extend Fit
by wri t ing and using custom fixtures.

Koskela, Lasse. 2007. Test driven: TDD and acceptance TDD for Java developers. Manning.
Part Four of this book provides excellent coverage of acceptance test—driven develop-
ment . T h e book covers the reasons to do ATDD, how to do it using FIT (the Frame-
work for Integrated Test), and h o w to get started on your project.

PART IV
T h e Organ iza t ion

Every organization must be prepared
to abandon everything it does

to survive in the future.

—Peter Drucker

Chapter 17
S c a l i n g S c r u m

M i y wife, Laura, cooks dinner nearly every night. Some nights she makes some-
thing a bit fancier; other nights, if she's more rushed, she cooks something simple.
But it's always tasty, healthful, and prepared without a great deal of stress. Except
for Christmas dinner. Cooking Christmas dinner is stressful. The house is full of
guests—her parents, my parents, maybe an aunt and uncle, and a brother or sister
or two. And yet she seems to prepare more dishes than we have guests. Christmas
dinner is done at a scale unseen the rest of the year. And anything done at a larger
scale than we are accustomed to—including a software development project—is
more difficult.

When a software project gets large, it is complicated by more than just having
more mouths to feed. Large projects are often more critical to the organization,
under greater scrutiny, more time-sensitive, more prone to personality clashes,
longer, and more likely to be distributed across multiple sites.

The first round of defense against large projects is to attack them not with one
large team but with multiple small teams. Chapter 10,"Team Structure," introduced
the idea of the two-pizza team, a team of perhaps five to nine members—small
enough that it can be fed with two pizzas. When faced with a large project, we
will use many of these two-pizza development teams rather than one much larger
team.

In this chapter we look at ways to overcome the challenge of successfully
using Scrum on a large, multiteam project. Specifically, we look at scaling the
product owner role, working with a large product backlog, managing dependen-
cies among teams, coordinating work among teams, scaling the sprint planning
meeting, and the role of communities of practice on large Scrum projects.

SEE ALSO
Dis t r i bu ted deve lop-
m e n t b r ings w i t h it
s u c h un ique cha l lenges
tha t it rece ives its o w n
chapter , w h i c h f o l l o w s
th is one.

Scaling the Product Owner
The product owner role can be one of the most challenging on a Scrum project.
On all projects, the product owner is torn between competing inward-facing and
outward-facing needs. Among the inward-facing tasks are participating in plan-
ning meetings, sprint reviews, sprint retrospectives, and daily scrums; managing

327

3 2 8 C h a p t e r 17 Sca l ing S c r u m

the product backlog; answering questions f rom the team; and simply being avail-
able to the team during the sprint. A product owner's outward-facing tasks include
talking to users about their needs, creating and interpreting user surveys, traveling
to customer sites, attending industry trade shows, managing stakeholder expecta-
tions, prioritizing the product backlog, determining product pricing, developing
a medium- and long-term product strategy, watching for industry and market
trends, performing competitive analysis, and more. O n a project with one team of
developers, this is often a vast but achievable amount of work. O n a large project
with multiple teams, however, the product owner role is too big for one person,
so we must find ways of scaling it.

As a project grows to include multiple teams, ideally a new product owner
is found for each. If you cannot achieve a one- to-one correspondence between
teams and product owners, try to have each product owner responsible for no
more than two teams. This is usually the most that one product owner can ef-
fectively work with.

At some point as the overall size of the project grows, it makes sense to intro-
duce a hierarchy of collaborating product owners. Figure 17.1 shows such a hier-
archy, with a product owner working with each team, two product line owners
each working with a cluster of teams, and a chief product owner. Naturally, layers
can be added or removed as needed for the scale of the project.

FIGURE 17.1
T h e p r o d u c t o w n e r
r o l e c a n sca le u p
t o i n c l u d e p r o d u c t
l i ne o w n e r s a n d
a c h i e f p r o d u c t
o w n e r .

C'h'ief Froduc-t Owner

Froduc-t 1-ine Owners

Froduof Owners

TafcleC

V * *

^ Off c-e Suite

^ Word FrooeSSor Spreadsheet

5+jleChee+C Printing f-unc-fíoní Oraphi

* ! * V
s *

III
A A A

Sharing Responsibility, Dividing Functionality
The chief product owner is responsible for having an overall vision of the entire
product or product suite. The chief product owner conveys this to the entire
team in whole- team meetings, e-mails, team get-togethers, and through whatever
other means are available. But the chief product owner is almost certainly too
busy to assume hands-on responsibility for working as the actual product owner
for one of the five- to nine-person teams building the product. At this level, the

Scaling the Product O w n e r 329

external-facing requirements of the role are too great. A good chief product own-
er will be very involved with teams—attending daily scrums occasionally, walking
through team areas whenever in the office, and offering support and feedback. But
the chief product owner will need to rely on the product line owners and product
owners to handle the intricate details of their product segments within the overall
project vision.

Suppose, for example, we decide to develop an office productivity suite that
will include a word processor, spreadsheet, presentation software, and personal
database. Competing with Microsoft Office, Google Apps, and other products
will be daunting, but our chief product owner is fearless. Because the chief prod-
uct owner will be focused on strategic issues, competitive positioning, and such,
product line owners are selected to own the individual products in the suite—the
word processor, spreadsheet, presentation program, and database. Each product
line owner in turn identifies product owners who will be responsible for feature
areas within the product. The product line owner for the word processor, for ex-
ample, may work with one product owner who is responsible for tables, another
responsible for stylesheets and printing, another who is responsible for the spell
checker, and so on.

Although as previously mentioned, the chief product owner is too busy to be
the product owner for one team, it is possible for a chief product owner to act as
the product line owner for part of the product. Continuing with the preceding
example, our chief product owner may choose to also be the product line owner
responsible for the word processor, perhaps because of being in that role previ-
ously. Similarly, a product line owner will often want to stay involved in a more
hands-on manner and will work also as one of the product owners. Perhaps our
product line owner for the spreadsheet product also acts as the product owner for
the team that will add charts to the spreadsheet product.

Although functionality can be divided along these lines, it is important for all
product owners to feel a shared responsibility for the full product. They must also
instill this feeling of shared responsibility in the teams they work with.

The labels "ch ie f product o w n e r " and " p r o d u c t line o w n e r " are the ones
I general ly favor, but they are representat ive only; use o thers if you w ish .
In addi t ion to these , I 've seen both program owner , super product owner ,
area owner , and fea ture o w n e r used successful ly .

For cons is tency w i t h the bulk of ex is t ing Scrum l i terature, I prefer to use
"p roduc t o w n e r " for the individual w h o w o r k s direct ly w i t h one or t w o
teams , priori t izing their w o r k and do ing all of the other th ings assoc ia ted
w i t h the product o w n e r role. In these mul t i layer hierarchies the product
o w n e r is o f ten s o m e o n e w h o s e bus iness card reads "Bus iness Ana lys t . "

330 Chapter 17 Scaling Scrum

Working with a Large Product Backlog
Most large project teams opt to use one of the commercial agile tools that provide
support for working with a large product backlog. I won't, therefore, go into all
of my preferences for how to work with a single large product backlog because
much of how an organization works with its product backlog will be dictated by
its tool selection. There are, however, two guidelines worth pointing out that re-
main valid regardless of which backlog management tool is selected:

• If there's only one product, there should be only one product backlog.

• The product backlog should be kept to a reasonable size.

These topics are addressed in the sections that follow

One Product, One Product Backlog
There's a reason it's not called a "project backlog" or a "team backlog" or any
other similar but deficient term. It's called a product backlog because there should
be one per product. If a team is working from more than one product backlog,
the multiple backlogs must be prioritized against one another. It is not enough
to prioritize each product backlog and tell the team to take the top five items off
of each. The top item on one product backlog might be lower priority than the
lowest item on another product backlog.

As an example, consider successful Scrum adopter Ultimate Software of
Weston, Florida. Ultimate Software develops Software as a Service (SaaS) for hu-
man capital management. This includes features for human resources and payroll
management. Although these features are obviously entwined (the human re-
sources you manage need to be paid), the underlying software is modular. Within
Ultimate there are teams that focus on enhancing the human resources portion of
the product and other teams that focus on enhancing the payroll portion. How-
ever, even with teams focused on different areas of the system, Ultimate maintains
a single product backlog for the overall product.

Having a single product backlog allows the chief product owner at Ultimate
to see the relationship between the top-priority human resources features and the
top-priority payroll features. Suppose that all of the items at the top of the prod-
uct backlog are human resources features. This is an indicator to the chief product
owner to either redirect the payroll-focused teams toward human resources fea-
tures (where they'll be less productive at first because they aren't as familiar with
that domain or code) or have them continue on lower-priority payroll features.

Logistical problems can arise, however, when multiple teams and multiple
product owners work with a single product backlog. Although we can agree that
all features should be prioritized relative to all other features, this can be extreme-
ly difficult to do on a project with numerous product owners, multiple product

W o r k i n g w i t h a Large Product Backlog 3 3 1

line owners, and a chief product owner. Rather than allowing each product own-
er to maintain his or her own private product backlog, a better solution is to have
a single product backlog but to provide views into it for each product owner. This
can be seen in Figure 17.2.

H"uiviaii
reÇourc-eÇ

FroducÀ" bac-klo. '3

FIGURE 17.2
T h e r e s h o u l d be
o n e p r o d u c t back -
l o g p e r p r o d u c t ,
b u t t h e r e c a n be
m u l t i p l e v i e w s i n t o
it.

Figure 17.2 shows two teams sharing a common product backlog. When the
team on the right, which is developing the human resources features of the system,
views the product backlog, it sees items that the team is or could be responsible for
delivering. The payroll team on the left has a similar view of the product backlog,
which shows items of interest to that team. Notice that some product backlog
items may be shown in both views. This can indicate that the feature may be fully
implemented by either team or that both teams will need to be involved in devel-
oping it. Suppose, for example that the word processor and spreadsheet teams of
an office suite product were looking at their product backlog views. It is likely that
each would see a product backlog item for enhancing the shared spell checker.

Keep the Product Backlog to a Reasonable Size
We need to balance our desire for a single product backlog with the competing
desire that the product backlog not become unmanageable. In fact, from my expe-
rience, things degrade rapidly if anyone involved in the project is expected to be
familiar with more than 100-150 items. I have two reasons why I think this to be
a reasonable upper limit. First, by observing and working with hundreds of Scrum
teams, when I hear a complaint of "our product backlog is too big," it is almost
always in reference to a product backlog with 100 or more items. My second ar-
gument in support of keeping the product backlog under 100-150 has to do with
a release party I went to in 2000.

332 Chapter 17 Scaling Scrum

SEE ALSO
Epics and p rogres-
s ive r e f i n e m e n t of t h e
p roduc t back log w e r e
i n t roduced in Chap-
te r 13, " T h e Produc t
Back log . "

As the vice president of development in this organization, I was pleased when
my teams finished a particularly large project on time. We decided to have a party
to congratulate the team and celebrate its success. The party was at a hotel ban-
quet room and was attended by 160 team members and their significant others. I
walked around the room with my wife, introducing her to those I worked with
and meeting their guests. Until, uh-oh, I saw a couple and had no idea which of
the two I worked with. This was bad—one of them reported to me or to someone
who reported to me, but I couldn't remember if it was him or her. My brain failed
me because of something called Dunbar's Number, which I read about for the first
time shortly after this party.

Robin Dunbar was a British anthropologist who suggested that the human
brain has a limit of around 150 individuals with whom one can maintain a nor-
mal social relationship. Up to approximately 150 people, and we can remember
who each person is and how each relates to all others ("That's Joachim; he's in the
testing group"). Beyond that number, we get confused. Aha! This explained why
I couldn't remember each person at the party. But what does this have to do with
product backlogs? Perhaps not much at a scientific level. However, if the human
brain is wired such that we can only remember 150 people and the relationships
among them, I 'm willing to go along with the idea that most of us can only keep
100-150 or so product backlog items and the relationships among them straight in
our brains. Combined with anecdotal evidence that teams with 100 or more items
on their product backlogs complain about them to me and teams with smaller
product backlogs don't, 100-150 seems like a good upper limit.

Although this may seem to be a small number of product backlog items, con-
sider that we have two ways of keeping the number of backlog items manageable.

• Make use Of epics and themes. By writing some large stories (epics) on
the product backlog and by grouping small stories together into themes,
even the product backlog for an immense project can be made to fit
within my guideline of no more than approximately 150 product backlog
items.

• Provide views into the product backlog. Notice that I didn't say there
cannot be more than 150 items on the product backlog; I only said that
no one should need to be familiar with more than that many. This can be
achieved by providing multiple views into the product backlog, as shown
earlier in Figure 17.2. Imagine again that you are building a competitor
to Microsoft Office and Google Apps. The chief product owner of such a
product would be overwhelmed if she had to be aware of and look at 500
or more product backlog items at one time. It would be more useful for
a chief product owner such as this to be able to see rollups of individual
product backlog items into themes while allowing the individual user
stories to be visible to teams.

Proact ively Manage Dependenc ies 333

This can be seen in Figure 17.3, which shows a partial product backlog.The
chief product owner can see themes, which are groups of related user stories. The
individual teams and their product owners, however, can see individual user stories
written at the level of detail they need to turn each into new capabilities in the
product.

OVO

Theme
1 1

Theme
2 "

Theme
3

Mr- _FO & word
processor team

-PO & spreadsheet
team

Vroduct bachlo >3

FIGURE 17.3
M u l t i p l e v i e w s
i n t o o n e p r o d u c t
b a c k l o g .

• If your project has mul t ip le product backlogs, o f fe r to assist the
product o w n e r in consol idat ing t h e m into one.

• If your product backlog has more than 1 0 0 - 1 5 0 i tems, group i tems
toge the r into t h e m e s . W r i t e a user s tory or o ther descr ip t ive label
on the t h e m e so that the col lect ion of user stor ies can be though t
of as one i tem.

THINGS TO
TRY NOW

Proactively Manage Dependencies
For the most part, Tom's project was moving along fairly well: The teams had
become accustomed to the iterative and incremental nature of Scrum and were
beginning to truly embrace automated testing, test-driven development, and even
pair programming. Tom had embraced his new role as ScrumMaster with only a
few remaining traces of his previous life as a command-and-control project man-
ager. After every sprint,Tom's two teams would demonstrate the new functionality
in their online payment and money transfer application. The stakeholders were
pleased at the progress. Usually. Every now and then,Tom's teams would complete
only a small portion of what they'd committed to. The teams used their retrospec-
tives to consider root causes each time this happened. In an e-mail to me about
the situation, one of the team members, Campbell, summarized what they learned.

Almost every time a sprint blew up on us, it was because of a
dependency between our two teams. We wouldn't think about it

334 Chapter 17 Scal ing Scrum

SEE ALSO
A d v i c e on s t ruc tu r ing
t e a m s w a s g iven in
Chap te r 10. Con t inu -
ous in tegra t ion w a s
desc r i bed in Chap te r 9,
"Technica l Pract ices."

during sprint planning. Or we'd think about it but misjudge the
effort involved.

On any multiple team project such as Tom's and Campbell's, the potential
for dependencies between teams exists. Good team structure can go a long way
toward reducing dependencies but will not eliminate them. Similarly, continuous
integration helps point out problems caused by some dependencies. Fortunately,
there are additional techniques Scrum teams can employ to further manage de-
pendencies. These include doing rolling lookahead planning, holding release kick-
off meetings, sharing team members, and even using a dedicated integration team.

Do Rolling Lookahead Planning
All too often a team finishes its sprint planning meeting only to discover it needs a
small amount of work done by another team but that team is not available. Rolling
lookahead planning greatly reduces the frequency of this problem by having teams
spend a few minutes each sprint thinking about what they will do in the next
couple of sprints. Normally the most convenient time to do this is at the end of
the sprint planning meeting, as the team and product owner are already together
with their minds on planning.

Depending on the team, the sprint length, and a few other factors, planning
one sprint takes anywhere from an hour to a full day. Planning an additional
couple of sprints in the same meeting would seem both impossible and tediously
boring. Fortunately, we only need to look ahead at the subsequent two sprints us-
ing average historical velocity, with no consideration of tasks or hours. This means
planning those two sprints will take about ten minutes, assuming the team knows
its historical average velocity and the product owner has prioritized the product
backlog.

So, a team doing rolling lookahead planning will walk out of the meeting
with the coming sprint planned in detail (a selected set of product backlog items
and the tasks with hours for each) and a set of product backlog items tentatively
selected for the following two sprints. An example can be seen in Table 17.1,
which illustrates what a rolling lookahead plan might look like after the sprint
planning for sprint three. One sprint later, the team will identify tasks for the
product backlog items of sprint four and will peer forward at sprints five and six,
which will have rolled into view It is worth noting that the product backlog items
selected for the later sprints are subject to change when work begins on those
sprints. Rolling lookahead planning should be viewed as a chance to consider
what might be worked on next, not as a locked-down plan. The product owner
will still be able to revise his or her opinion based on then-current information.

P r o a c t i v e l y M a n a g e D e p e n d e n c i e s 3 3 5

Sprint 3

As a site visitor, I can read current news on the home page so that I
on what's happening in the Scrum and agile world.

can stay current

Code the middle tier. 12 hours

Code new user interface. 4 hours

Design and automate tests. 12 hours

Design new UI and run it by some users. 8 hours

As the site editor, I can add news items to the website so that users can stay up to date
with the latest happenings.

Identify and make database changes. 12 hours

Code Ruby on Rails code. 4 hours

Design and automate tests. 8 hours

As a site visitor, I can access old news that is no longer on the home page so that I can
find old items I want to reread or missed when they were first published.

Add code to set these and to use them. 6 hours

Design and automate tests. 8 hours

TABLE 17.1
R o l l i n g l o o k a h e a d
p l a n s i n c l u d e de -
t a i l s f o r t h e c u r r e n t
s p r i n t b u t o n l y t h e
h i g h - l e v e l i t e m s
o f t h e n e x t t w o
s p r i n t s .

Sprint 4

As a site editor, I can set a Start Publishing Date and a Stop Publishing Date on all
news items so that only timely news is shown.

As a site visitor, I can send e-mail via a form to the webmaster of the site.

As a site visitor, I can send e-mail via a form to the editor of the site.

Sprint 5

As a site visitor, I want to read a new article on the front page once a week.

As a site visitor, I can do a full-text search of article body, title, and author name.

I r e c o m m e n d l o o k i n g t w o sprints ahead because d o i n g so gives teams ad-
equate t ime to respond to mos t newly discovered dependencies . To see why, c o n -
sider w h a t w o u l d h a p p e n if a t e a m were to plan only o n e sprint ahead. If y o u n e e d
s o m e t h i n g f r o m ano the r t e a m by the start o f the nex t sprint , your only o p t i o n
is to ask that t e a m to do it in t he c o m i n g sprint . If that t e a m were p lann ing the
c o m i n g sprint at the same t ime y o u were, it has probably fully p lanned its sprint
by the t ime you ask. L o o k i n g ahead t w o sprints, t h o u g h , allows y o u to go to that
t e a m w i t h m o r e advance not ice . T h e o the r t e a m has t ime to plan and p e r f o r m the
n e e d e d w o r k in the nex t sprint and have it ready for you by the start o f the fo l low-
ing sprint , w h i c h is w h e n y o u n e e d e d it. S o m e teams—usual ly those involved in
hardware or e m b e d d e d d e v e l o p m e n t — m a y l o o k even f u r t h e r ahead w i t h roll ing
lookahead planning.

336 Chapter 17 Scaling Scrum

" W e b a r e l y have t i m e t o p lan o n e s p r i n t . W e d e f i n i t e l y d o n ' t w a n t t o
p lan t h r e e a t a t i m e . A n d if w e l ook a h e a d t w o s p r i n t s , s p r i n t p l a n n i n g
m e e t i n g s w i l l b e c o m e repe t i t i ve as w e ' l l be p l a n n i n g t h e s a m e s p r i n t
t w o o r t h r e e t i m e s . "

Keep in m ind that rol l ing lookahead planning does not involve breaking
user s tor ies into tasks and es t ima t ing the hours for each, as shou ld plan-
ning the current sprint. The t e a m s imply uses its average historical veloc-
ity to take a guess at w h i c h product backlog i t ems wi l l be deve loped in the
next t w o spr ints. This can a lmos t a lways be easily accomp l i shed in ten
m inu tes if s tar t ing w i t h a prior i t ized product backlog.

Dur ing rol l ing lookahead planning, the t e a m is not c o m m i t t i n g to del iver a
speci f ic set of i t ems in the next t w o spr ints. Rather, it is guess ing at w h a t
it m igh t w o r k on next , so it can ident i fy any dependenc ies or preparat ion
w o r k that shou ld be done in the com ing sprint.

Hold a Release Kickoff Meeting
Another technique for proactively managing dependencies is to bring everyone
together for a release kickoff meeting. An ideal time for doing so is the start of a
new project or release cycle. A kickoff meeting can mitigate one of the biggest
risks on a large project: that the different teams or individuals will start pulling in
wrong or different directions.

Prior to a release kickoff meeting, each two-pizza team and its product owner
has created a rough plan of what will be delivered over a reasonably foreseeable
period, typically around three months. At the release kickoff, these plans are shared
with everyone involved in the project. Normally, the product owners for each
team take turns sharing what their teams plan to work on.

Salesforce.com delivers a new release of its SaaS platform every three or four
months and has found release kickoff meetings essential. Eric Babinet and Rajani
Ramanathan say that "it is difficult to identify dependencies or negotiate com-
mitments with other teams if those teams don't yet know what they're doing in
the release. The Release Kickoff meeting acts as an important synchronization
point for teams and helps ensure more productive discussions around inter-team
dependencies" (2008,403).

Teams at Salesforce.com have introduced a worthwhile innovation beyond
a standard release kickoff meeting. Later in the same week they hold what they
call a "Release Open Space." This is patterned after the Open Space Technology
approach1 that has become popular at conferences in recent years. Each team is

1 Open space is a self-organizing approach to meetings, conferences, and the like. It has
become a staple of agile conferences. For more information see http:/ /en.wikipedia.org/
wiki/Open_Space_Technology.

http://en.wikipedia.org/

Proact ively Manage Dependenc ies 337

asked to send at least one person to the open space. This informal meeting starts
with individuals identifying topics of interest relevant to the release and writing
them on large pieces of paper taped to the walls. After topics have been identified,
groups form to discuss the topics of interest. Salesforce.com provides 45 minutes
for discussion followed by a 30-minute debrief with everyone back together. The
cycle is repeated as long as there is passionate interest in the topics remaining on
the walls.

Share Team Members
Another possible approach for proactively managing dependencies is to share
team members among teams. This is an effective approach when dependencies are
difficult to identify in advance or when they need to be addressed quickly. This is
not a very effective strategy when dependencies can occur among any number of
teams and in any direction. However, it is a good strategy when dependencies are
likely to exist between feature teams and component teams.

Using this approach, the shared team member is on two teams concurrently,
working on both sides of a known or likely dependency. This can be seen in Fig-
ure 17.4, which shows three feature teams, two of which share a part-time mem-
ber with a component team. Additionally, two of the feature teams share a member.

FIGURE 17.4
S h a r i n g a f e w
i n d i v i d u a l s be-
t w e e n t e a m s is
a g o o d w a y t o
e n s u r e i n t e r t e a m
c o m m u n i c a t i o n .

Use an Integration Team
Although sharing a part-time team member is sometimes a step in the right di-
rection, it may not be a step far enough. Sometimes it is necessary to create an
integration team. This is most common on projects with ten or more teams. An
integration team works in the gaps that may exist between the development teams.
Most of these gaps occur in the interfaces between teams (Sosa, Eppinger, and
Rowles 2007). Interface problems can be broadly split into these two categories:

• Unidentified interfaces. An unidentified interface is one that exists but
that no one has discovered yet.

SEE ALSO
T h e r e are, of course ,
d r a w b a c k s to hav ing
peop le on m o r e than
o n e t e a m . S o m e of
t h e s e w e r e desc r i bed
in " P u t Peop le on O n e
P ro jec t , " in Chap te r 10.

f W f u r e +earw 1 f W f u r e +earw 2 f^ea+ure +earw 3
o o o o o o I
O O fOx
t t f \

rup onenf
•fearw

338 Chapter 17 Scaling Scrum

• Unattended interfaces. An unattended interface is one that exists and that
at least one team is aware of but which no one is doing anything about.

Integration teams focus directly on unattended interfaces, while being on the
lookout for unidentified interfaces. After an integration team has uncovered an
unattended or unidentified interface, its first strategy should be to encourage one
of the development teams to assume responsibility for it. When that is impossible
or impractical, the integration team takes ownership of the interface.

Normally, the first thing integration team members do each morning is check
the results of the official nightly build to make sure that the system built success-
fully and that all tests passed. If it did not, integration team members do whatever
is necessary to get all tests to pass. This will usually involve identifying the prob-
lem, finding the source of the problem, determining which team or teams are
involved, and then working with those teams to resolve the issue.

On a large project, an integration team may be made up of full-time team
members who work only on the integration team. In fact, on a very large project,
there may be multiple integration teams, each with full-time members. Many
other projects—those with perhaps a handful to a dozen teams—get along quite
well with a virtual integration team, where individuals are assigned to the integra-
tion team but remain primarily on their individual development teams. Members
of a virtual integration team meet each morning to assess the state of the previous
night's build and agree upon who will resolve any issues. Members then spend the
rest of the day working with their individual development teams.

It is also common at the start of a new project to dedicate individuals to
an integration team for a few sprints. This team is tasked with getting all of the
necessary servers installed and configuring project-wide software such as wikis,
continuous integration servers, and so on. After these systems are in place, integra-
tion team members return to their development teams, and the integration team
becomes a part-time endeavor.

As an example, consider a large San Francisco-based bioinformatics company
that has a dozen feature teams, two component teams, and one integration team.
Beyond monitoring the nightly build and fixing issues with it, the integration
team develops automated tests to verify integration points. These are the types
of tests that aren't obviously the responsibility of either team but that someone
needs to be responsible for before the product can ship. Because these are often
unidentified interfaces, integration team members spend a lot of effort looking for
potential trouble spots. For example, there is usually one representative from an in-
tegration team at all of the standard meetings held by the feature and component
teams. It is not unheard of for a member of an integration team to attend three
daily scrums some days. They are at those meetings—plus sprint planning, review,
and retrospective meetings—listening for unattended and unidentified interfaces.

Proact ively Manage Dependenc ies 339

Because being on an integration team requires good analytical skills, including
the ability to connect comments made weeks apart by different teams, you should
be careful not to consider an integration team as a dumping ground for poor per-
formers. Integration teams require senior people with broad skills. That being said,
an initial tour of duty on an integration team is an excellent way to provide new
employees with a broad view of the overall system. It also allows new employees
a very structured way to meet just about everyone else on the project and to form
important connections that will serve them well later. Just make sure that your
integration team isn't mostly made up of new employees.

" I f t h e p ro j ec t w e r e t r u l y ag i l e , i t w o u l d n ' t n e e d a n i n t e g r a t i o n t e a m .
If t h e t e a m w e r e t r u l y p r o d u c i n g a p o t e n t i a l l y s h i p p a b l e p r o d u c t e a c h
s p r i n t , t h e r e w o u l d be n o n e e d f o r an i n t e g r a t i o n t e a m . Use o f an in-
t e g r a t i o n t e a m is t h e s i g n o f a t e a m t h a t i sn ' t r ea l l y a g i l e . "

OBJECTION

Normal ly w h e n I hear th is c o m m e n t , it is made by s o m e o n e w h o hasn ' t
w o r k e d on a t ru ly large pro ject and the person is hypothesiz ing. Linda Ris-
ing, an independen t consu l tant w h o has w o r k e d on a number of very large
projects, inc luding one deve lop ing so f twa re for the Boe ing 111 airplane,
has "neve r w o r k e d on a large pro ject w i t h o u t an integrat ion t e a m , " she
says.

I th ink it's typical that fo lks w h o have never w o r k e d on a very
large pro ject bel ieve that it can be run as a bunch of smal l proj-
ec ts just g lued together . The p rob lem the very large pro jects
face is that the glue can be ove rwhe lm ing , especial ly if it's not
ant ic ipated. That g lue ge ts w o r s e over t ime.

Second, the use of an integrat ion t e a m shou ld not be v i e w e d as an inad-
equacy of the other t eams ; rather, it is an indicat ion of a large and com-
plex project. Consider the a l te rnat ive—each t e a m cou ld seek out all unat-
t ended and un ident i f ied in ter faces b e t w e e n itself and every other team.
The c o m b i n e d e f fo r t for each t e a m to do th is w o u l d be m u c h greater than
w h e n done by an integrat ion team. Each feature and c o m p o n e n t t e a m
shou ld absolu te ly be held to a high standard as far as h o w many and w h a t
t ypes of in tegrat ion issues fall t h rough the cracks to be caught by an in-
tegrat ion team, but the integrat ion t e a m itself is not the sign of an agil i ty
def ic iency.

Still, a l though there is no th ing inherent ly w r o n g w i t h using an integrat ion
team, you should use one only w h e n necessary.

340 Chapter 17 Scal ing Scrum

Coordinate Work Among Teams
Because Scrum scales by having multiple small teams rather than one large team,
the problem arises of how to coordinate the work of all those teams. A ScrumMas-
ter named Joanne told me how she learned the importance of this after running
her first multiple-team project. Fresh from success on a one-team Scrum pilot,
Joanne accepted the challenge of being the ScrumMaster for five teams working
together to deliver a new version of her company's ambulance dispatch product.
She provided short training to each team and turned them loose. Things went as
well as could be expected for the first four sprints until the dependencies among
teams became more critical. It then became apparent that the teams were working
in isolation, each trying to go as fast as possible toward its own goals but failing to
pay adequate attention to integration points. Joanne admitted to me in an e-mail
that she did too little to encourage cross-team communication.

Everyone was very good at figuring out what needed to be done
on his own team. If we forgot something during sprint planning,
the team would be all over it during the sprint and resolve the
issue. But no one was watching for the thousand little issues that
were piling up between teams. It was like two baseball players
who watch the ball fall between them because each thinks the
other will catch it.

There was no animosity or competitiveness among teams. It was merely that
each team was so focused on what it considered its own goals that it ignored the
overall goal. Chapter 11, "Teamwork," introduced the idea that Scrum teams are
built on whole-team thinking and shared responsibility. On multi-team projects,
the "whole team" is not just one two-pizza team along with its product owner and
ScrumMaster, but all of the two-pizza teams, product owners, and ScrumMasters
together.

In this section we will look at what Joanne could have done to improve the
coordination of effort among her teams. Specifically we will look at look how to
conduct scrum of scrums meetings and whether teams should synchronize sprint
start and end dates.

The Scrum of Scrums Meeting
A fairly universal practice for coordinating work among several teams is the scrum
of scrums meeting. These meetings allow clusters of teams to discuss their work,
focusing especially on areas of overlap and integration.

Imagine a perfectly balanced project comprising seven teams each with seven
team members. Each of the seven teams would independently conduct its own

Coordinate W o r k A m o n g Teams 341

daily scrum. Each team would then also designate one person to attend a scrum of
scrums meeting. The decision of who to send should belong to the team. Usually
the person chosen should be a technical contributor on the team—a programmer,
tester, database administrator, or designer, for example—rather than a ScrumMas-
ter or product owner. Being chosen to attend the scrum of scrums meeting is not
a life sentence. The attendees will change over the course of a typical project. The
team should choose its representative based on who will be in the best position
to understand and comment on the issues most likely to arise at that time during
a project.

If the number of teams participating is small, it may be acceptable for each
team to send two representatives—a technical contributor, as previously described,
and the team's ScrumMaster—if the teams desire. I tend to do this only when there
are four or fewer teams, which keeps the meeting size to eight or less. Most scrum
of scrums groups do not designate a specific ScrumMaster for themselves. After
all, the individuals who attend are accustomed to participation on self-organizing
teams. In some groups, however, someone volunteers to act as the ScrumMaster or
just assumes the role. It is up to the group to decide if this is acceptable.

The scrum of scrums meetings can be scaled up in a recursive manner. If a
large product is being built by many teams of teams, one representative of each
scrum of scrums can attend what might be called a "scrum of scrum of scrums"
meeting, although this starts to sound silly, and most organizations stick to calling
it a scrum of scrums meeting regardless of the level at which it is occurring. An
example of this can be seen in Figure 17.5, which shows 11 individual teams.The
11 teams are part of 3 teams of teams, each of which has its own meeting. But
since those 3 teams of teams combine their work into one product, there is an-
other level of meeting, attended by one person from each of the scrum of scrums
meetings.

Sorwivi of Sorwivi
of SorumS

Sorwivi of SoruwS

Pailij Sorwivi

0 0 ®

FIGURE 17.5
S c r u m o f s c r u m s
m e e t i n g s c a n b e
a p p l i e d r e c u r s i v e l y
a t as m a n y l a y e r s
as n e e d e d t o c o o r -
d i n a t e w o r k a m o n g
c l u s t e r s o f t e a m s .

3 4 2 C h a p t e r 17 Sca l ing S c r u m

SEE ALSO
Certa in t y p e s of i ssues
are o f t e n reso lved
by c o m m u n i t i e s of
pract ice , w h i c h are a
sca l ing m e c h a n i s m
desc r i bed a bit later in
th is chapter .

Frequency
Scrum of scrums meetings differ f rom daily scrums in three important ways:

• They do not need to be held daily.

• They do not need to be timeboxed to 15 minutes.

• They are problem-solving meetings.

I find that holding scrum of scrums meetings two or three times a week is suf-
ficient for most projects. This makes a Tuesday-Thursday or Monday-Wednesday-
Friday schedule appropriate. Although a scrum of scrums meeting will often be
completed in 15 minutes, I recommend blocking 30 or 60 minutes for them on
the calendar. This is because, unlike daily scrums, these are problem-solving meet-
ings. If an issue is brought to the attention of this group, and the right people are
present to address the issue, they should do so.

Think about how many people might be waiting for a resolution. There could
be close to 100 people waiting for an answer f rom a scrum of scrums meeting
(and many more f rom a scrum of scrum of scrums meeting). Issues brought to this
group should be resolved as quickly as possible, which means the meetings cannot
be as readily timeboxed and issues cannot just be left for another day.

Sometimes, of course, issues arise that cannot be immediately addressed. Per-
haps other people are needed to address the issue or additional information is
needed. W h e n an issue cannot be resolved immediately it is placed on the group's
issues backlog, which is a list of outstanding issues that the scrum of scrums group
either plans to resolve or wants to track to make sure another group resolves them.
Of ten a simple, low-tech tracking mechanism is adequate for this backlog. Most
teams use a large piece of paper hanging in a team room, a spreadsheet, or a wiki.

Agenda
A scrum of scrums meeting will feel nothing like a daily scrum despite the simi-
larities in names. The daily scrum is a synchronization meeting: individual team
members come together to communicate about their work and synchronize their
efforts. The scrum of scrums, on the other hand, is a problem-solving meeting and
will not have the same quick, get-in-get-out tone of a daily scrum. The agenda
for the scrum of scrums meeting is shown in Table 17.2. As you can see from this
table, the scrum of scrums, like the daily scrum, starts with each attendee answer-
ing three questions:

1. What has my team done since we last met that could affect other teams?

2. What will my team do before we meet again that could affect other
teams?

3. What problems is my team having with which it could use help from
other teams?

Coordinate W o r k A m o n g Teams 343

Duration Agenda Item

Timeboxed
to 15 minutes

Each participant answers three questions:
• What has my team done since we last met that could affect

other teams?
• What will my team do before we meet again that could

affect other teams?
• What problems is my team having with which it could use

help from other teams?
Note: N o personal names during this part of the meeting.

As needed Resolve problems and discuss items on an issues backlog.

TABLE 17.2
A n a g e n d a f o r t h e
s c r u m o f s c r u m s
m e e t i n g i n c l u d e s
t h r e e q u e s t i o n s f o l -
l o w e d b y a d i s c u s -
s i o n o f a n i s s u e s
b a c k l o g .

Topics raised during this discussion are added to the group's issues backlog.
This part of the meeting is meant to be fast-paced and fairly short. You should
timebox it to 15 minutes as you would a daily scrum. One technique for achieving
this is adopting a guideline that personal names should be avoided. There are two
reasons for this. First, leaving out names keeps the discussion at the appropriate
level of detail. While attending the meeting, I want to hear about each team, not
about each person on each team. Second, too many people equate importance
with how long they talk during a meeting. Following this guideline will keep this
part of the meeting moving briskly.

After everyone has answered the three questions, the meeting participants ad-
dress any issues, problems, or challenges that were raised during the initial discus-
sion or that were already on the issues backlog.

Scrum of scrum groups do not conduct formal sprint planning and sprint re-
views. Participants in these meetings are first and foremost individual contributors
on their teams. The higher-level scrum of scrums is a more transient group, with
members changing occasionally throughout the project. The sprint planning and
commitments that most drive a project forward rightly belong at the individual
team level.

Synchronize Sprints
On my first Scrum project, we started with only one team.That project soon grew
to three teams, with the typical dependencies between them. I quickly arrived at
what I thought would be a good way to manage those dependencies. I would
stagger the sprint start dates by a week, as shown in Figure 17.6.The idea was that
when a team went to start its sprint it would know the stories one of the other
teams had recently committed to and which stories the other team was likely to
finish.

344 Chapter 17 Scal ing Sc rum

FIGURE 17.6
O v e r l a p p i n g s p r i n t s
c a u s e p r o b l e m s .

Team 1 Team 1

15am 2 • ream 2

Time

Well, that part of my plan did work out well. But, overall, staggering the sprint
start dates was a horrible idea. The biggest flaw in overlapping sprints is that there
is never a time (except the end of the project) when all teams are done. One or
more teams are always partway into a sprint. Some are planning a new sprint, oth-
ers just planned a week ago, and still more teams will plan next week. This makes
it difficult to give the full system to a customer for feedback or to an operations
group for deployment.

All sprints do not necessarily need to end on exactly the same day. It is accept-
able on a large project to have sprints that end over a two- or three-day period. In
fact, there can be advantages to doing this. Allowing sprints to end over a two- or
three-day period can make it easier for someone on multiple teams to attend all
the review and planning meetings expected of someone on multiple teams. Addi-
tionally, it has the advantage in many cases of better accommodating remote team
members who may travel into town for these meetings. A remote team member
who is on multiple teams will find it easier to justify the travel time and expense
if she can participate fully in each of her teams' meetings.

Although the primary benefit of synchronized sprints is that all teams start
and stop within a day or two of each other, this does not mean that all teams must
work in sprints of the same length. A project with multiple teams can accommo-
date different sprint lengths through the use of nested sprints, as shown in Figure
17.7. The most common use of nested sprints is when the various teams on the
project cannot agree on a common sprint length, with some wanting two-week
sprints and others wanting four-week sprints.

FIGURE 17.7
F o r s p r i n t s t o b e
s y n c h r o n i z e d , n o t
a l l s p r i n t s n e e d t o
b e t h e s a m e l e n g t h

!
learn 1

S t a r t

n W S m ' J ^
m m ¿1 J.,

F\n\çir\ S t a r t Finish

Scaling the Sprint Planning M e e t i n g 345

• Synchronize the spr ints of t e a m s that are w o r k i n g on the same
project. Try th is for t w o spr ints, and then hold a c o m b i n e d retro-
spect ive and d iscuss w h e t h e r it has he lped in any ways . Seek solu-
t ions to any p rob lems it has sur faced.

• Unless you are already hold ing product ive sc rum of sc rums mee t -
ings, try running t h e m as descr ibed here. Many t e a m s w h o strug-
g led w i t h h o w to conduc t th is mee t i ng had success af ter t ry ing th is
approach.

THINGSTO
TRY NOW

Scaling the Sprint Planning Meeting
Most of the standard meetings held by Scrum teams are deliberately unaffected
as the overall project size grows and multiple teams are involved. Teams continue
to hold daily scrums, sprint reviews, and sprint retrospectives just as they would
if working on a project as a lone team. Sure, teams will sometimes decide to hold
joint reviews when it makes more sense to view the work of multiple teams to-
gether. And teams will occasionally hold joint retrospectives both to mix things up
and to perhaps focus on interteam issues. But it is the sprint planning meeting that
is most severely impacted when a Scrum project grows to include multiple teams.

With multiple teams working on the same project, a number of problems arise
during the sprint planning meeting, including the following:

• Some people are needed in multiple sprint planning meetings. With all
sprints sharing a common start date, people need to be in two places at
once.

• If one team discovers a dependency on another team, it may not be able
to get the other team to commit to taking on a task if the other team
finishes its planning first.

• If multiple teams are pulling items from the same product backlog, those
items have to be preallocated to teams before sprint planning starts.

Fortunately, there are a couple of approaches to large-scale sprint planning
that can reduce or eliminate these problems and others like them.

SEE ALSO
See Chap te r 18, "D i s -
t r i bu ted T e a m s , " fo r
spec i f i c adv ice on con-
duc t i ng t h e s e m e e t i n g s
w i t h d i s t r i bu ted t e a m s .

Stagger by a Day
As described in the earlier section on synchronized sprints, the benefits of syn-
chronizing can still be had even with sprints that are offset by a day or two. We
can take advantage of this, and instead of having all teams do sprint planning on
exactly the same day, we can have one-third of the teams plan on, say, Tuesday,
one-third on Wednesday, and the final third on Thursday. When teams do this, the
issues surrounding a shared product backlog are, fortunately, mostly eliminated.

346 Chapter 17 Scaling Scrum

When my team plans tomorrow, we will know which product backlog items your
team committed to today.

Staggering by a day also addresses the problem of requiring an in-demand
product owner, architect, user interface designer, or other shared team member to
be in two places at once. However, it replaces that problem with perhaps "three
days of pain," as one product owner put it. The shared team member is able to help
more teams, but doing so can be exhausting; no one enjoys attending planning
meetings for two or three full days straight.

Despite this drawback, staggering by a day remains a valid option, usually for
projects of up to nine teams, with three teams planning each day. After that, even
with staggering, there are usually too many days of planning, so other approaches
are needed.

The Big Room
In the big-room approach, all of the teams (or as many as will fit) are assembled
into a large room. The chief product owner starts things off with any remarks he
or she would like to share with the group of teams: perhaps the results of recent
discussions with customers, prospects, or users; or maybe a general description
of the types of things that everyone will be working on for the coming sprint
or two. After the meeting is kicked off, each team (including its product owner
and ScrumMaster) moves to a portion of the room where it will be able to work
together for a few hours. Some teams stake out the corners, others claim the side
walls, a few more pull some tables together in the middle of the room. In these
locations, each team works on planning its coming sprint in the same manner it
would if it were the only team on the project.

The room gets loud and cacophonous, but the energy and hopefully the pas-
sion in the air are obvious. As teams plan their sprints, it won't be long before they
begin to uncover dependencies on each other. As this happens, one person jumps
up, runs over to the other team's temporary camp (which is in the same room),
and asks, "Can your group do such-and-such for us this sprint? We'll need it if we
want to finish one of the backlog items our product owner wants us to do." The
team member can either wait for a reply or return to her team and wait for an
answer to be shouted or ferried across the room a few minutes later.

The big-room approach also works exceptionally well for critical, shared re-
sources. A product owner who is working with two teams can bounce between
them; the company's chief software architect, too busy to be on any one team but
needed by all, can move about the room, going where called. On most projects
a team usually signals its need for a product owner, architect, or other shared re-
source by yelling to the person. This works well, except by the time the shared
resource finishes his current discussion, he forgets who called him.

Cul t i va te C o m m u n i t i e s of Prac t ice 3 4 7

A technique I've found successful is to augment yelling by using nautical sig-
naling flags as shown in Figure 17.8. W h e n team members need the architect, for
example, they hang the appropriate 1' X 1' signal flag near their area. W h e n the
architect finishes what he's doing, he can look around the room for his flag. If
team members need a product owner, they would display a different flag. A team
displaying a product owner flag would be helped by either its product owner or
perhaps the product line owner or even chief product owner when possible. This
works well: It solves most problems of knowing who needs help next, it lets shared
resources see how many teams need help, and it is fun.

N

A

NaK+ic-al Meaning: Our Meaning:

Pei'tre to ooMMimioafe We need t h e arc-h\+ec.+

fr-et^'tre acckfanoe We need t h e produc-+ owner

Altering c-ourie to port Time to order knc-h

Man overboard Were on a break.

FIGURE 17.8
F lags c a n be
u s e d t o s i g n a l f o r
h e l p — a t sea o r in a
m e e t i n g .

For the big-room approach to work, the product owners must be prepared
prior to the meeting. This usually entails a variety of short meetings between the
chief product owner and his or her staff. Each level of the product owner hier-
archy needs to understand the product vision as it trickles down from the chief
product owner through the various levels.

Cultivate Communities of Practice
O n a multi-team project, it is possible for individuals to become isolated, speaking
mostly to others on their individual teams. Good ideas are slow to propagate across
the organization. Similar functionality is implemented differently by different
teams. We put scrum of scrums meetings in place to reduce the impact of some of
these problems, but those only go so far. An additional solution and one that is
critical to the success of any large Scrum project is the cultivation of communities
of practice. Like improvement communities (a special type of community of prac-
tice introduced in Chapter 4, "Iterating Toward Agility"), a community of practice
is a like-minded or like-skilled group of individuals who voluntarily come to-
gether because of their passion and commitment around a technology, approach,
or vision. O n a large project, these communities of practice are helpful for cutting

348 Chapter 17 Scaling Sc rum

across the boundaries of and pulling together individuals from the many cross-
functional teams. An example can be seen in Figure 17.9.

FIGURE 17.9
C o m m u n i t i e s o f
p r a c t i c e c u t a c r o s s
t h e d e v e l o p m e n t
t e a m s a n d c r e a t e
a d d i t i o n a l c h a n n e l s
o f c o m m u n i c a t i o n .

PeVelopivient Pevtelopivient Pevfelopivient
f&am 1 teaivi 2 teaivi 3

tt
o t Frograwmng

c-ommun'tftj

LI J H * Test
c-ommun'tfy

* i VI
c-ommun'tfy

$ i * SorumMatfer
c-ommun'tfy

Figure 17.9 shows communities of practice formed simply around various
project roles. In addition, a sufficiently large project might have communities of
practice form around technologies (a Ruby community and a .NET community
for example), around interests (mock objects, artificial intelligence, test automa-
tion), or around any thread of common interest to multiple development teams.

A good example of a community of practice is the Virtual Architecture Team
at Salesforce.com, as described by Eric Babinet and Rajani Ramanathan.

The Virtual Architecture Team (VAT) is "virtual" as it is made up
of developers from every Scrum team. Members work on the
VAT in addition to being on a Scrum team.The VAT owns main-
taining and extending our industry-leading software architecture.
They do this by defining the architectural road map, by reviewing
architecturally significant changes to the code, and by defining
standards to ensure consistent and maintainable code. (2008, 405)

Communities of practice can span more than one project. For example, a
community of practice around test automation may form and include members
from multiple, completely unrelated projects. Unlike improvement communities,
a general community of practice does not form around the pursuit of a single, spe-
cific goal. Instead, a community will generally have many related goals. Because of
this, a community of practice can remain in existence indefinitely. A community
can also dissolve after it has achieved its goals or if members lose passion.

Because they span teams, communities of practice are a primary mechanism
for spreading good ideas among teams and for ensuring desirable levels of con-
sistency or commonality across a set of development teams. A community of

Cult ivate C o m m u n i t i e s of Practice 349

middle-tier programmers might, for example, discuss and decide when would be
the best time to upgrade to the latest version of application server software for a
family of products. Discussions among members of an orthogonal test team would
ensure consistent test tool usage and the sharing of good practices.

Formal or Informal
A community of practice can be either formal or informal; most organizations
will have a mix. Organizations with strong functional management in place prior
to adopting Scrum usually rely on those strong functional managers to support
or even establish some of the communities of practice. Etienne Wenger, who in-
vented the term "community of practice," and his colleagues distinguish five types
of communities of practice based on the degree of recognition of the community
by the organization. These are shown in Table 17.3.

Type of Community Definition Typical Challenges

Unrecognized Invisible to the organiza-
tion and possibly even to its
members.

Hard to see the value of the
community to the organiza-
tion or members; probably
doesn't include all the right
members.

Bootlegged Visible but only to a small,
select group of insiders.

Difficulty gaining resources or
credibility; difficult to make
an impact.

Legitimized Officially sanctioned as a
valuable entity.

Unrealistic expectations; rapid
growth and assimilation of
new members.

Supported Provided with resources (time,
money, facilities, people).

Accountability for return on
invested resources; short-term
pressure to prove value.

Institutionalized Given an official status
and responsibilities in the
organization.

Overmanagement; slow mov-
ing; outlives its usefulness;
permanent members become
separate from actual projects.

TABLE 17.3
C o m m u n i t i e s o f
p rac t i ce r a n g e
f r o m t h o s e n o o n e
k n o w s ex is t t o
t h o s e g i v e n o f f i c i a l
s t a tus . (A d a p t e d
f r o m W e n g e r ,
M c D e r m o t t , a n d
S n y d e r 2002.)

Table 17.3 is not meant to represent a hierarchy. No one type of community
of practice is always superior to another; each has its unique strengths and weak-
nesses. Similarly, Table 17.3 is not meant to indicate the life cycle of a typical
community of practice, even though it is easy to see how a community could
move from unrecognized to institutionalized as its purpose becomes clearer to the

350 Chapter 17 Scal ing Scrum

community members and its value becomes clearer to the organization. Although
communities of practice do sometimes follow this life cycle, it is not by design.
Many communities will move in the opposite direction, and some will disband
entirely.

Creating an Environment for Communities to Form and Flourish
The most effective type of community of practice within Scrum organizations
seems to be one that forms organically rather than by management request, although
both approaches can be used for different purposes. Because self-organization is
critical to successful agile teamwork, the formation of self-organizing communi-
ties of practice creates a powerful synergy. In this sense it is up to the organization
and its leadership to create an environment in which communities of practice can
form, flourish, and then fade away as they run their course.

According to Etienne Wenger and his colleagues, "because communities of
practice are organic, designing them is more a matter of shepherding their evolu-
tion than creating them from scratch" (Wenger, McDermott, and Snyder 2002,
51).They provide seven principles for creating an environment that supports this
evolution:

• Design for evolution. Acknowledge that each community will change
over time. It will rise and fall in importance, members will come and go,
goals will shift. This is good as it represents the progress of each commu-
nity adjusting in response to changing project, people, and organizational
needs.

• Open a dialogue between inside and outside participants. Although com-
munities work largely within themselves, they cannot work in isolation
from the overall organization. A good community is receptive to hearing
what the organization needs, is struggling with, and can provide.

• Invite different levels Of participation. Not everyone interested in a com-
munity will have the same amount of time and energy to devote to it.
Encourage individuals to participate at the level and frequency that suits
them.

• Have both public and private events. A good community understands that
sometimes the most beneficial discussions are among no one but them-
selves, but also understands that public events are sometimes necessary. An
example might be a community focused on improving the experience
across a suite of products. Members meet privately every other week to
bounce ideas around but also occasionally host open sessions where any-
one in the company can attend and see what they're thinking.

• Focus on value. The more value a community of practice provides to the
organization, the more additional communities will be encouraged to

Cult ivate C o m m u n i t i e s of Practice 3 5 1

form. Also, as communities deliver value, they are given more support and
leeway in how they operate.

• Combine familiarity with excitement. A mature community of practice
often settles into a series of habits—the weekly conference calls, the
monthly meeting, and the annual two-day get-together at headquarters,
for example. Although there is value in this, there is also value in occa-
sionally mixing things up, which creates a sense of vibrancy within the
community. Inviting an outside speaker with a different opinion or hold-
ing an open space-style event are just two examples of how to add some
excitement.

• Create a rhythm for the community. Communities of practice do not gen-
erally work in the same, regular sprints of Scrum development teams.
Without the project-oriented deliverables of a development team, sprints
are not a must. However, a community still benefits from the establish-
ment of a regular rhythm. Accomplish this by having a regular set of ac-
tivities at whatever frequency suits the community.

If you want communities of practice to form organically, you may need to
provide some encouragement. Potential community members will need to know
that it is OK—and in fact encouraged—for them to form communities. I've en-
countered a few situations where managers and executives gave their Scrum teams
a great deal of leeway in self-organizing and were left wondering why no com-
munities of practice formed. When I asked the team members about this, they told
me they were under the impression that such informal groups would be frowned
upon by management. Make sure your team members know that such cross-team
communities are not only OK but encouraged.

Participation
Most formally recognized communities of practice benefit from designating a
community coordinator. The community coordinator is not a leader of the group
but does serve the community in two important ways:

• Developing the practice around which the community has formed

• Developing the community itself

The community coordinator does this by being the one to schedule meet-
ings and other events, convincing members to attend, connecting individuals with
common interests, participating in community events himself, and so on. In some
respects, the role of community coordinator is similar to that of ScrumMaster.
From my experience, being a community coordinator takes 5 to 20 hours per
month, depending of course on the community. The community coordinator

352 Chapter 17 Scaling Scrum

might even be a full- or nearly full-time position in a community that has been
assigned formal responsibilities in the organization.

There are no rules about how many hours a community should take away
from a member's project team. It can literally vary from a few hours a year to a
few hours a week. Babinet and Ramanathan describe the relatively high level of
commitment on Salesforce. corn's Virtual Architecture Team.

The VAT meets for two hours twice a week to review the tech-
nical implementation of products and features being built by the
Scrum teams. The teams building the most complex features in
the release are asked to present to the VAT. The group provides
valuable feedback to the Scrum team on how their technical de-
sign will impact or be impacted by other areas. The VAT focuses
primarily on the technical implementation, especially scalability
and performance considerations.Teams asked to make significant
changes must present again in the same release cycle [approxi-
mately three months] and provide details on how they modified
their design. (2008,405)

Communities of practice are well worth the time and investment. The service
they provide in aiding communication and coordination across a large organiza-
tion or a large project is invaluable. If communities of practice have not yet formed
in your organization, start one around a topic that interests you or is causing your
organization pain. As that community begins to contribute to the organization,
other communities are likely to form as well.

Scrum Does Scale
You have to admire the intellectual honesty of the earliest agile authors. They were
all very careful to say that agile methodolgies like Scrum were for small projects.
This conservatism wasn't because agile or Scrum turned out to be unsuited for
large projects but because they hadn't used these processes on large projects and
so were reluctant to advise their readers to do so. But, in the years since the Agile
Manifesto and the books that came shortly before and after it, we have learned
that the principles and practices of agile development can be scaled up and applied
on large projects, albeit it with a considerable amount of overhead. Fortunately, if
large organizations use the techniques described regarding the role of the product
owner, working with a shared product backlog, being mindful of dependencies,
coordinating work among teams, and cultivating communities of practice, they
can successfully scale a Scrum project.

Addit ional Reading 353

Additional Reading
Beavers, Paul A. 2007. Managing a large "agile" software engineering organization. In
Proceedings of the Agile 2007 Conference, ed. Jutta Eckstein, Frank Maurer, Rachel Davies,
Grigori Melnik, and Gary Pollice, 296—303. IEEE Compu te r Society.

This experience report describes the first couple of years of B M C Software's adop-
tion of Scrum on a 250-person project. It is an excellent first-person account of the
struggles and rewards faced by the project's engineering leader. It concludes wi th nine
guidelines for success distilled from the author's experience on the project.

Farman, Craig, and BasVodde. 2009. Scaling lean & agile development:Thinking and organi-
zational tools for large-scale Scrum. Addison-Wesley Professional.

This book covers many topics, but in Chapter 11, Farman andVodde focus specifi-
cally on large-scale Scrum. They present two frameworks for scaling Scrum: one for
scaling up to ten teams, another for scaling beyond that.

Feffingwell, Dean. 2007. Scaling software agility: Best practices for large enterprises. Addison-
Wesley Professional.

This book focuses on two different types of scaling: scaling agile wi thin large orga-
nizations and scaling agile on large projects. A bit more emphasis is on the fo rmer
type of scaling, but bo th are covered. T h e heart of the book, Part II, focuses on seven
agile practices and h o w to scale them: teams, planning at two levels, iterations, small
releases, concurrent testing, continuous integration, and regular reflection.

Wenger, Etienne, Richard M c D e r m o t t , and William M . Snyder. 2002. Cultivating com-
munities of practice. Harvard Business School Press.

This book is the authoritative source of information on communities of practice.
Included is information on how to encourage them to form, h o w to lead them, how
to measure the value they provide, and some of the downsides of using communities.

Chapter

D i s t r i b u t e d T e a m s

y few years ago, collocated teams were the norm, and it was unusual for a team
to be geographically distributed. By now, the reverse must be true. Personally, I 'm
now surprised when someone tells me that everyone on the team works in the
same building. With the prevalence of teams that are spread across the globe, or
at least across a couple of time zones, it is important to consider how well Scrum
works when a team is geographically distributed.

A common misconception is that Scrum is not a good fit for a geographi-
cally distributed team. Scrum's preference for face-to-face communication, the
argument goes, makes it a poor choice for distributed teams. Fortunately, this
argument is false. Although it's true that a collocated team will always outperform
the equivalent distributed team (Ramasubbu and Balan 2007), Scrum can actually
help geographically distributed teams perform at near-collocated levels. Suppose
you have made the commitment to outsource a large portion of a project to de-
velopers on another continent. Why would you not want the following benefits?

• Increased visibility from seeing demonstrable progress at the end of
every sprint

• The ability to adjust priorities after each sprint

• More frequent communication

• An emphasis on quality and test automation

• Improved knowledge transfer, especially between developers doing pair
programming

Clearly, the benefits of Scrum far outweigh any difficulties that its reliance on
frequent communication might bring. That doesn't mean implementing Scrum
on a distributed team is going to be a cake walk, though. As Michael Vax and
Stephen Michaud point out, "extending agile to a distributed model is not for the
faint of heart" (2008, 314).

The rest of this chapter is devoted to describing actions that a distributed team
can take to move its performance as close as possible to the level it could achieve if
collocated, while still capturing the benefits of being distributed, such as cost sav-
ings, the ability to recruit in multiple cities, and so on. Along the way, we consider

3 5 6 C h a p t e r 18 D i s t r i b u t e d T e a m s

T w o d i f f e r e n t
a p p r o a c h e s t o
d i s t r i b u t i n g t e a m s
b e t w e e n t h e U n i t e d
S t a t e s a n d F rance .

the best approach to structuring a team across geographic boundaries, how to
create a coherent distributed team, the need for team members to get together in
person occasionally, the necessary changes in communication, and suitable ways
to conduct meetings.

W h e n a project involves enough people to create more than one Scrum team, an
important decision is how to organize those teams across geographic boundaries.
A large project can be organized into multiple collaborating collocated teams or mul-
tiple deliberately distributed teams. These alternatives are shown in Figure 18.1, which
shows a two-location situation.

Collaborating collocated teams occur when a project has enough people in
two or more cities to establish a team in each city. Each of the collocated teams
contains all the skills necessary to take a product backlog item from idea to imple-
mentation. These teams are called collaborating collocated teams to reinforce the
notion that each collocated team is working with the other remote (but them-
selves collocated) teams to deliver a product rather than as an entirely independent
team that happens to be in the same company as other independent teams. In con-
trast, deliberately distributed teams occur when a project could use collaborating
collocated teams yet makes a deliberate decision to distribute the teams.

There are, of course, advantages and disadvantages to each of these options.
The primary advantage to organizing a project around collaborating collocated
teams is that it simplifies the day-to-day work of most team members, largely be -
cause whole-team, globe-spanning conference calls are eliminated. After working
as part of a project that had first been structured as collaborating collocated teams

Decide How to Distribute Multiple Teams

FIGURE 18.1 Counfru A CowfriA 5

Dec ide H o w to D is t r ibu te Mu l t i p le Teams 357

and was then deliberately distributed, Sharon Cichelli, a developer in Austin,Texas,
found that she preferred collaborating collocated teams.

The developers in one city worked on one feature, and likewise
for the other city.The only people who really suffered here [with
collaborating collocated teams] were the product owners and the
ScrumMaster, who had to accommodate a ten-and-a-half-hour
time difference to have sprint planning meetings. (2008)

Although the advantages of organizing around collaborating collocated teams
are readily apparent, what can the advantages be to deliberately distributing a
team? Why would we choose to create two distributed teams rather than a fully
capable team in each location? To see why, think for a moment about the types of
communication problems likely to arise on a distributed project. Your list might
include some of these or other common problems:

• Developers working remotely from the product owner do not ad-
equately understand the business or domain.

• Developers in different cities unknowingly disagree about what is being
developed.

• Developers in different cities make incompatible decisions.

• An antagonistic, "us and them" relationship develops between individu-
als in different locations.

• Developers in one city do not know what developers in the other city
are doing or why they are making the decisions they make.

Each of these problems can be severe enough to jeopardize the entire proj-
ect. Fortunately, each situation is improved or made less likely to arise when the
project is organized using deliberately distributed teams. Scrum coinventor Jeff
Sutherland worked with Xebia, and its teams spread between the Netherlands and
India, during which time they experienced the benefits of deliberately distribut-
ing teams. They concluded that while a deliberately distributed team "appears
to create communication and coordination burdens, the daily scrum meetings
actually help to break down cultural barriers and disparities in work styles while
simultaneously enhancing customer focus and offshore understanding of customer
needs" (Sutherland et al. 2008, 340).

An excellent way to minimize the communication and coordination burden
that is created by deliberately distributing teams is to carefully consider who is
on each of the teams. John Cornell, a development director with Kofax in Cali-
fornia but also with team members in Vietnam, recommends that organizations
"seed teams with boundary spanners. If possible seed teams with people who
have worked together before or with people who are known to have contacts

358 Chapter 18 D is t r ibu ted Teams

throughout the organization. Those who already have such contacts can be useful
for remote team members who may not know who to contact."

In The Tipping Point, Malcolm Gladwell called these individuals "connectors."
Connectors "link us up with the world... [they are] people with a special gift for
bringing the world together" (2002, 38). Connectors are "people with a truly
extraordinary knack...[for] making friends and acquaintances" (41). Connectors
do, as Cornell and Gladwell both suggest, make excellent members of distributed
teams.

Scrum consultant and trainer Kenny Rubin points out that a lack of trans-
parency is at the root of many of the problems that occur between subgroups in
different locations.

Problems caused by a lack of transparency were abundant on a
project split between New York and India. The India team was a
subcontractor. Things got totally out of control in India, and the
project was being reconstituted. I was involved in the reconstitu-
tion. In trying to understand why the first project failed, I asked
questions. The most common response I got was,"I don't know"
Like,"I don't know why they originally thought 15 people could
do the job and now they are at 42 people. I don't know what
those 42 people are doing." Because of this, when we reconsti-
tuted the project, we chose to deliberately distribute the teams.

As for choosing between collaborating collocated teams and deliberately dis-
tributed teams, each approach is suitable for some circumstances. The decision for
me usually comes down to how fearful I am of the problems that can arise from a
lack of communication or transparency between locations. If I think these are
likely to occur or will be significant if they do, I deliberately distribute the team.
For example, in a situation where a distributed team consists of locations put to-
gether through a merger or acquisition, I always deliberately distribute the team.
These situations are always full of potential conflict between locations, and delib-
erately distributing the teams reduces the risk of full-scale blow-ups between
locations.

If you have col laborat ing, co l located teams , ask w h e t h e r that w a y
of d is t r ibut ing the t e a m w a s chosen consc ious ly or w h e t h e r it w a s
mere ly the defaul t or easiest w a y to spl i t the team. If the latter,
consider w h e t h e r del iberately d is t r ibut ing the t e a m cou ld be bet ter
and possibly try it for t w o or th ree spr ints.

THINGSTO
TRY NOW

Create Coherence 359

Create Coherence
The English word coherent comes from the Latin cohaerent, which means "sticking
together." I find "sticking together" a perfect description of what we want a team
to do. We want a team stuck together in pursuit of a common goal for a project,
and we want a team stuck together to overcome the challenges that face any
team involved in a difficult pursuit. Many factors work against creating coherence
within a distributed team: Language, culture, physical separation, and time zone
differences are just a few. Because of this, it becomes particularly important for
members of distributed teams to consciously strive to create coherence.

Acknowledge Significant Cultural Differences
In seeking to create coherence, we must start by acknowledging that significant
cultural differences might exist between team members in different locations. One
of the most comprehensive analyses of key cultural differences was done by Geert
Hofstede, who surveyed IBM employees in over 50 countries. Hofstede identified
five key dimensions along which cultures varied.

• Power Distance Index (PDI). The extent to which less powerful members
of a culture accept that power is unequally distributed.

• Individualism (IND). The extent to which individuals prefer to function as
individuals rather than as part of a group.

• Achievement Orientation1 (ACH). The extent to which the culture is ori-
ented toward achievement, such as earnings, visible signs of success, and
possessions.

• Uncertainty Avoidance Index (UAI). The extent to which the culture is
tolerant of uncertainty and ambiguity.

• Long-Term Orientation (LTO). The extent to which the culture favors
long-term considerations over immediate physical and financial benefits.

Some results2 from Hofstede's surveys are shown in Table 18.1. As much as
I distrust sweeping cultural generalizations, I find it useful to share data like this
with team members of a distributed project. This can be done as part of a project
kickoff meeting or any early meeting when team members are getting to know
one another.

1 In his original research from 1967—1973, Hofstede referred to this dimension as
"Masculinity." Even with a distance of 40 years, it's hard to accept that was an appropriate
label then. It's not today, so I have relabeled it as Achievement Orientation.
2 Values are from www.geert-hofstede.com/hofstede_dimensions.php,which includes
many more countries.

http://www.geert-hofstede.com/hofstede_dimensions.php,which

360 Chapter 18 D is t r ibu ted Teams

TABLE 18.1
C u l t u r a l d i f f e r e n c e s
a m o n g r e p r e s e n t a -
t i v e c o u n t r i e s . A
b l a n k i n d i c a t e s t h a t
t h e d i m e n s i o n w a s
n o t m e a s u r e d .

Country PDI IDV ACH UAI LTO

Brazil 69 38 49 76 65

China 80 20 66 30 118

Denmark 18 74 16 23

Finland 33 63 26 59

India 77 48 56 40 61

Israel 13 54 47 81

Japan 54 46 95 92 80

Netherlands 38 80 14 53 44

Norway 31 69 8 50 20

Poland 68 60 64 93 32

Russia 93 39 36 95

Spain 57 51 42 86

Sweden 31 71 5 29 33

United Kingdom 35 89 66 35 25

United States 40 91 62 46 29

You can use the data in a table like this by finding the row for your country
and seeing how your country compares to others on the project. For example, if I
were about to start a project with team members in China, I would compare the
United States and China rows. I find that China has a much higher PDI score (80
compared to 40 for the United States). This tells me that my Chinese colleagues
will be less likely to challenge authority than I am used to. If I am in a role of
real or perceived authority (ScrumMaster, senior developer, or so on), I will put
extra effort into making sure that team members in China engage me in open
discussion.

Looking next at the individualism scores (20 for China, 91 for the United
States), I learn that my team members in China will be more interested in team
unity than I am used to. They will be less likely to want to be singled out, even
for praise.

Continuing, I would see that our countries' achievement orientation scores
are about the same. A larger difference in ACH values could indicate differences
in how team members would determine the success of the project. For example,
consider the dramatic difference in achievement orientation between the US.

Create Coherence 361

(62) and Norway (8). On a project developed in these two countries, Americans
might view the project as an overall success if the product is a financial success,
even if that comes at the cost of team morale and energy for the next project.
Norwegians on the project, however, could view this as a failure and might prefer
to sacrifice financial success if that is the only way to develop a team that is ready
and anxious for the next version or project.

Looking again at a U.S.-China team, I would see that my Chinese teammates
will probably be more comfortable with uncertainty than my fellow American
teammates. I might make a mental note to take advantage of this in helping the
U.S. team get comfortable with Scrum because my Chinese team members will
be more accepting of uncertainty in role definitions, product specifications, sched-
ules, and so on.

Finally, I notice a dramatic difference in long-term orientation (118 for China
and 29 for the United States). From this difference, Fll know that the regular vis-
ible progress demonstrated by sprint reviews will be a strong positive motivation
for the U.S. team but might not have a similar effect on the team's Chinese mem-
bers, who bring a much longer time horizon to the project.

Any cultural analysis such as Hofs tede 's here leads to general izat ions.
A l t hough general izat ions m igh t be t rue across a populat ion, each individ-
ual is un ique and shou ld be t rea ted as such. General izat ions can provide
s o m e initial insight into a cul ture, but personal exper ience is the best
w a y to unders tand individuals on a team.

Acknowledge the Small Cultural Differences
Hofstede's work focused on grand cultural differences. In addition to these signifi-
cant differences, geographically distributed development projects must also deal
with a plethora of minor but important cultural differences. For example, it won't
surprise anyone to know that different countries, religions, and cultures have dif-
ferent holidays. Many distributed teams work around this by creating a page on
the project's website or wiki showing the union of all holidays celebrated by team
members. Some teams I've worked on spend a few extra minutes in the daily
scrum before a holiday and have the local team explain the purpose and customs
of the holiday. This is how I learned about the Indian holiday of Gandhi Jayanti,
Canada's Victoria Day, Norway's Constitution Day, and others. It's not that know-
ing that many of my Indian coworkers abstain from meat and alcohol on Gandhi
Jayanti or that my Canadian colleagues head to lakeside cottages for Victoria Day
makes me a better team member. That they know I care enough about them to ask
what they celebrate and why is what makes me a better team member.

Although different holidays were not a surprise, I was shocked to discover that
the Monday through Friday workweek is not universal. Growing up and living my

NOTE

362 Chapter 18 D is t r ibu ted Teams

entire life in the U.S., where Monday through Friday is universal for essentially all
office jobs, I'd never contemplated a different standard workweek could exist. "Of
course, everyone around the world works Monday through Friday," I mistakenly
assumed. It wasn't until I worked with teams in Israel and Egypt that I learned the
typical workweek there, and in other countries in the region, was Sunday through
Thursday.

Another cultural difference I've witnessed is how people use and enjoy their
evenings. In the United States, a typical workday might go until 5:00 or 6:00 p.m.
Work is commonly followed by a family dinner, typically between 6:00 and 7:00
p.m. I assumed this pattern of work-dinner-family-sleep was fairly universal. If
I need to participate in a nightly scrum call, my preference would probably be
to do it around 9:00 p.m.; my kids are in bed by then, and most nights I can fit
a 15-minute call in around that time quite easily. In India, however, 9:00 p.m. is
prime meal time for many families. It's likely the worst possible time for a nightly
call for many team members there. Unfortunately, before I knew this, I worked
on a couple of projects with team members in Bangalore and Hyderabad and
suggested 9:00 p.m. phone calls for them. It was several weeks before someone
spoke up and asked if we could change the meeting time because it was right in
the middle of his dinner. I had tried to pick the best possible time but had inad-
vertently picked the worst.

Seeding visits and traveling ambassadors (both discussed later in this chapter)
are excellent ways to pick up the local customs and preferences of a team in one
location and return them to another location.

Strengthen Functional and Team Subcultures
As strong as our national cultures can be, it might be the case that the software
development subculture is even stronger. Professor Erran Carmel, who has studied
distributed teams for years, wrote about this phenomenon.

Software professionals worldwide belong to the computer sub-
culture. Software guru Larry Constantine argues that the com-
puter subculture is stronger than national culture and that the
programmer in Moscow is more similar to his American pro-
gramming peer than to other Russians. Engineers, like software
professionals, place high value on achievement and relatively low
value on social relationships. The stereotype of the antisocial pro-
grammer has a kernel of truth. (1998, 73-74)

Studies have proven the strength of the computer subculture (Carmel 1998,
74), and effective teams make use of functional and team subcultures to create co-
herence among team members. We want individuals to think, "I am a member of
the Orion project team," rather than,"I am a member of the Indian team working

Create Coherence 363

on the Orion project." The distinction may seem minor, but I contend that the
subtle shift in mind-set it implies is important.

Many techniques for connecting individuals to their functional ("I am a pro-
grammer/ tester/DBA") or team subcultures are useful, especially when a team is
distributed. For example, a corporate environment that encourages the formation
of communities of practice is important for distributed as well as collocated teams.
There are, however, a few techniques that are especially important for strengthen-
ing functional and team subcultures within distributed teams.

Communicate and Establish a Shared Vision
Without a shared vision, it will be almost impossible for a strong team culture to
develop. This makes a shared vision especially important for a distributed team.
Elaine Thierren, of First American CoreFogic in SantaAna, California, was part of
a distributed team spread between her office and Bangalore. After the project she
was able to look back and see that the product vision was not adequately shared
and communicated.

The lack of visibility into the product vision or roadmap had
two major impacts. First, the product often required rework as
new features were requested. In other words, the team did not
have the visibility they needed into the overall direction of the
product to architect the application in such a way that it would
be easy to incorporate future features. Secondly, it left the team
in India feeling as though there was not enough work ahead of
them and that they may soon find themselves with excess capac-
ity. (2008, 369)

As Thierren experienced, a shared vision is critical for the team to be coher-
ent. Usually, responsibility for making sure this happens falls to the product owner.
Mark Summers, an agile coach with EMC Consulting in Fondon, was fortunate
to work with a product owner who understood his role in making sure the prod-
uct vision was shared by all sites involved in the project.

At the start of each release our product owner would travel out
to India to try to immerse the offshore teams in the vision for
the release. Therefore, it is very important that you have a product
owner who can engage with the team and take them along the
journey with him. We had had many previous instances of the
offshore people not understanding what the business wanted, so
having this engagement upfront really started to help. (2008,338)

SEE ALSO
Techn iques fo r es tab-
l ishing a sha red v i s ion
can be f o u n d in t he
sec t i on "Ene rg i ze t he
S y s t e m " in Chap te r
12, " L e a d i n g a Self-
Organ iz ing T e a m . "

3 6 4 C h a p t e r 18 D i s t r i b u t e d T e a m s

Reach Agreements
Part of a team's culture derives f rom agreements that team members make with
one another. Some agreements are explicit: Be on time for the daily scrum and
don't break the build are examples. Other agreements may be left implicit: Don' t
needlessly copy people on e-mails, for example. A distributed team will want to
make more of these agreements explicit.

For example, distributed Scrum teams often agree on an acceptable response
time for e-mail, perhaps deciding that all e-mail should be replied to within one
working day, even if the response is just to say, " I 'm working on it and will get
back to you tomorrow" Although such an agreement may exist on a collocated
team, it is more likely to be an unstated expectation than an explicitly stated
guideline for team behavior. If I 'm slow to respond and we're collocated, you'll
probably just tip your chair back and yell, "Hey, Mike, you didn't answer my e-
mail f rom yesterday about whether we should use Groovy." N o t only will I get the
message that I need to answer your question, all team members within earshot will
get a reinforcement that our team n o r m is answer e-mail promptly.

Beyond how quickly to respond to e-mails, many distributed teams arrive at
explicit agreements on when individuals will be in the office, when individuals
can be reached outside normal working hours, how promptly meetings should
start, what type of communication (phone, e-mail, IM, and so on) is best for which
type of discussion, what type of issues need to be discussed with the entire team
rather than a relevant subset, and so on.

One thing a distributed team should definitely agree on is how it will do
Scrum; not every team in every office needs to do Scrum the same way, but teams
will need to agree on some core things across all teams. Because Scrum is merely
a project management framework, a great deal of how it is implemented is left to
each team.There is a tremendous opportunity for different locations to do Scrum
in different ways. Some of these variations are good: Some will lead to improve-
ments that can be used across all locations; others are adaptations necessary for
Scrum to work in a given location. Other differences may be incompatible and
need to be resolved. Jane Robarts, a project manager at Thought Works, was on a
project distributed between the United States and India when she encountered
just such a situation.

We had assumed that the team in India was practicing agile the
same way we were planning on doing it in the U S . It was several
days into the first iteration before we realized that each location
had a different version of "agile." (2008, 331)

Although it is important for teams in different locations, but on the same proj-
ect, to agree on a common set of Scrum practices, this does not mean that distrib-
uted teams should stick to doing Scrum strictly "by the book." A new Scrum team

Crea te C o h e r e n c e 3 6 5

should start that way but will eventually need to add and adapt project-specific
practices that make Scrum its own. In fact, in comparing successful and unsuc-
cessful distributed Scrum implementations at Yahoo!, coaches Brian D r u m m o n d
and J. F. Unson found that doing Scrum solely by the book on distributed teams
was a source of problems.

Without sufficient guidance, teams fell back to following "Scrum
by the book" and suffered greatly...to the point where people
resented Scrum and agile.These teams did not adapt the practices
to factor in the difficulties brought about by the special require-
ments of distributed development. (2008, 320)

As with other types of working agreements, the solution here is for the
ScrumMaster to facilitate one or more sessions with team members to arrive at
agreements on the parts of Scrum they wish to make uniform across locations.

Build Trust by Emphasizing Early Progress
Critical to creating a coherent team is building trust among team members. This
is much more difficult on a distributed team. In Mastering Virtual Teams, Deborah
Duarte and Nancy Snyder discuss the difficulties in trusting people w h o m we are
unable to see physically.

In face-to-face settings, a number of familiar clues help us deter-
mine w h o m we should trust and w h o m we should not. We are
able to evaluate people's nonverbal communication and observe
their interactions with other team members. Part of the way we
judge trustworthiness is through our perceptions, over time, of
the other person's reliability and consistency. (2006, 85)

Unable to rely on repeated, frequent face-to-face communication, distributed
teams need to take other measures to build trust. Traveling ambassadors, start-
ing meetings with casual conversations, occasional in-person meetings of the full
team, working agreements, and similar activities all help. What also helps is early
pressure for the team to produce working software by the end of each sprint, even
the earliest ones. Unfortunately, many projects schedule too much time for team-
building exercises and discussions too early in the project. This is a common and
dangerous mistake, as shown by research from Professor Pynda Gratton and her
coauthors, as published in the MIT Sloan Management Review.

Guiding these diverse teams to success requires some counterin-
tuitive management practices. In particular, team leaders should
focus on tasks at the early stages, rather than on interpersonal
relationships, and then switch to relationship building when the
time is right. (Gratton,Voigt, and Erickson 2007,22)

366 Chapter 18 D is t r ibu ted Teams

Though this research suggests that the early focus should be on tasks, I do not
mean to suggest that product owners or ScrumMasters should be assigning tasks
to developers. Rather, I mean that these leaders should emphasize the need for
the team to make demonstrable progress even in the early sprints. The problem
with an early emphasis on relationship building is that it encourages less-than-
ideal subgroups to form. Any large group will inevitably split into subgroups. If
these subgroups are allowed to form too early they will form around surface-level
attributes—Americans, Swedes, C + + programmers, Java programmers, female da-
tabase engineers, male programmers, and so on. As Gratton and her coauthors
write, "Simply put, in a team's early going, the more people interact with one
another, the more likely they are to make snap judgments and to emphasize their
differences" (26).

What we'd like to do is defer relationship building until team members have
learned more significant things about each other, such as specific skills, compe-
tencies, approaches to work, and so on. This is done through early emphasis on
progress rather than relationship building. The subgroups that form at that time
will be based on the mutual need to work together to develop the product. To
develop a particular user story from the product backlog, you and I need to work
together. In doing so we learn each other's skills and specific competencies. I come
to know you not just as a Java programmer but as a Java programmer with a real
passion and strength for automated unit testing.You find that I am not just a DBA,
but one who is strong at optimizing SQL statements.

Teams with subgroups formed around compatible skills, attitudes, approaches
to work, and so on are less likely to lead to a later breakdown in trust than sub-
groups formed on superficial attributes (such as American, Swede, programmer,
tester, and so on).Think back to one or more troubled teams you were a member
of Odds are that conflict on those teams was of an us-versus-them nature based
on superficial attributes: this office versus that office, programmer versus DBA,
Linux fanatics versus Windows fanatics. When teams feel an immediate need to
make progress, those types of subgroups do not have time to form.

After a team has worked together for a few sprints, shift the emphasis toward
relationship building by incorporating more social activities and shared downtime
into the sprints. A team needs to have a sufficient amount of shared experience
before social activities and relationship building can be useful. But when that has
been achieved, "instilling confidence in the team and creating opportunities to
socialize at that point helps the development of new abilities and allows the team
to grow" (Gratton et al. 2007,29).

I want to be clear that I am not saying that no time for socialization should be
included at the start of a project. Seeding visits and whole-team, in-person get-
togethers at the start of a project for its initial release planning can be very useful.
Three points are key here: First, the project should start with intensity and a focus

Get Together in Person 367

on early demonstrations of progress. Second, the entire "budget" for socialization
should not be spent in the first couple of sprints. Third, early social activities
should tie into the work of the project, such as bringing a team together for re-
lease planning.

• Locate each of your project 's o f f i ce locat ions in Table 18.1. A t t he
next spr int re t rospect ive d iscuss the d i f ferences. Do the differ-
ences s e e m real? A re there other d i f ferences? W h a t subt le fu tu re
p rob lems could these d i f ferences cause?

• Dur ing fu ture spr int p lanning meet ings , d iscuss any cultural or
nat ional ce lebrat ions that wi l l occur dur ing the spr int in each loca-
t ion. Don' t jus t men t i on the holiday or celebrat ion. Have people in
the ce lebrat ing locat ion tel l o thers s o m e t h i n g deeper about i t — h o w
they spend the day, a fo lk tale about the event , any special rituals,
or so on.

• In your next spr int re t rospect ive, d iscuss and d o c u m e n t t e a m oper-
at ing ag reements . W h a t is appropr iate behavior on your team?

THINGS TO
TRY NOW

Get Together in Person
All of the distributed teams I 've worked with report benefits from getting together
occasionally. How teams do this differs tremendously—some teams collocate en-
tirely for the first few sprints, other teams plan occasional full-team get-togethers,
others rotate members between sites. Most use a combination of techniques. We
will consider each in this section.

Seeding Visits
One of the most popular approaches to getting together is what Martin Fowler
has termed a "seeding visit." He says these should "occur early in the project and
are intended to create the relationships" (2006). A seeding visit that brings all team
members together at the start of a project can be one of the best possible invest-
ments in the success of the project. This can be especially important for projects
on which team members do not know each other, have minimal shared history,
speak different languages, or come from different cultures. Allowing a team a short
period of collocation allows team members to take huge first steps toward know-
ing and trusting each other. This can be started in as little as a few days or a week,
but many teams find collocating for the entire first sprint very helpful. This is
exactly what Jane Robarts found on a project distributed between Hong Kong
and China.

This face-to-face kickoff gave us an opportunity to meet each
other, establish a rapport, and understand the project together.

368 Chapter 18 D is t r ibu ted Teams

By the time people separated to their different locations, they all
knew each other, were comfortable phoning each other, and felt
like part of the same team. (2008, 328)

Ade Miller, of Microsoft's patterns and practices group, says to "use these pe-
riods of working in the same place to not only build shared understanding of the
problem domain but also working relationships within the team" (2008, 18).

" F l y i n g s o m e o f t h e t e a m h a l f w a y a r o u n d t h e w o r l d a n d t h e n p u t t i n g
t h e m up in ho te l s w i l l be v e r y e x p e n s i v e . W e ' r e u s i n g a d i s t r i b u t e d
t e a m t o save m o n e y , so t h i s w o u l d d e f e a t t h e w h o l e p u r p o s e o f a
g e o g r a p h i c a l l y d i s t r i b u t e d t e a m . "

Refus ing to br ing t e a m m e m b e r s (or at least s o m e of t hem) toge ther is
chasing a fa lse economy : Yes, th is wi l l save you m o n e y today, but it w i l l
cos t you more th rough the rest of the project. Never fo recas t cos t sav-
ings on an ou tsou rced project by looking only at the labor cost per hour of
t e a m m e m b e r s . There are many h idden cos ts to using a d is t r ibu ted team.
A n increased travel budge t shou ld be part of any d is t r ibuted project. Erran
Carmel, in his book Global Software Teams, concurs: "A i r t ravel f r o m si te
to si te is a cost ly ye t necessary part of global t e a m s " (1998, 157). Tom De-
Marco, T im Lister, and the other principals of t he At lant ic Sys tems Guild
agree: "To succeed at d is t r ibu ted deve lopmen t , you a lmos t certainly wi l l
have to increase, not decrease, your t ravel b u d g e t " (2008, 42).

If the budget allows it, you may want to keep a team collocated even longer
than one sprint. At the start of a 20-person-year project, Xebia chose to collocate
Dutch and Indian developers for five two-week sprints. Jeff Sutherland, a consul-
tant to that project, and coauthors from Xebia describe the benefits of doing this.

In the shared onsite iterations the team members forged per-
sonal relationships to last throughout the project and Indian team
members acquired a good sense of customer context. It also got
everyone aligned concerning practices, standards, tooling, and
natural roles in the team formed. (2008, 341)

As logical as it is to get together at the start of the project, sometimes doing so
is not feasible.When that's the case, get distributed team members together when-
ever you can. Periods of collocation do not need to be limited to the beginning of
a project. Any time a team can be brought together is the right time. Microsoft's
Ade Miller points out that "there's no substitute for face-to-face communication,
particularly at pivotal points in the project" (2008, 10).

Get Together in Person 369

One of the best uses of seeding visits I've come across occurred at Oticon, the
world's oldest hearing instrument manufacturer. Oticon's primary development
office is in Smorum, just outside of Copenhagen in Denmark. In June 2007, the
decision was made to hire a significant number of new developers, but to hire
them in Poland. Oticon already had an office there but did not use that office for
software development. Poland was chosen because it had become difficult to find
developers in Denmark; it was not chosen primarily for the more common reason
of saving money.

Oticon knew that integrating the Polish and Danish developers would be
critical. Ole Andersen, a manager at Oticon, was responsible for hiring the Polish
developers and for integrating them with his team in Denmark. He describes how
he was able to successfully integrate them.

We decided that every Polish developer should come to Den-
mark for a two-month stay and join one of our Scrum teams.
We rented a nice apartment close to the office so they would
feel comfortable and enjoy their time here. Some took the op-
portunity to invite members of their families to come and stay
in the apartment for a week or so. During the two-month stay
in Denmark, the Polish developers were introduced around the
company by their Scrum team, and they worked as any other
member in the Scrum teams. We received very positive feedback
from the Danish developers about this process, and some of them
became good friends with some of the developers in Poland. The
Polish developers felt very welcome in Denmark, and the good
apartment made a big difference instead of staying two months
in a hotel.

Contact Visits
After a seeding visit (ideally at the start of the project but perhaps not) has estab-
lished an initial relationship, contact visits are used to maintain those relationships.
As with a seeding visit, a contact visit should be oriented around completing a
task (planning, designing a solution to a problem, or so on) but, as Fowler says,
"Remember that the primary purpose of the visit isn't to do the task but to build
the working relationship." He suggests that one-week visits be done at least every
couple of months (2006).

Some teams find that quarterly release planning is a good time to bring the
whole team back together. Consider the case of a product with plans to put out a
new release approximately every three months over the product's life. Or consider
a large product with a schedule of a year or more. In both cases, a quarterly cycle

370 Chapter 18 D is t r ibu ted Teams

may begin with a product owner communicating the product vision to the team.
Temporarily collocating makes this easier to achieve.

Additionally, don't forget that, as in both of these cases, usually when one re-
lease cycle is beginning, the preceding one is ending. This makes it an ideal time to
bring a team together. With the expense and hassle of a single trip, a team can be
collocated for the vision-setting and planning of the new release and sprint as well
as for the final sprint of the preceding release, including its review and retrospec-
tive. Microsoft's Miller recommends going even one step further.

Bringing the team back together for the last couple of itera-
tions before the final release makes the process of shipping a final
deliverable much smoother. It helps the team focus on "getting
things out the door." Being in the same room means that the
whole team is available when key decisions have to be made.
(2008, 11)

Traveling Ambassadors
The common practice of Management By Walking Around (MBWA) is replaced
on distributed projects by MBFA—Management By Flying Around. Of course, on
a distributed Scrum project, it needs to be more than just managers flying around.
In many ways, individuals flying from one city to another can be thought of as
ambassadors. Martin Fowler defines ambassadors as "semi-permanent people who
spend several months in the 'other' location." Although spending several months in
another location may be ideal, I've found that I often need to compromise, send-
ing ambassadors more often but for shorter visits.

I 'm not very familiar with the work of actual ambassadors. So I usually think
of these project ambassadors in much the way that jazz great Louis Armstrong sang
about himself in the 1961 song, "The Real Ambassador." In this song, Armstrong
tells politically appointed ambassadors that as a jazz musician traveling around
the world, he is his country's "real ambassador" even though, he says, "All I do is
play the blues and meet the people face-to-face."3 Armstrong's statement perfectly
summarizes what project ambassadors are asked to do:Write some code and meet
the people face-to-face. Fowler acknowledges the importance of the informal
aspect of an ambassador's job.

An important part of the ambassador's job is to communicate
gossip. On any project there's a lot of informal communication.
While much of this isn't important, some of it is—and the trouble
is that you can't tell which is which. So part of an ambassador's

3 See http://www.therealambassadors.eom/2.htm to hear Armstrong sing this song
and to read information about his and collaborator Dave Brubeck's experience as "the real
ambassadors."

http://www.therealambassadors.eom/2.htm

Get Together in Person 371

job is to communicate lots of tidbits which don't seem important
enough for more formal communication channels. I am refer-
ring, of course, to the types of tidbits that help us understand
our coworkers ("Fernando said his baby took her first steps last
night") and not malicious rumors. (2006)

Fve found that the personal relationships established by ambassadors can be
extremely valuable even long after the ambassador returns to native soil. Ben
Hogan participated in a project distributed between Bangalore and Sydney. He
comments, "We found exchanging ambassadors between our sites to be one of the
most effective techniques for improving cross-team communication. It allowed us
to build personal relationships and provided a mechanism to build trust and trans-
fer knowledge. The ambassadors were able to communicate lessons learned as well
as set future direction for the project" (2006, 322).

On one project I coached, I had developers in Denver and Toronto. Teams
in the two cities had been thrust together on a common project because of an
acquisition, which initially had led to an unfriendly relationship between the two
teams. Frank, a programmer in Denver, volunteered for a couple of two-week
visits to Toronto. I knew the Toronto developers very well, having already worked
with them for two years. I wanted to make sure we got the most benefit from
Frank's trips, so I talked with him about his hobbies and interests outside of work.
When I discovered he was a rock climber, I contacted Marcel in Toronto, who was
an obsessive climber. I asked Marcel to do me the favor of spending a little time
with Frank, possibly setting him up with a guest pass to his indoor rock-climbing
gym. Marcel very willingly did so, and the two of them became good friends and
discovered they had other interests in common as well.

The budding friendship between Marcel and Frank served the project well
right from the start. But it really paid dividends a few months later when a po-
tential conflict started to emerge between departments on the periphery of our
two-city project.The IT staff in Denver had named a server "Pandora" that would
be used by the Toronto team. The Toronto team was furious over this and as-
sumed the name had been intended as an insult because of the mythological story
of Pandora's box containing all the evils of mankind. I was in Toronto when the
trouble started, so I asked Marcel to get Frank on the phone and to ask him if he
would discreetly find out if the name had been intended as an insult. Two hours
later Frank informed us that the employee who selected the name pulled it from
a previously generated list of server names and had no idea who Pandora was.
Because of the trust built between Marcel and Frank, we were able to quickly
defuse the situation.

Jane Robarts has also found that the benefits of ambassador visits go well
beyond achieving whatever formal goals are associated with a visit.

372 Chapter 18 D is t r ibu ted Teams

Throughout the release, we scheduled visits for our U.S. product
managers and team leads to the Indian office.The idea of this was
to provide easy transfer of domain knowledge to business ana-
lysts, developers, and quality analysts in India. An amazing by-
product was that visitors to the Indian office invariably came
away with a better understanding of the environment. After visit-
ing the office, they often started scheduling calls at different times,
found ways to limit the number of calls and, most significantly,
changed their tone of communication. Their awareness of the
commitment and dedication of the Indian team increased, and
they understood the personal sacrifices everyone was making for
the project. A reciprocal understanding also developed from the
Indian team members towards the US. team, having now met
some of them in person. (2008, 328)

THINGSTO
TRY NOW

Q

Buy a plane t icket . Occasional face-to- face interact ion is impor tant .
If it 's been awh i le s ince y o u ' v e v is i ted one or more of the o ther
locat ions on your project , plan a visit .
If a pro ject has just begun or is early enough to still benef i t , ident i fy
ambassadors and have t h e m schedu le their initial v is i ts.

Change How You Communicate
As Robarts' ambassadors discovered, one of the most profound impacts of distrib-
uting a team will be the changes to how they communicate. Collocated Scrum
teams rely heavily on face-to-face communication. Swiveling your chair around
and asking, "Hey, Chris,what do you know about this encryption algorithm?" is
very different from making a phone call to Chris in the office four time zones
away. And it's even more different from sending an e-mail to Chris and waiting
until tomorrow for a response.

Adding Back Some Documentation
There is no way around it: A distributed team will need to write more than a
collocated team. There may be more reliance on written status reports to supple-
ment sprint reviews for attendees who cannot attend. Prospective designs may be
sketched and written and then sent between distributed team members, especially
team members with limited overlapping work hours. Hallway conversations will
be replaced with e-mails. There will undoubtedly be more writing.

Fortunately, more written communication does not need to mean the death
of agility on a project, but team members do need to be aware of how easy it is
to miscommunicate. I've been involved in a few projects where team members in

Change H o w You C o m m u n i c a t e 373

different cities were highly distrustful of each other. Usually these were teams that
were put together through an acquisition. Because of the distrust and how easily
e-mail could be misinterpreted, these teams chose to temporarily ban e-mail and
resolve to pick up the phone each time they needed to communicate.

Not all of the effects of writing more need to be negative. Jane Robarts, for
example, tells an interesting story of a coworker of hers who used written com-
munication to successfully augment verbal messages.

He always ensured that when delivering a message verbally
he also included a written version of the message, usually as a
PowerPoint. Often we would not even use the PowerPoint dur-
ing the conference call, but it was an artifact that could later be
read to clarify the message with team members who could not
hear the call clearly, were not present at the time, or required
clarification on the exact messaging. (2008, 329)

This can be a particularly helpful technique when team members speak mul-
tiple languages. Non-native speakers can read the document at their leisure, aiding
comprehension.

Adding Detail to the Product Backlog
Chapter 13, "The Product Backlog," stressed the importance of shifting from writ-
ing about requirements to talking about them. Many teams have found, however,
that when distributed, they cannot shift as far away from requirements documents
as they would like. Martin Fowler has said that "with greater distance, you need to
put more ceremony into communicating requirements" (2006). Summarizing her
experiences with a distributed project's product backlog, Elaine Therrien of First
American Corelogic says that "supplementing the high-level user stories with
more detailed specifications helps to empower offshore resources. More detailed
requirements enable the team to gain insight into the feature and the end user
objectives at times when the product owner is not accessible" (2008, 371).

Fowler's experience, as well as Therrien's with her teams in California and
Bangalore, is similar to my own with highly distributed teams. With time differ-
ences, such as the 12.5-hour one between Bangalore and California, teams that are
very widely distributed will face significant challenges simply due to the complete
lack of an overlap during a normal workday. Often in situations like this, the prod-
uct owner and team are located in vastly different time zones. With teams such as
these I advocate a technique I call "send along a test."The idea is that when a user
story on the product backlog is sent from the product owner to the team, it needs
to be accompanied by the high-level test cases that will indicate whether the user
story is complete.

SEE ALSO
T h e s e tes t cases are
t h e " c o n d i t i o n s of
s a t i s f a c t i o n " tha t w e r e
i n t roduced in Chap-
te r 13.

374 Chapter 18 D is t r ibuted Teams

Encourage Lateral Communication
On a typical project using a sequential development process, most communication
between subteams in different sites occurs through a designated team leader. On
a Scrum project we want to avoid this and encourage lateral communication—
anyone in one city can speak with anyone in another city. This isn't just allowed;
it is encouraged. As Ade Miller of Microsoft points out, "A coach should help the
team remember the value of intensive communication even when distribution
makes this harder" (2008, 13).

One significant benefit of lateral communication is that it helps counter the
"mum effect" (Ramingwong and Sajeev 2007). The mum effect occurs when
a project participant fails to share bad news with others. By failing to share bad
news, this person puts the project at risk, because without knowledge of a prob-
lem it cannot be addressed. It is well known and easily accepted that individuals
from different cultures share bad news in different ways and have different levels
of willingness to do so. This makes the mum effect more prevalent, and potentially
more devastating, on widely distributed projects. Ramingwong and Sajeev identi-
fied three reasons why a team member might not share bad news:

• The fear of being punished, including being fired

• A desire to maintain team solidarity

• N o clear channel through which to communicate the problem

A project that enjoys free and frequent lateral communication will be less
likely to suffer from the mum effect. It's difficult to establish a project culture
where everyone is willing to share everything with everybody else. Fortunately,
lateral communication makes that goal less necessary. I may be unwilling to take
some bad news directly to the product owner, but I am willing to casually men-
tion it to you while we pair on some task. And I know you're willing to take it to
our product owner. This type of lateral communication is especially important on
projects involving team members whose cultures or individual personalities make
them less willing to share bad news or more intimidated by those in leadership
roles.

THINGSTO
TRY NOW

• Dur ing the next spr int p lanning mee t ing , d iscuss w h e t h e r enough
detai l is prov ided w i t h each product backlog i t em being p lanned
into the n e w sprint. If not, e i ther add more detai l dur ing that mee t -
ing or cons ider adding detai l to upcom ing product backlog i t ems
dur ing the sprint.

• In the next spr int re t rospect ive, d iscuss the m u m effect . Discuss
the possib le e f fect of a t e a m m e m b e r remain ing si lent about bad
news . Bra ins torm ways to help each other avoid these prob lems.

Mee t i ngs 375

Meetings
When I was 10,1 spent the summer with my grandmother who lived near New
Orleans in the hot, sticky, southern part of the United States. Having grown up in
southern California with its near-perfect weather, I complained (more than once,
I 'm sure) about how hot it was in New Orleans. My grandmother's reply was
always the same: "It's not the heat, it's the humidity." Analogously, for a distributed
team, it's not the distance, it's the time difference.

A time zone difference has a far greater impact on how a team works to-
gether than does the geographic distance separating a team. I once worked on a
project with team members in California, London, and South Africa. Figure 18.2
shows the distances between these three locations in kilometers, miles, and num-
ber of time zones. The physical distance between San Francisco and London
(8,600 kilometers) is not too different from the distance between London and
Cape Town (9,700 kilometers). However, San Francisco and London are eight
hours apart, while London and Cape Town are only two hours apart. As you
would imagine, team members in San Francisco faced far greater challenges than
those in London and Cape Town because there was an extensive workday overlap
between London and Cape Town, which made a huge difference in how those
teams worked together.

FIGURE 18.2
A c h i e v i n g a ba l -
a n c e b e t w e e n
a n t i c i p a t i o n a n d
a d a p t a t i o n i n v o l v e s
b a l a n c i n g t h e i n f l u -
e n c e o f t h e a c t i v i -
t i e s a n d a r t i f a c t s o n
each s ide .

Of course, this is not to imply that distance itself does not cause problems. A
team distributed between Oslo and Frankfurt, which are in the same time zone,
will still face challenges it would not face if the whole team were in one of those
cities. But, at least it will share a common workday during which it can address
those problems.

Saw f r a n c - i ^ o
Q

376 Chapter 18 D is t r ibu ted Teams

General Advice
Throughout this section we will consider how the twin problems of time and
distance affect the four common meetings of a Scrum project—daily scrums,
sprint planning, sprint retrospectives, and sprint reviews—and the scrum of scrums
meeting used on multi-team projects. First, though, we'll begin with some general
advice applicable to all meetings.

Include Time for Small Talk
Collocated teams have many opportunities for informal, getting-to-know-you
conversations. They can afford to let some slip by. Distributed teams need to de-
liberately take advantage of whatever opportunities for small talk arise. Martin
Fowler has observed that "it's a good habit to start conference calls with chit chat
on local news. Recent odd bits of local color—politics, sport, weather—help each
side get a sense of the broader life context on the other side of the wire" (2006).
Recalling their experiences with a project distributed between San Francisco,
Boston, and Toronto, Cynick Young and Hiroki Terashima concur.

When the developers first began technical discussions, we found
that some members were being too professional and tense. It was
hard to discuss anything except work, and every meeting resulted
in information overload. Realizing that this was not a healthy
way to collaborate, we began incorporating a short greeting pe-
riod at the beginning of each meeting. We discussed ordinary
subjects such as the weather, each person's wellness, and anything
else that came to mind. This way of starting each meeting allowed
everyone to relax and get a feel for how the other members were
doing that day, which contributed to a more pleasant meeting.
(2008, 306)

Technology can also help replace these impromptu opportunities. One com-
pany that I worked with had made a strong commitment to videoconferencing,
which meant there were plenty of video-enabled meeting rooms in both of the
offices involved in the project, so each team was able to take one over as a dedicat-
ed team room. As strongly as I could, I encouraged team members to eat lunches,
take breaks, and so on in these always-on video rooms. With teams located three
time zones apart, this worked well. Team members on the west coast of the United
States might take a short morning break around the time those on the east coast
(three hours later) were eating lunch; team members on the east coast would take
an afternoon break in their videoconference room at the same time that west coast
team members were eating lunch. The informal chats that naturally took place
helped people in both offices feel more like one team.

M e e t i n g s 377

Share the Pain
If your project is distributed such that meetings will occur well before or after the
usual workday, be sure to share the pain. Do not schedule the meeting such that it
permanently favors people in one location. For example, for a team split between
California and Bangalore, with a 12.5-hour time difference, do not schedule a
phone call for 8:00 a.m. California time and 8:30 p.m. in India. Whereas most
team members in California would find this a bit earlier than normal working
hours but not unduly unreasonable, team members in India would consider this a
horrible time to meet regularly.

So, do like Matt Truxaw did when he was an application development man-
ager at First American CoreFogic in California. Matt encouraged the California/
India teams he coached to share the pain by alternating when the calls would be
held, so that one month the calls were in the evening and the next month they
were in the morning.

This helped both teams connect on a regular basis without either
group feeling like it was expected to take on more burden than
the others. This also helped the teams in India feel that they were
part of the process—not just hired guns, but true team members.

Alternating call times in this way helps ensure an appropriate balance of pow-
er between the two locations.There is a tendency for power to accumulate where
the company headquarters is, where the product owner is, or where a majority
of developers are. Allowing power to build in one location can lead to feelings of
resentment in the other. Simple actions like alternating call times help prevent this.

Participating in a meeting by phone can be particularly painful if most of the
other attendees are participating in person. This happens often when most of the
team is collocated, with only two or three members elsewhere. The problem is
especially prevalent if those two or three members work from home offices. An
easy way to share this pain is to get everyone on the phone occasionally so that
we're all reminded how hard it is to be fully engaged by phone.

Tell Everyone Who Is Speaking
An obvious challenge of using the phone for meetings is recognizing the voices
of all the different speakers. Some people are good at this and quickly learn to
distinguish among the various voices at a remote location. I've never been one of
them, so I appreciate teams that use the time-tested technique of always stating
your name before making any comment whatsoever. Although this works well,
unfortunately calls seem to take longer with all the "This is Mike. . ." prefacing
that occurs. Also, during a rapid or heated discussion, it is very hard to remember
to start each statement that way.

378 Chapter 18 D is t r ibu ted Teams

One team I worked with found an interesting nuance that improved upon
this speak-your-name-before-you-speak approach. Team members called the
technique "low fidelity videoconferencing" and often preferred it to regular
videoconferencing because of the inevitable problems and delays with that equip-
ment. Low-fidelity videoconferencing involved one person in each city who had
a good ear for different voices holding up a photo of whoever was speaking at the
remote location. When Sonali starts talking, someone holds up her photo. When
she finishes and Manish starts talking, his picture is held up instead. Photos of each
person had been taken in advance and were taped to rulers, making it easy to
quickly hold up the right picture.

I realize that this technique may sound silly when you are only reading about
it, rather than witnessing it. However, I observed two interesting things while
watching teams at this company do a few phone calls this way. First, while some
teams let the same person always hold up the photos, on other teams, anyone
would hold up the photo. It became a bit of a contest to see who could recognize
the voice and hold the picture up first, which seemed to make everyone pay more
attention. Second, people didn't just glance at the photo to see, "Oh, it's Ranjeet
speaking." Instead, they continued to look at the photo as though Ranjeet's lips
were magically going to start moving.

Sprint Planning Meeting
In this section we will look at two common strategies for conducting a distributed
sprint planning meeting. The strategies are referred to by their descriptive names:
the long phone call and two calls. I will point out the strengths and weaknesses of
each approach.

The Long Phone Call
The default approach taken by most teams is to have everyone dial into a confer-
ence call but otherwise conduct the sprint planning meeting as normal. The call
attempts to mimic the format and interaction of an in-person sprint planning
meeting. All of the work of a regular sprint planning meeting is done during this
phone call. When the call ends, the sprint is as fully planned as it would be if the
team were collocated.

This is a perfect example of how time separation is worse than physical sepa-
ration on its own. Clearly, this approach to distributed sprint planning is only
feasible when there is significant overlap in the regular working hours of all team
members. No team should be routinely asked to plan a sprint from 7:00 p.m. to
midnight, for example.

In general, I like the long phone call approach. The practicality of this ap-
proach, however, is usually determined by how widely distributed the team is. If
team members work in the same time zone, can work a slightly extended day, or

M e e t i n g s 379

can shift their hours a bit, the long phone call approach has much to recommend
it. The pros and cons of the approach are summarized in Table 18.2.

Pros Cons

Can lead to good discussion as long as
participants remain engaged.

Participants may mentally disengage
from such a long phone call.

Sprint planning can be finished in one
day.

Only works when there is significant
overlap of the workday.

Is consistent with the approach used by
collocated teams.

May involve extending the workday in
one or more locations.

TABLE 18.2
T h e p r o s a n d c o n s
o f d o i n g s p r i n t
p l a n n i n g w i t h a
s i n g l e l o n g p h o n e
ca l l .

Two Calls
For some teams, it is simply impractical to plan on completing sprint planning in
a single phone call—the time zone separation is too great to provide sufficient
overlap in the work days.The next approach to sprint planning, two calls, addresses
this by splitting the meeting across two phone calls held on consecutive days.
Roger Nessier, a vice president at Symphony Services, points out how his team
segmented the call.

Replacing the initial eight-hour session with two separate four-
hour sessions conducted over consecutive days is more practical.
For example, the first session focuses on identifying major tasks,
deliverables, and high-level dependencies. During the second ses-
sion, each team member defines activities and provides estimates
for each task he accepted. (2007, 8-9)

Some teams prefer to do no planning work outside the phone calls; others
prefer to use the gap for individual preparation for the second part of the meet-
ing. This was the approach taken by the Yahoo! Vespa News Search team, which
had product managers in two California locations and developers in Norway, nine
hours away. Because they were working in two-week sprints, team members de-
cided to timebox the initial call to two hours. They decided to run it from 4:00
to 6:00 p.m. in Norway and 7:00 to 9:00 a.m. in California. They also agreed to
stick strictly to that timebox. Team members Brian Drummond and J. F. Unson
describe the meeting.

Team members would pore over each product backlog item,
probing the product manager with questions regarding accep-
tance criteria, scope boundaries of each feature, business con-
straints, and the like. Once the discussions ended, then the team

380 Chapter 18 D is t r ibu ted Teams

TABLE 18.3
T h e p r o s a n d c o n s
o f s p r e a d i n g s p r i n t
p l a n n i n g a c r o s s
t w o p h o n e ca l l s .

would go their separate ways—with the Norway team going
home for the evening, and the California team continuing on-
ward with their earlier-than-normal start. (2008, 317)

The first meeting focuses on discussing the product owner's highest-priority
features and expectations. As pointed out by Drummond and Unson, this meet-
ing is characterized by lots of discussion between the development team and the
product owner. Once this first meeting is over, location-based subteams continue
with meetings to plan their own portions of the coming sprint. These meetings
may occur the same day or the following morning, depending on where teams
are located. During these second meetings, subteams identify the tasks needed to
complete the features that were discussed during the initial, whole-team call.

Sprint planning is then concluded with a second phone call, usually on the
second day at about the same time as the call on the first day. The purpose of
this call is to synchronize the commitments each subteam is willing to make. For
example, suppose that four features are discussed during an initial call. After that
call, the subteam in Norway decides it can commit to only three of them, whereas
the team in California can commit to all four. During the second phone call, the
whole team would explore ways to fully commit to the fourth item or perhaps
find a smaller item that both subteams could commit to. Drummond and Unson
ofYahoo! found that this approach worked well.

The team was able to minimize and equally spread the pain of
having an inconvenient meeting across different time zones. They
kept the fidelity of information high by keeping the meetings
focused on the topic, allowing the team to meet the strict time
box rule. Any discussions that didn't affect the other party were
tabled to a more locally convenient time. (2008, 318)

The pros and cons of this approach are summarized in Table 18.3.

Pros Cons

Can be a more efficient use of time. Usefulness can vary greatly based on
how the team is distributed.

Can be used even if work hours only
overlap slightly (or can be made to over-
lap slightly).

Because many discussions happen
within subteams, not all knowledge
is shared with the full team, possibly
leading to later misunderstandings and
miscommunications.

Cannot be completed in one day.

M e e t i n g s 3 8 1

A th i r d app roach t h a t is s o m e t i m e s u s e d is to have techn ica l leads in
each loca t ion do all t h e p lann ing . A l t h o u g h th i s d o e s m i n i m i z e t i m e
zone cha l l enges , I c a n n o t r e c o m m e n d th i s app roach d u e t o t h r e e m a i n
d r a w b a c k s :

• N o t e v e r y o n e is i nvo lved in t h e p lann ing , so t h e r e is less buy- in a n d
less u n d e r s t a n d i n g o f t h e w o r k b e i n g c o m m i t t e d to .

• W i t h o u t e v e r y o n e invo lved, t a s k s are m o r e l ikely t o be f o r g o t t e n or
m i s e s t i m a t e d .

• Th is app roach h a m p e r s se l f -o rgan iza t ion a n d p r e v e n t s t h e t e a m
f r o m fee l i ng o w n e r s h i p of t h e cha l l enge g iven it.

Daily Scrum
The daily scrum presents an entirely different set of challenges than does the
sprint planning meeting. Whereas sprint planning requires long but somewhat in-
frequent meetings, the daily scrum is a short but daily meeting. Because the daily
scrum is timeboxed to 15 minutes, conducting this meeting does not present a
problem for teams with overlapping workdays. Daily scrums are a problem, h o w -
ever, for widely distributed teams with no overlap in their workdays. To be asked
to call in each and every day at a time when you wouldn't normally be working is
not sustainable long term.There are three primary strategies such teams use: single
call, writing the meeting, and regional meetings.

Single Call
Perhaps the most common approach and the one tried first by most distributed
teams is to get everyone together on a single phone call. For teams within a few
time zones of each other, this is an excellent approach. Unfortunately, the ap-
proach breaks down quickly as the number of time zones increases. Eventually,
most widely distributed teams find they must find a different strategy for their
daily calls.

Some widely distributed teams attempt to overcome the inconvenience and
unsustainability of the single call by holding scrums less frequently, perhaps every
two or three days. I can totally sympathize with and relate to the inconvenience
of a daily call held outside of common work hours. However, whenever I am
tempted to reduce the frequency of a project's daily meetings, I recall Fred Brooks
in The Mythical Man-Month:"How does a project get to be a year late?. . .One day
at a t ime" (1995, 153). M y recommendation is to keep daily scrums daily. If you
choose not to, at least replace the skipped meetings with written versions of the
meeting or with a call with one person f rom each location participating. Each
of these approaches is described in the next two strategies for handling the daily
scrum.

382 Chapter 18 D is t r ibuted Teams

TABLE 18.4
T h e p r o s a n d c o n s
o f h a v i n g e v e r y o n e
o n t h e p h o n e f o r
t h e d a i l y s c r u m .

Teams that choose to use the single call approach should consider alternating
the time of the call as described in the "Share the Pain" section earlier in this chap-
ter. The pros and cons of the single-call approach are summarized in Table 18.4.

Pros Cons

Similar to the approach used with col-
located teams, so nothing new needs to
be learned.

Can be very inconvenient for team
members.

Discussions are held with the entire team
present.

No t sustainable if people are forced to
make calls far outside of normal work
hours.

Everyone learns of all issues, leading to
greater team learning and commitment
to a shared purpose.

Writing the Meeting
To alleviate the pain of off-hours phone calls for at least one location, some teams
abandon daily scrums altogether. Not wanting to give up the value of daily com-
munication entirely, such teams usually replace daily scrums with a written form
of the meeting. Team members agree to send an e-mail, update a wiki page, or
make an entry in another asynchronous collaboration tool providing the same
information they would share in a phone call.

A variation of this approach is to hold a phone call at a time that is convenient
for the largest number of team members and have other team members "partici-
pate" by submitting a written report. This is particularly common when most of
the team is collocated with only a couple of remote members.

I usually do not advocate this approach as a primary technique. It can be used
to supplement daily calls if the team decides that daily calls are too much and
needs to reduce their frequency. There are important side effects to a daily phone
call that are lost when the call is turned into a daily written update. For example,
the commitment to complete a piece of work seems stronger when a team mem-
ber says,"I will do this today," than when the same words are written. Perhaps this
is because the spoken message is a commitment made in front of one's coworkers;
the written message is a commitment made in private and perhaps read only by
one's coworkers. This and other pros and cons of this approach are summarized
m Table 18.5.

M e e t i n g s 383

Can be sustained over the long term. Issues are not discussed and so may lay
dormant for days.

Helps overcome language problems,
including thick accents.

Fails to take advantage of a great oppor-
tunity to foster improved relationships
and knowledge sharing among team
members through daily interaction.

N o guarantee that written updates will
be read.

Team members will be less likely to hold
each other accountable for prior day's
commitments.

TABLE 18.5
T h e p r o s a n d c o n s
o f r e p l a c i n g t h e
d a i l y s c r u m w i t h
e q u i v a l e n t w r i t t e n
i n f o r m a t i o n .

Regional Meetings
The third and final approach to the daily scrum meeting is to have a set of regional
meetings followed by some effort to share key issues from the meetings. If a team
is split across two fairly distant cities, each city may have its own daily scrum. This
would be the case, for example, for a team with members in the company's San
Francisco and London offices, which are eight hours apart.

Sometimes a distributed team has a few offices with overlapping work hours,
plus one office that is more remote. In these cases, those locations with over-
lapping hours might have one regional daily scrum. The more remote location,
though, would have its own meeting. If, for example, our San Francisco and Lon-
don teams were joined by a team in Los Angeles, one likely arrangement might be
to hold a daily scrum by phone for the two California teams but have a separate,
in-person meeting in London.

A common approach is to have separate phone calls for the western and east-
ern hemispheres. The western-hemisphere phone call can easily accommodate
everyone in North and South America, with an eastern-hemisphere call taking
care of the rest of the world (with the possible exception of Australia and New
Zealand). If an individual team is truly so widely distributed that it has members
in, let's say, San Francisco, Seattle, Toronto, London, Prague, Stockholm, Beijing,
and Melbourne, it may want to have three calls at different times rather than two.
But, keep in mind we are discussing the daily scrum here, not the scrum of scrums
(which we'll get to next). Most individual teams can get along fine with two calls
scheduled at different times.

These regional meetings (whether everyone is present in one office or dialing
into a multi-city call) are then usually followed by additional communication, so

384 Chapter 18 D is t r ibu ted Teams

that each subteam is aware of the work of the other subteams. One way to con-
duct this follow-up communication is a phone call with at least one representative
from each subteam. This is the approach used by Martin Fowler who says, "We do
standups with a shore's team, but not between the different shores.We do however
do daily cross-shore meetings, but these don't involve the entire team" (2006).

Another approach to ensure communication across the subteams is for the
team to designate one or more team members who will participate in all scrums.
The designated team member participates in the normal subteam scrum but then
also participates in one or two other scrums, which usually occur outside of that
individual's normal working hours.

Whichever of these approaches to sharing information between and coordi-
nating the work of subteams is used, the pain of off-hours phone calls is greatly
reduced. It is not, however, eliminated as at least one person is participating in an
off-hours call each day. The inconvenience of this can be further reduced by rotat-
ing who is assigned this responsibility.

I find that holding regional meetings is suitable for most widely distributed
teams. As much as I'd prefer everyone on a single call every day, that is not always
a valid long-term option. Although this approach has its weaknesses, they are
outweighed (though not outnumbered) by its strengths, both of which are sum-
marized in Table 18.6.

TABLE 18.6
T h e p r o s a n d c o n s Pros Cons
o f u s i n g r e g i o n a l
m e e t i n g s t o
c o n d u c t t h e d a i l y

Pain of off-hours calls is greatly reduced. Information relayed from one meeting to
the next may be incorrect or incomplete.

s c r u m . Allows local subteams to share informa-
tion most important to them.

Can lead to a feeling of"us" and " them"
between different subteams.

No t everyone is present for all
discussions.

Information may not be shared between
subteams in a timely manner.

SEE ALSO
T h e s c r u m of s c r u m s
m e e t i n g s w a s de-
sc r ibed in Chap te r 17,
"Sca l i ng S c r u m . "

Scrum of Scrums
The scrum of scrums is used by multiple teams to coordinate their work. It in-
volves one representative of each team participating in a meeting, usually two or
three times a week. The reduced frequency of this meeting makes it less trouble-
some to replicate with a distributed team. This meeting is almost always an hour
or less; therefore, a distributed team with any overlap to its workday at all will be
able to easily schedule a scrum of scrums meeting.

M e e t i n g s 385

The challenges arise, of course, when the team is so widely distributed as to
share no common working hours. In these cases, successful teams use one of the
better strategies for the daily scrum—either single call or regional meetings.When
only a handful of teams is involved, a single call usually works, as the meeting
participants can find some time that will be minimally inconvenient for enough
people.This is easier to do than it is for the daily scrum for two reasons: First, most
scrum of scrums calls are not daily and second, most teams occasionally change
who participates in those calls. Having to be on a 7:00 p.m. phone call for the next
four Tuesdays and Thursdays may be inconvenient, but it pales in comparison to
being on a phone call at 7:00 p.m. five nights a week until you retire.

Larger teams, or those with more difficult time zone challenges, often opt to
hold regional meetings. A project with four teams in Toronto, three teams in Ban-
galore, and two in Beijing, for example, may opt to hold a face-to-face scrum of
scrums in Toronto for those four teams. This meeting would be at an inconvenient
time for participants in Bangalore and Beijing, so individuals there may schedule
a conference call at a better time in their day. Information is shared between these
two groups either through a person or two who participate in both meetings or
through a phone call including a representative from each meeting.

Sprint Reviews and Retrospectives
Sprint reviews and retrospectives share attributes of both the daily scrum and the
sprint planning meeting. Like sprint planning meetings, these meetings are not
held every day, so team members are more able to participate outside of normal
work hours. Like daily scrums, though, reviews and retrospectives are a bit easier
to plan because they are shorter than a sprint planning meeting. This makes find-
ing a suitable time for a sprint review or retrospective relatively easy.

Teams with overlapping work hours will naturally schedule these meetings
during the overlapped portion of their days. Teams whose work hours nearly
overlap usually schedule these meetings at the end of one work day and the start
of another. For example, a team split across Denver and Helsinki is nine hours
apart. It may schedule a review for 8:00 a.m. in Denver and 5:00 p.m. in Helsinki.
The Denver team members will need to arrive for work a little earlier than some
would like, and Helsinki team members will need to stay a little later than some
would like; but, overall, this type of approach works well considering that the
meetings happen only once every few weeks.

Teams more widely distributed need to find a time that is minimally intrusive
in the personal lives of members in one or more locations. A team spread between
London and New Zealand, 12 hours apart, may decide to hold the meeting at
8:00 a.m. in one location and 8:00 p.m. in the other. As with all such off-hours
meetings, you should vary which location gets the early shift and which gets the
late shift.

386 Chapter 18 D is t r ibu ted Teams

If both the review and retrospective tend to be short, some teams prefer to
schedule the review and retrospective back-to-back. Other teams prefer schedul-
ing them on consecutive days. The trade-off is between two days with shorter
off-hours phone calls and one day but with a longer call.

Participation Is Not Optional
A challenge with sprint reviews and retrospectives is that some team members will
be tempted to consider participation optional. It's not. But, while I don't consider
participation optional, I do consider it unrealistic to expect a team member be
available off-hours every time the team has a meeting. I like to set the expectation
that team members are expected to be at each review and retrospective, but that I
know they will sometimes miss one. I set the expectation that if you are going to
miss one of these meetings, call someone on the team or e-mail the rest of us so
that we know you won't attend.

I equate participation in off-hours reviews and retrospectives to my daughters'
swim team practices. Practices are not optional; my daughters cannot skip practice
and then show up at a swim meet anxious to compete. To compete, they need to
show up at practice. But their coach knows these are school-age kids who may
miss an occasional practice for many reasons: doctor appointments, a sick sibling,
no way to get to practice, a school field trip, and so on. Miss a few, not a problem.
Miss too many, and the coach will demand an explanation. The same is true on a
Scrum team.

Hold Occasional One-City Retrospectives
I 'm not generally a fan of leaving a person or group out of the retrospective. I
would never advise a team to leave the testers out of the meeting one time so we
could talk without them. Similarly, I wouldn't want a team to leave the product
owner out of a retrospective. However, telephones can introduce strange behavior
into meetings, so I do want a team to occasionally leave the telephone out of the
meeting, meaning that each location should periodically have its own local retro-
spective. Any topic is fair game for a one-city retrospective, but I would particu-
larly encourage the subgroup in a given city to focus on two things: issues unique
to its location and anything it can do to help interactions with other locations.

Proceed with Caution
N o one chooses to distribute a team for the benefit of the team. The decision to
distribute team members geographically is made for some other reason—to save
money, to recruit in multiple locations, to gain expertise in a new region, because
of an acquisition, or some similar reason. Distributing a team creates additional

A d d i t i o n a l R e a d i n g 3 8 7

w o r k and stress fo r t h e ind iv idua ls involved and creates substantial ly m o r e r isk fo r

t h e o rgan iza t ion .

T h e advice in this c h a p t e r has b e e n d r a w n b o t h f r o m m y e x p e r i e n c e and f r o m

t h e e x p e r i e n c e s o f t hose I 've s p o k e n w i t h . D i s t r i b u t e d d e v e l o p m e n t can b e m a d e

t o w o r k , b u t a d i s t r ibu ted t e a m wil l neve r p e r f o r m as wel l as a co l loca ted team.Yet ,

because co l loca t ion is n o t always an o p t i o n , o rgan iza t ions are f o r c e d t o f i n d ways,

such as t h e t e c h n i q u e s desc r ibed in this chap te r , t o h e l p d i s t r ibu ted t e a m s w o r k as

wel l as t h e y can. Still, w e w o u l d b e wise t o cons ide r t h e c o n c l u s i o n o f E m m e l i n e

de Pillis and K i m b e r l y F u r u m o in an art icle pub l i shed in t h e Communications of

the ACM. A f t e r c o n d u c t i n g e x p e r i m e n t s c o m p a r i n g t h e p e r f o r m a n c e , sat isfact ion,

and g r o u p d y n a m i c s o f d i s t r ibu ted and co l loca ted t eams , t h e y c o n c l u d e d tha t " v i r -

tual t e a m s yie ld s ignif icant ly l o w e r p e r f o r m a n c e , l o w e r sat isfact ion, and a l o w e r

r e su l t s - to -e f fo r t ra t io .Vir tual t e a m s appear t o exce l o n l y at l o w e r i n g c o m m i t m e n t ,

mora l e , and p e r f o r m a n c e " (2007, 95).

SEE ALSO
lacovou and Nakatsu
present a compendium
of risks facing distrib-
uted projects (2008).

Additional Reading
Carmel, Erran. 1998. Global software teams: Collaborating across borders and time zones. Pren-
tice Hall.

Dr. Carmel is a professor at American University and is a recognized expert on tech-
nology globalization. This book nicely complements Duar tes and Snyder's in that it
covers software development and IT projects specifically. An earlier book, Global Sqft-
ware Teams, focused specifically on software development, but I prefer this newer book.

Duarte, Deborah L., and Nancy Tennant Snyder. 2006. Mastering virtual teams: Strategies,
tools, and techniques that succeed. 3rd ed. Jossey-Bass.

T h e best general book on working wi th distributed (or "virtual") teams. Provides
useful information on group dynamics, culture, meetings, and more. Although the
book does not have a Scrum or even software development perspective, much of it is
applicable.

Fowler, Martin. 2006. Using an agile software process wi th offshore development. Mart in
Fowler's personal website, July 18http:/ /martinfowler.com/art icles/agileOfFshore.html.

This web page summarizes the thoughts on offshore agile development from
ThoughtWorks chief scientist, Mart in Fowler. It includes lessons learned, comments
on the costs and benefits of offshore development, and predictions about the future of
offshore and agile.

Miller, Ade. 2008. Distributed agile development at Microsoft patterns & practices. Microsoft.
Download f rom the publisher's websi te .ht tp : / /www.pnpguidance.net /Post /Dis t r ibuted-
AgileDevelopmentMicrosoftPatternsPractices.aspx.

Ade Miller of Microsoft's patterns & practices groups summarizes challenges faced by
that distributed group and how it addressed them.

http://martinfowler.com/articles/agileOfFshore.html
http://www.pnpguidance.net/Post/Distributed-

388 Chapter 18 D is t r ibu ted Teams

Sutherland, Jeff, Anton Viktorov, and Jack Blount. 2006. Adaptive engineering of large
software projects wi th distr ibuted/outsourced teams. In Proceedings of the Sixth Internation-
al Conference on Complex Systems, ed. Ali Minai, Dan Braha, and Yaneer Bar-Yam. N e w
England Complex Systems Institute.

Sutherland, Viktorov, and Blount present a case study of a particularly successful
Scrum project that was distributed across three sites on two continents.

Chapter

C o e x i s t i n g w i t h O t h e r A p p r o a c h e s

t's one thing to look at agile software development in a test tube; it's another to
experience it in the real world. In the test tube, agile methodologies like Scrum
are easily adopted by all members, and the nasty realities of corporate politics,
economics, and such cannot intrude. In the real world, though, all of these un-
pleasant issues do exist. It is rarely as simple as deciding to use Scrum and then
being able to do so with no other constraints. One project might be allowed to
try Scrum as long as it doesn't interfere with the organization's CMMI Level 3
certification. Another project might be allowed to try it as long as it passes the
preliminary architecture review and then has a successful meeting at the design
complete checkpoint.

There might be valid reasons for an organization to put these constraints
on projects, but they are constraints nonetheless. I 'm not using "constraint" here
in any significantly pejorative manner; I 'm using it to indicate that a degree of
freedom has been taken away from the team and how it does its work. Not all
constraints are bad things—in the United States (as in much of the world) I am
constrained to driving on the right side of the road. I 'm happy to do so because I
know all the other drivers here are similarly constrained and are therefore much
less likely to run into me. Similarly, many Scrum teams must work inside, within,
and around the rules and norms of their organization, at least at first.

In this chapter we look at how a Scrum project is affected when it intersects
with a sequential (waterfall) process. We next consider the impact of project gov-
ernance and how Scrum projects can successfully coexist with non-agile gov-
ernance approaches. Finally, we explore ways Scrum projects can comply with
standards such as ISO 9001 or CMMI.

Mixing Scrum and Sequential Development
Few large organizations will enjoy the luxury of doing all of their projects with
Scrum. Most will be forced to endure a period in which some projects have
moved to Scrum while others have not. This might be because it would be too
disruptive to transition the entire company at once, because it would be disruptive

390 Chapter 19 Coexis t ing w i t h Other Approaches

to make a mid-course process change to a particular project, or any number of
other reasons. Because many organizations will face problems of mixing Scrum
and sequential development at some point, we turn our attention to that topic in
this section.

Three Scenarios of Interaction
Not every intersection of Scrum and sequential development will be the same.
And the problems faced by a project will depend on the points at which Scrum
and sequential development meet. Scrum trainer Michele Sliger describes three
different scenarios in which Scrum and sequential development might interact
(2006).

Waterfall-up-front. The confluence of Scrum and sequential development at
the start of the project usually occurs when an organization has project approval
hurdles. Clearing these hurdles usually requires the Scrum team to set aside any
distaste it has for documents and create a specification, project plan, or other arti-
fact that is required for approval. After a waterfall-up-front project is approved, it
runs as a normal Scrum project. Sliger recommends following Alistair Cockburn's
advice and producing documentation that is "barely sufficient" (2000). Sliger de-
scribes a team that wrote a barely sufficient specification to gain approval for the
project.

They set aside the specification and rarely referenced it during
the course of the release. The creation of this specification was
not, however, viewed as a waste of time. Rather, team members
felt they had benefitted from the shared product vision created
from the exercise of compiling the specification. And, of course,
the financial managers on the project approval board got the in-
formation they needed as well. (2006,29)

Waterfall-at-end. When Scrum and sequential development meet at the end of
the project, it is usually for a testing phase. Sometimes waterfall-at-end occurs
because the organization has only tentatively embraced Scrum and has left the
testers or quality assurance people as a separate group who swoop in at the end to
verify and validate the product. Other times, waterfall-at-end occurs when there
is an external group—operations for example requires that some testing to occur
at the end. The usual response to a waterfall-at-end requirement is to dedicate
one or more sprints to completing this work. By the end of the project, the team
has become accustomed to its new agile way of working, so it continues to use as
much of Scrum as possible even at the end. In other words, it continues to work
in sprints, will hold sprint planning meetings, have daily scrums, and so on.

Mix ing Scrum and Sequent ia l D e v e l o p m e n t 3 9 1

Waterfall- in-tandem. Perhaps the most difficult way in which Scrum and sequen-
tial development interact is waterfall-in-tandem. A common example of this is
when two or more teams must work together to create a single product and at
least one team is using Scrum and at least one team is using a sequential approach.
Coordinating work and communicating frequently are usually the chief sources
of problems when waterfall-in-tandem is required.The sequential team will prefer
to communicate through meetings and documents that lock down interfaces; the
Scrum team will prefer to leave interfaces vague and communicate informally but
frequently as interfaces and commitments are progressively defined.

The Scrum team that finds itself in this situation usually finds it helpful to
entice the managers of the waterfall projects to attend sprint planning meetings or
daily scrums. Sliger wrote about her experience getting sequential team managers
to attend sprint planning meetings.

Initially, the waterfall managers grumbled that all these planning
sessions were wreaking havoc on their calendars. However, once
they had attended a few sessions, the managers began to realize
the value of the shared information and the improved ease and
coordination of the work. (2006, 30)

Three Areas of Conflict
Sliger describes the intersections between Scrum and sequential development in
terms of how to approach the specific instances where two unlike methodologies
converge. Barry Boehm and Richard Turner, on the other hand, write more in
terms of how to avoid the three types of conflicts that arise when Scrum and a
sequential process coexist:

• Development process. A development process conflict originates from
the differences between the Scrum and sequential processes.

• Business process. A business process conflict is one created by the differ-
ent ways in which Scrum and sequential teams interact with the business.
An organization used to the plans created by a sequential team will be
unfamiliar with the type of planning done by a Scrum team.

• People. Conflicts around people arise from the different and changed
roles when using Scrum and from Scrum's emphasis on self-organization,
teamwork, and communication (Boehm and Turner 2005).

Some of these conflicts will occur within a single team—for example, Scrum
expects lightweight requirements in the form of user stories or something simi-
lar, whereas a sequential process expects more thoroughly documented up-front
requirements. Problems can result when an up-front agile activity feeds a down-
stream sequential activity but does so with less detail than expected.

392 Chapter 19 Coexis t ing w i t h Other Approaches

The remainder of the conflicts are those that arise between two teams that
are using different types of processes. We see this, for example, in the need to syn-
chronize work between teams. Boehm and Turner write about the challenge of a
Scrum team and a sequential team who must combine their work.

If the Scrum team evolves its own interfaces, it might leave oth-
er parts of the team at risk for developing against a changing
standard. However, the traditional [sequential] approach of lock-
ing the interface specification early could encumber the Scrum
team's need to refactor some part of their design. (2005, 31)

As remedies for these problems, Boehm and Turner offer the following
suggestions:

• Do more analysis than Scrum would usually call for. If a Scrum team is to
work successfully with a sequential team, one compromise it will need to
make will be to do more up-front analysis than it would usually prefer.
This is necessary so that work can be partitioned among the teams in-
volved and the large interfaces can ideally be identified.

• Build up a process that is barely sufficient rather than strip a large pro-
cess down. Experience shows that when a large process is stripped down,
it is rarely stripped far enough. The problems this causes are best avoided
by starting with an empty process and then adding only that which is
necessary.

• Define an architecture that compartmentalizes Scrum and sequential ap-
proaches. During project initiation and the first few sprints, focus on
identifying areas of the system most suited for Scrum and sequential ap-
proaches. Those areas with stable, well-known requirements can be built
by the sequential teams; those areas with uncertain requirements or where
multiple design approaches are valid should be built by the Scrum teams.

• Adopt the agile practices that work wel l regardless of the process. Some
of the agile practices are good ideas no matter what process is used. Con-
tinuous integration, heavy reliance on automated testing, pair program-
ming, and refactoring are practices that can be as at home on a sequential
project as they are on a Scrum project.

• Educate stakeholders. Because some stakeholders will interact with both
Scrum and sequential teams, educating them is critical.These stakeholders
will need to understand enough about each process to participate in it or
understand it as their roles dictate.

Mix ing Scrum and Sequent ia l D e v e l o p m e n t 393

• Encourage the sequent ia l t e a m s to w o r k on smal ler batches of
work . Rather than turn s o m e t h i n g over to, or in tegrate w i t h , a
Scrum t e a m every f e w mon ths , w e ' d like the sequent ia l t e a m to do
it every f e w w e e k s .

• Exper iment w i t h having a rule that a Sc rum t e a m does not pull a
product backlog i tem into a spr int if comp le t i ng that i t em requires
the sequent ia l t e a m to c o m p l e t e un f in ished w o r k dur ing the sprint.
Only br ing a product backlog i t em into a spr int if the sequent ia l
t e a m has already f in ished its w o r k on the i tem.

• Request that a m e m b e r of the sequent ia l t e a m also be ass igned to
the Scrum team. Have that person a t tend planning, rev iews, retro-
spect ives, and daily sc rums.

THINGSTO
TRY NOW

Can Scrum and Sequential Coexist Forever?
Opinions are split on whether Scrum and sequential development approaches can
coexist forever. Certainly there are organizations doing this today, and organiza-
tions have successfully supported multiple, non-agile development processes in
the past. But is there something fundamentally different about Scrum that would
prevent it from coexisting forever with a sequential process? Michele Sliger be-
lieves there is.

I used to say that companies could mix agile and traditional ap-
proaches indefinitely, as they might not wish to move every proj-
ect to an agile environment. But after what I've seen in the past
year, I no longer believe that to be true. I think that compa-
nies must eventually make a choice to go one way or the other,
and I've been calling this tipping point "high-centering." High-
centering is a term used in four-wheeling. It happens when your
Jeep climbs over a rock or pile of dirt only to end up balancing
on its chassis, with none of its wheels able to make any purchase
to move either forward or backward. When these companies get
to a certain point of driving their Jeep up that agile mountain,
they have to make a conscious and public decision to push for-
ward when they get stuck—otherwise their teams will slide back
down into the waterfall at the bottom.

I am inclined to agree with Sliger. Having Scrum temporarily coexist with a
sequential process is often necessary in a large organization. But it is important to
remember that agile is not a destination; being agile involves continuous improve-
ment. As an organization attempts to become more and more agile, the conflicts
between Scrum and sequential development will become more painful. If the
sources of these conflicts are not removed, organizational gravity will pull the

394 Chapter 19 Coexis t ing w i t h Other Approaches

organization back to whatever software development process was in place before
adopting Scrum. A few nonthreatening agile practices such as daily scrums or
continuous integration might remain, but the organization will have been unable
to achieve the compelling benefits of becoming agile.

Governance
One of the reasons why many organizations adopt a sequential approach to soft-
ware development is the natural fit between a defined sequence of development
phases and the need for project oversight. The purpose of project oversight, com-
monly called governance, is to make sure that a project does not go astray. Effective
project governance can, for example, identify a project that will exceed its budget,
leading to conversations about whether the project should be canceled. Gover-
nance can also identify a product that is drifting too far from its original goals, a
project that is deviating from an architectural standard, or any number of similar
high-level considerations important to the organization.

Project governance is not a new concept, but it finds its most natural home in
the stage-gate process invented by Dr. Robert Cooper and shown in Figure 19.1.
The central idea is that after each stage of a development process, the project is
forced through a gate. Each gate acts as a formal review checkpoint on the project;
the project might be approved to move forward, sent back for rework in the previ-
ous stage, or canceled (2001).

FIGURE 19.1
S t a g e - g a t e
a p p r o a c h e s a r e
t h e s o u r c e o f m a n y
c h a l l e n g e s . S t a g e
Gate® is a r e g i s -
t e r e d t r a d e m a r k o f
t h e P r o d u c t D e v e l -
o p m e n t I n s t i t u t e .

©
Post Ipmc-h review

A software team might encounter gates or governance checkpoints at a vari-
ety of times: an early review of their plans for scope, budget, and schedule; a review
of architectural and design decisions; a review that the application is ready for
system or customer acceptance testing; a review that the product can be handed
off to a support organization; and so on. These checkpoints often wreak havoc on
a software team's desire to use Scrum as they are not suitable to work done in an
iterative manner. For example, a Scrum team that allows the design of the system
to emerge will have a difficult time clearing an early checkpoint that considers the
appropriateness and correctness of the system's architecture.

Governance 395

The first step in reconciling the need for project governance and the desire to
use Scrum is to realize that project governance and project management are not
the same thing. It is OK to separate project governance from project management.
But in separating them we would like to achieve the ability to have high-level
checkpoints to provide the necessary oversight, while still allowing the team the
freedom of managing itself and the project in an agile manner.

As evidence that governance is not inherently evil, suppose that you are sud-
denly promoted to president or CEO of your company. As the new boss, you
are going to want some visibility into the company's major projects. Maybe you
establish a rule that you personally need to approve the start of any project ex-
pected to cost over a certain amount. And, while you plan to attend as many sprint
reviews as you can, you want any project that lasts over three months to give you
a two-page summary of key information every three months. This would be a
lightweight governance model and a reasonable one to put in place. So it is not
the existence of governance that is objectionable; it is when governance starts to
affect how we run the projects that we object.

Running Scrum Projects with Non-Agile Governance
Because few organizations will go so far initially as to completely revamp their
current approaches to governance, teams will need ways to work with their orga-
nization's non-agile governance. Taking the following actions should help.

Negotiate and set expectations up front. Undoubtedly, the first Scrum project to
go through the governance process in your company will have challenges. There
will almost certainly be some things they cannot do; for example, a Scrum team
cannot provide a thorough design before getting permission to start coding, be-
cause design and coding will be done concurrently. The only solution to this is
for the team to negotiate with the necessary governance groups in advance. The
more support a team has for this and the higher up in the organization that this
support reaches, the better. The team does not need to solicit a permanent change
in governance policies. The change can be pitched as a one-time experiment.

Fit your reporting to current expectations. The project review boards or oversight
committees that provide project governance have existing expectations for what
information each project is to provide at each checkpoint. Don't fight these ex-
pectations. If they expect a Gantt chart, provide a Gantt chart. When you can,
however, try to slowly shift expectations by providing additional, more agile-
friendly information. If burndown charts are suitable to show, do so. Or perhaps
you want to include a report showing the number of times the build server kicked
off continuously integrated builds and the thousands (or perhaps tens or hundreds
of thousands) of test runs that were executed.

396 Chapter 19 Coex is t ing w i t h Other Approaches

Invite them into your process. Scrum teams can supplement less-detailed formal
governance checkpoints by inviting governance committee members to partici-
pate in the regular meetings they will hold. Teams at Yahoo! undergo a review by
an architectural review committee. Gabrielle Benefield, former director of agile
product development at Yahoo!, recalls how its early agile teams handled this.

Agile teams...invited people from the architectural review com-
mittee to their sprint reviews early on. They then still had one
formal checkpoint, but by then most major questions had been
resolved. This was a lot less painful, and trust and collaboration
[were] built earlier.

I like to extend the well-known technique of management by walking around
into management by standing around. Encourage managers and executives in-
volved in the governance of a project to attend the daily scrums, where they can
stand and listen to what is occurring on the project. The same shift from docu-
ments to discussions that is created by working with user stories needs to occur
with project reporting. Encourage people to visit the team or join its meetings to
see for themselves what is being built.

Reference a success. Nothing convinces like success. Do whatever you can to get
a first project or two through lightened or reduced governance checkpoints.Then
point to the success of those projects as evidence that future projects should also
be allowed through. Gabrielle Benefield points out that "once you get a few agile
teams showing favorable results, you build trust. And you can then work on the
larger overall governance process."

The concepts of agility and project governance are not fundamentally op-
posed. Each is an attempt to improve the finished product. Scrum strives to do this
through close collaboration and the short inspect-and-adapt cycles of the time-
boxed sprints. Project governance strives to do it by what we might call inspect -
and-approve (or reject) checkpoints in which the product or project is compared
to a set of desirable attributes. However, while pursuing similar goals, Scrum and
project governance take entirely different routes to achieving those goals. It is in
these different routes where problems will arise in mixing the two. Fortunately, a
few compromises on each side, combined with the advice in this section, can lead
to a successful combination of agility and oversight.

Compliance
Not every team or even software development department has the luxury of hav-
ing complete control over its development process. For example, in outsourced,

C o m p l i a n c e 3 9 7

contract development, customers often mandate that suppliers be C M M I Level
5 certified, which requires those software developers to follow certain established
best practices. Additionally, some software-intensive products are delivered into
regulated industries and must comply with standards such as ISO 9001. Compa-
nies producing medically regulated devices must comply with ISO 13458. Pub-
licly traded companies in the United States must comply with Sarbanes-Oxley.
The list goes on.

N o n e of these standards prescribes a life cycle that is completely at odds
with Scrum. Some of them, however, come close, as they assume that a sequential
process will be used. Because complying with standards such as these is rarely op-
tional, Scrum teams must concern themselves with how best to comply, starting
in some cases with the question of whether doing so will even be possible with
a Scrum process. In this section we will look at how Scrum teams comply with
ISO 9001 and C M M I , two of the more common standards with which Scrum
teams have learned to coexist. From examining ISO 9001 and the C M M I , we can
generalize some coping strategies useful in other compliance situations.

ISO 9001
The International Organization for Standardization (ISO) maintains standard
9001, which is usually fully designated as ISO 9001:2000 or ISO 9001:2008,
both of which indicate the year of a specific version of the standard. ISO 9001
certification is not intended to guarantee that an organization's products achieve
a specific quality level. Rather, ISO 9001 certification indicates that the organiza-
tion follows a set of formal practices in developing its products. A large part of the
effort in complying with ISO 9001 is the creation of a quality management system,
which is usually a lengthy document or set of web pages that describes the quality
practices followed by the organization.

Primavera Systems, developer of project and portfolio management systems,
created its quality management system over a ten-month period. The company
conducted 30 workshops to document its existing processes, and each workshop
included a cross-functional representation of developers.

Primavera already had substantial experience with agile practices at the time it
initiated its ISO 9001 effort. In such an environment it would be natural for em-
ployees to be concerned about a loss of agility with the introduction of ISO 9001.
Bill McMichael, of Primavera, and Marc Pombardi, a consultant with expertise in
ISO 9001, worked together on the initiative and found that the documentation
did not diminish their agility.

There were concerns about violating the principle of "working
software over comprehensive documentation." Our mantra was
to provide just enough documentation to be a useful reference
and to help with enforcement of existing processes. (2007,264)

398 Chapter 19 Coexis t ing w i t h Other Approaches

Corroborating Primaveras experience of taking nearly a year to get to the
point where it could pass an ISO 9001 certification audit is Graham Wright. A
coach atWorkshare in London,Wright was involved in his organization's success-
ful ISO 9001 certification, which took a little over a year and began 13 months
afterWorkshare adopted Extreme Programming.Wright reports that "in achieving
certification no changes were made to our existing XP practices" (2003,47).

My Experience with ISO 9001
These experiences with ISO 9001 match my own. In 2002 I managed a team of
developers whose organization had decided to become ISO 9001 certified. Be-
cause my team was newer to Scrum than Primavera was at the time of its effort,
I took a different approach and wrote the majority of our quality management
system myself

A few months before the official audit, we met with our auditor to familiarize
him with how we built software and to learn his specific expectations of us. This
being early 2002, he had never heard of Scrum, and none of us had prior experi-
ence with ISO 9001. As a result of that meeting we made a few process changes.
The first was that he was adamant that he would not let us pass an audit with user
stories written on index cards. The user story format was fine, but he insisted we
produce a "document." We agreed to photocopy the user stories onto notebook-
sized paper and store them in a binder with a sequence number on each user story.
The second change was that while our informal design processes were fine, we
would need to produce more design documentation. Our auditor suggested we
take photos of the whiteboard after every design discussion and file these along
with copies of any handwritten notes anyone had taken. We put a locking file
cabinet in the team room and stored all design documentation there.

When our auditor returned, we passed his audit. What was most interesting
about that visit was how impressed he was with our automated test processes. In
addition to a build server doing continuous integration, we did an official nightly
build that included thousands of tests, mostly written in JUnit. We showed the
results of the last month of nightly builds; every night the build and all tests had
completed successfully. As great as this team was, it was a bit fortunate to have not
had a single failed test during that period. The auditor took one look at all those
claims of successful tests and asked, "How do you know the tests aren't broken?
Maybe they aren't running at all and your test harness just reports success." Well,
we knew because inevitably there were test failures during the day.There just had
not been any failures at night. But that wasn't good enough for our auditor, who
insisted we include a failing test in every night's build. We added

assertTrue(false);

That test fails because false isn't true. Once we added our failing test we passed
our ISO 9001 audit.

Compl iance 399

Although I don't think any of these steps helped us produce better software,
they did not add significant ongoing overhead. Documenting everything about
our process took time, but that was a one-time effort (with planned annual up-
dates), and I bore the brunt of that for the team. Juan Gabardini, who has worked
with Scrum in two ISO 9001-certified companies, concurs.

There was overhead for the company, but for the team it wasn't
so bad. I don't say it is painless! And you will need the help of
an open-minded ISO consultant to help you keep everything as
lean as possible but no leaner. (2008)

Capability Maturity Model Integration (CMMI)
Almost since the first agile project emerged from the primordial ooze, companies
have been asking whether agile methodologies are compatible with the Soft-
ware Engineering Institute's Capability Maturity Model Integration (CMMI). As
a measure in some ways of how much process an organization has (or at least
how much of it has been defined), the CMMI and its predecessor, the Software
Capability Maturity Model (SW-CMM), are often viewed as heavyweight ways of
developing software and the antithesis of agile development. Richard Turner, who
was on the original team that wrote the CMMI, and professor Apurva Jain have
said that "while there are significant differences, the 'oil and water' description of
CMMI and agile approaches is somewhat overstated" (2002).

Turner is not the only one of the CMM authors to have considered its ap-
plicability on agile projects. Mark Paulk, lead author of the initial SW-CMM,
assessed Extreme Programming against the 18 key process areas of the original
SW-CMM. Paulk's opinion was that XP partially or largely addressed 10 of the 13
areas necessary to reach Level 3 and was not an obstacle to the other three.

We can thus consider CMM and XP complementary. The SW-
C M M tells organizations what to do in general terms but does
not say how to do it. XP is a set of best practices that contains
fairly specific how-to information—an implementation model—
for a particular type of environment. XP practices can be com-
patible with C M M practices (goals or KPAs), even if they do not
completely address them. (2001,26)

Experience combining agile practices with CMMI is not only theoretical
though. There are now many companies who have successfully combined agile
development with the SW-CMM or the CMMI. Erik Bos and Christ Vriens of
Philips Research led one of the first agile projects to be documented as undergo-
ing a CMM audit.They say that their "assessors were especially impressed with the
transparent, easily accessible, and uniform project information" (2004).

4 0 0 Chapter 19 Coex is t ing w i t h Other Approaches

Joe Fecarotta, whose agile project was assessed as CMMI Level 3, also found
CMMI and agile compatible. He says that "CMMI and the associated audits were
not forcing a particular methodology but attempting to help the group follow best
practices" (2008).

Agile methodologies like Scrum have also been introduced into organizations
already assessed as CMMI Level 5. Systematic, an independent software developer
in Denmark and the UK, employs over 400 people and develops software in the
defense, healthcare, manufacturing, and services industries. After approximately
two years at Level 5, it decided to also adopt Scrum. It reports that the two com-
plemented each other well.

Scrum now reduces every category of work (defects, rework, total
work required, and process overhead) by almost 50% compared
to our previous CMMI Level 5 implementation while maintain-
ing the same level of process discipline. (Sutherland,Jakobsen, and
Johnson 2007,273)

The incorporation of Scrum into Systematic's CMMI Level 5 process shows a
solution to a common problem with CMMI implementations. In pursuing a par-
ticular CMMI level, many organizations forget that the ultimate goal is to improve
how they build software (and presumably, therefore, the products they deliver).
They instead become focused on filling in supposed deficiencies according to
CMMI documentation without concern for whether the changes will improve
the process or its products. This problem can be eliminated when CMMI goals are
combined with the value-focused, "what-have-you-done-for-me-lately" mind-
set inherent in Scrum. Jeff Sutherland, Carsten Jakobsen, and Kent Johnson, who
were all involved in Systematics' adoption of Scrum, refer to the combination of
Scrum and CMMI as a "magic potion."

When mixing the two, a magic potion emerges, where...Scrum
ensures that the processes are implemented efficiently while em-
bracing change, and CMMI ensures that all relevant processes are
considered. (2007,272)

Achieving Compliance
We've firmly established that Scrum is compatible with at least ISO 9001 and
CMMI, on both theoretical and empirical grounds. Let's turn our attention to
specific things that you can do to successfully combine them with Scrum in your
organization:

• Put enough effort into your product backlog. A common thread running
through projects with compliance requirements is that they all benefit-
ted from putting effort into their product backlogs. They didn't feel the

Compl iance 4 0 1

need to fully elaborate all product requirements up front, but teams that
invested in a well-formed product backlog that could be progressively re-
fined with more detail, as described in Chapter 13,"The Product Backlog,"
found that doing so contributed to meeting their compliance goals.
Put compliance work on the product backlog. If a document or other
artifact needs to be produced to achieve compliance, put the work to
produce it on the product backlog. Not only does this ensure the work
isn't forgotten, but it also keeps the cost of compliance visible.
Consider the use of checklists. A number of projects reported that the
use of checklists was helpful. It is important that checklists not introduce
new mandatory steps. Instead, checklists should include steps the team
already does and should exist only to prove to an auditor or appraiser that
the activities are being performed. As an example, Systematic, the CMMI
Level 5 company mentioned earlier, used a one-page story completion
checklist that started with whether the story had been estimated and
ended with the story being integrated into the system. A team's definition
of done, as described in Chapter 14, "Sprints," could easily be turned into
a checklist.
Automate. Build and test automation are important to the success of any
Scrum project.They are doubly so for projects with compliance require-
ments.
Use an agile project management tool. Traceability is an important con-
sideration for most compliance standards. As much as I prefer tangible
artifacts—handwritten index cards and big, visible charts hanging on
walls—an agile project management tool should at least be considered by
teams with compliance requirements.
Move slowly but steadily. You probably cannot overhaul a significant pro-
cess element, such as an ISO 9001 quality systems manual, overnight. So,
do what Scrum teams do best: Do it incrementally. Gradually revise the
quality systems manual to be more agile. Because much of ISO 9001 is
about making sure a company follows its own quality system, the com-
pany can revise its quality system to support Scrum.
Work with your auditor. Whenever possible, meet your auditor in advance.
Have an informal discussion about how you develop software, and ask the
auditor to point out any red flags. When possible, work with experienced
auditors who understand that just because the process might be strikingly
different does not mean it cannot achieve the goals of the standard.
Bring in outside help. If you have not been through a certification attempt
of the type you are after, bring in an outside consultant who has. If you are
not yet adept at Scrum, bring in an experienced ScrumMaster. Having or
bringing in expertise on both fronts is critical.

SEE ALSO
T h e w e b s i t e w w w .
u s e r s t o r i e s . c o m o f f e r s
r e v i e w s of agi le p ro jec t
m a n a g e m e n t too ls .

4 0 2 C h a p t e r 1 9 C o e x i s t i n g w i t h O t h e r A p p r o a c h e s

Onward
S c r u m wil l rarely b e i m p l e m e n t e d in a p r i s t ine e n v i r o n m e n t w i t h n o in t ru s ions

f r o m t h e ou t s ide real w o r l d . I n this c h a p t e r w e l o o k e d at t h r e e d i f fe ren t types o f

in t rus ions : t h e n e e d t o w o r k w i t h a n o t h e r sequent ia l ly m a n a g e d p ro j ec t (or t o

r u n pa r t o f t h e S c r u m p ro j ec t in a sequent ia l m a n n e r) ; t h e n e e d t o w o r k w i t h i n

a c o r p o r a t e g o v e r n a n c e system; and t h e n e e d t o c o m p l y w i t h laws, regula t ions ,

o r s tandards. In t h e n e x t chap te r , w e c o n t i n u e l o o k i n g at cha l lenges t o s u c c e e d -

i n g w i t h S c r u m . W e l o o k at s o m e o f t h e ways S c r u m t e a m s and p ro jec t s can b e

a f fec ted b y o t h e r g r o u p s o r d e p a r t m e n t s in t h e o rgan iza t i on , i n c l u d i n g facilities,

h u m a n resources , and t h e p ro j ec t m a n a g e m e n t off ice .

Additional Reading
Boehm, Barry, and Richard Turner. 2005. Management challenges to implementing agile
processes in traditional development organizations. IEEE Software, September /October ,
30-39 .

In 1988, B o e h m presented the spiral model, one of the first valid alternatives to a
waterfall process. In this book, along wi th coauthor Turner, he presents the view
that agile and "disciplined" processes exist along a cont inuum and may be mixed as
needed based on the specific risk factors of a project.

Glazer, Hillel, Jeff Dalton, David Anderson, Mike Konrad, and Sandy Shrum. 2008.
CMMI or agile: Why not embrace both! Software Engineer ing Institute at Carnegie Mellon,
November , h t tp : / /www.se i . cmu.edu/pub/documents /08 . repoi t s /08 tn003 .pdf .

This whi te paper presents the opinion that C M M I best practices and agile me thod-
ologies are not at odds wi th one another and that the approaches can be successfully
combined.

McMichael , Bill, and Marc Lombardi. 2007. ISO 9001 and agile development. In Proceed-
ings of the Agile 2007 Conference, ed. Jutta Eckstein, Frank Maurer, Rache l Davies, Grigori
Melnik, and Gary Pollice, 262—265. IEEE Compu te r Society.

This short experience report provides specific advice on h o w Primavera added ISO
9001 to its existing Scrum process.

Paulk, Mark. 2001. Extreme programming from a C M M perspective. IEEE Software,
November , 19—26.

This 2001 article is a bit dated, as it compares Extreme Programming to the n o w -
replaced C M M . However, as it is by the lead author of the C M M , his opinions are
still well wor th reading.

http://www.sei.cmu.edu/pub/documents/08.repoits/08tn003.pdf

Addit ional Reading 403

Sliger, Michele. 2006. Bridging the gap: Agile projects in the waterfall enterprise. Better
Software, July/August , 26—31.

This article presents the view that agile and waterfall processes can coexist in organi-
zations. It provides specific advice for doing waterfall up front, at the end, or concur-
rent wi th an agile process.

Sutherland, Jeff, Carsten Ruseng Jakobsen, and Kent Johnson. 2007. Scrum and C M M I
level 5 :The magic pot ion for code warriors. In Proceedings of the Agile 2007 Conference, ed.
Jutta Eckstein, Frank Maurer, Rache l Davies, Grigori Melnik, and Gary Pollice,
272-278. IEEE Compu te r Society.

This report about a highly productive project presents the claim that the combination
of Scrum and C M M I is more powerful than either is alone, and includes guidelines
for mixing Scrum and C M M I .

Chapter

H u m a n R e s o u r c e s , Fac i l i t i es , a n d t h e P M O

To achieve long-term success with Scrum, the implications of becoming agile
must be transferred into other parts of the organization. When this is not done,
organizational gravity—those influences that formed the organization into what-
ever shape it existed in before the start of the transition—will kick in. I have seen
Scrum transitions stalled or completely stopped because they ignored the impact
of becoming agile on groups outside development. Doing so results in situations
like these:

• Human resources. Scrum teams start out doing extremely well until an-
nual review time comes around. Suddenly, everyone realizes they will
again be assessed, and receive raises, based entirely on individual perfor-
mance. The annual review might have one field for assessing whether
an individual plays well with others, but at the end of the day individual
contributions and heroics bring home the raises and promotions.

• The facilities group. It's much easier to be agile when the whole team
sits together. But when a facilities group makes that difficult, or when
it prevents teams from using wall space for burndown charts and other
important project data, teams become demoralized. It becomes harder to
continue the push toward becoming better at Scrum when it feels like
everyone is against you.

• The project management office (PMO). Without thinking about how its
project relates to an existing PMO, a Scrum team kicks off with a "damn
the paperwork and process" attitude. This creates an enemy out of the
PMO, a group that was already uneasy about the organization's initial,
tentative experiments with Scrum. The P M O responds by convincing
departmental management that Scrum is OK as long as it is supplemented
by a crushing set of documents and practices.

When Scrum is mistakenly viewed solely as a change within the development
group, the organizational gravity created by the departments outside of IT can
pull the development group right back where it started. In this chapter we look
at things you can do to help your organization's transition effort achieve sufficient
escape velocity to break free. In particular, we look at the impact of Scrum on the

434 Chapter 2 0 H u m a n Resources, Facil it ies, and the P M O

three groups mentioned—human resources, facilities, and the project manage-
ment office.

Human Resources
Many of the issues involving the H R group are the result of a change to shared
accountability. In The Wisdom of Teams, Katzenbach and Smith describe why this
is difficult.

Most organizations intrinsically prefer individual over group
(team) accountability. Job descriptions, compensation schemes,
career paths, and performance evaluations focus on individuals....
Our culture emphasizes individual accomplishments and makes
us uncomfortable trusting our career aspirations to outcomes
dependent on the performance of others.... Even the thought
of shifting emphasis from individual accountability to team ac-
countability makes us uneasy. (1993, 3-4)

As an example, consider the case of Chuck. When I told Chuck and his team-
mates that I wanted them to try pair programming for a few sprints, Chuck stood
up, said, "I 'm going to H R about this," and left the sprint retrospective. What was
he going to do? Have me fired? I wasn't even an employee, so I was totally con-
fused. The looks on the faces of the rest of the team showed they were equally
perplexed, but we continued the meeting.

Later that morning, and before I had a chance to talk to Chuck so I could un-
derstand his perspective, I got a call from Ursula, the company's human resources
director, asking me to come by her office. Our discussion was the first of a hand-
ful of nearly identical discussions I've had since then at other companies. Chuck
had gone to Ursula complaining that if the team instituted pair programming, he
would be unfairly penalized. Chuck, who was one of the better and more quality-
conscious programmers, explained to Ursula that his annual pay raises historically
had been above average because he had consistently written the best code in the
group. If pair programming were introduced, he said, his manager would be un-
able to adequately review him because it would be impossible to know which
code was Chuck's and which code was someone else's. As a result, Chuck argued,
his raises would be unfairly dragged down. Ursula bought the argument and told
me that I would not be allowed to have developers write code in pairs because it
would hide performance problems and result in unfair reviews.

Because of situations like this one and employees like Chuck, some of the
thorniest issues you'll encounter will be those related to human resources poli-
cies. Employees in that department can be either a significant help or a hindrance
with these problems. In this section we look at human resources issues you might

Human Resources 407

encounter involving reporting structures, periodic performance reviews, handling
performance problems, and determining career paths.

Reporting Structures
There is no one reporting structure that must be used to be successful with Scrum.
I have seen functional, project-oriented, and matrixed organizations each be suc-
cessful. A matrixed organization will be prone to more challenges, but that should
not be surprising to an organization that has chosen that structure for its other
benefits. So, although I won't argue strongly in favor of a specific type of organi-
zational structure, I will say that the organization should be as flat as possible. The
more layers there are between team members and the top of the company, the
more opportunities there are for dysfunctionality to creep in.

Reporting to the ScrumMaster
When discussing management layers, questions often arise about whether team
members can report to their ScrumMaster. Common advice is that this is a bad
idea. I 'm going to deviate from this common advice and say that I am not strongly
opposed to having team members report to their ScrumMaster. My view might
come from having been both a ScrumMaster and boss for years in small organiza-
tions in which we couldn't afford to separate those roles. Or it might be a result of
my hiring exceptional individuals who could fill both roles.

The usual objection is that a team member who reports to the ScrumMaster
will not speak freely during daily scrums. A developer will not, for example, men-
tion an impediment out of fear that the impediment will later be mentioned in
a performance review. Of course this is a risk. But it is easily mitigated by having
ScrumMasters who understand the implications of using voiced impediments as
ammunition. Further, there are some benefits to a team whose ScrumMaster is
also their boss, including that such a person is sometimes better able to remove
some types of impediments.

Are there some ScrumMasters to whom I would not want team members to
report? Absolutely. In fact, I prefer that team members report to functional man-
agers rather than to their ScrumMaster. However, in the pantheon of agile sins,
having team members report to their ScrumMaster is a minor one—if the right
ScrumMaster is in place.

Reporting to the Product Owner
Considering my willingness to allow the team members to report to their Scrum-
Master, you might be surprised to learn that I strongly advise against them re-
porting to their product owner. The difference is that in healthy teams there is a
natural tension between the product owner and the team. It is part of a product
owner's job to push for more features and faster delivery. A good team would

4 0 8 Chapter 2 0 H u m a n Resources, Facil it ies, and the P M O

always love to deliver more faster. But it also needs to sometimes push back against
a product owner's demands if it feels that doing so would harm the internal qual-
ity of the product. I find that when the team reports to their product owner, the
natural tension that should exist evaporates. It's one thing for team members to
sometimes resist a product owner's pressure for more; it's another for them to do
so when the product owner is also their boss.

For the same reasons, it would be unwise to have the ScrumMaster report to
the product owner. The ScrumMaster and product owner do not need to be peers
on the company's org chart, but they should treat each other as peers and partners
on the project.

Periodic Performance Reviews
Many people have called for organizations to abolish the annual merit rating sys-
tem. I've argued for this with various human resources groups but have only won
the argument in very small organizations, where the human resources director was
probably too busy to institute annual reviews anyway. So, rather than just advise
you to rail against a practice you probably can't eliminate, let's look at the impact
of periodic performance reviews on your Scrum teams and explore ways you can
minimize the negative impact and accentuate the positive.

Try to eliminate most individual factors from assessments. It is no surprise that
individuals will behave in accordance with what is valued during their perfor-
mance reviews. I 'm looking at an old review form right now It asks me to rate the
employee on "the degree to which the individual effectively manages tasks within
budget and timeline." How would you anticipate someone to behave in regard to
this factor if it were something he was rated poorly on the last time? Would the
person be responsive to coworker requests for assistance? Probably not. Individual
assessment factors lead to individual-focused behavior. We want instead to en-
courage people to do what is most beneficial for the team and product. In many
western cultures, eliminating all individual performance factors from reviews will
also meet resistance from many team members. In such situations, try instead per-
haps for a 50/50 split between individual and team factors.

Include teamwork factors. Most performance reviews have a section for the man-
ager to indicate whether the employee plays well with others. A useful review
needs to go beyond that to establish the teamwork focus we want. Consider the
case in which employees are assessed on whether each "effectively manages tasks
within budget and timeline." An initial improvement might be to change that to
"helps the team finish tasks within budget and timeline." But even this does not
go far enough because "helps the team finish" is still an individual measure. The

Human Resources 4 0 9

factor here should be "the team effectively manages its work within budget and
timeline," and everyone on the team should get the same rating.

" T e a m s m i g h t f u n c t i o n as a un i t , b u t t h e y are m a d e up o f i n d i v i d u a l s .
W h e n w e ask o n e o f t h e i n d i v i d u a l s o n m y t e a m t o h e l p , she a l w a y s
says , T o u g h luck. I ' m d o n e w i t h m y s t u f f , " a n d g o e s back t o s u r f i n g
t h e w e b . S o m e o n e e lse u s u a l l y s teps u p a n d d o e s w h a t e v e r needs t o
be d o n e . Bu t i t w o u l d be d e m o t i v a t i n g t o g e t t h e s a m e ra t i ng as she
g e t s . "

I 'm sure that w o u l d be demot iva t ing . S o m e o n e needs to talk to th is per-
son about the e f fec t her a t t i tude is having on the team. Ideally, the ful l
t e a m has the courage to do th is in a spr int re t rospect ive. If not, the Scrum-
Mas te r shou ld coach her about h o w her a t t i tude is a f fec t ing others. Ad-
dit ionally, s ince part of the rev iew wi l l a lmos t certainly be based on indi-
vidual pe r fo rmance factors , the re shou ld be amp le oppor tun i ty to include
th is pe r fo rmance p rob lem in the review.

Review performance much more often than annually. Employees and their man-
agers should meet as often as they can, of course, for informal discussions about
performance, expectations, and objectives. But, if you're going to do formal per-
formance appraisals at all, you need to do them much more often than once a year.
Although this is true even for non-agile organizations, it becomes critical when
using Scrum because Scrum projects move more quickly, and employees are learn-
ing new skills and ways of working, especially in the first year or two.

Solicit input into the review from a broad set of people. When you sit down to
write a periodic performance review, it is extremely unlikely that you know all
there is to know about the person's performance. So, solicit feedback from others,
and do so broadly. A functional manager should ask for comments from the em-
ployee's ScrumMaster, product owner, some team members, some peers in the
functional group, and some users or customers the person has worked with. I usu-
ally select a handful of contributors for each review and e-mail them asking that
they tell me what the employee could start doing, stop doing, or continue doing
that would improve his performance. I then look for common threads through the
responses and from them try to formulate actionable suggestions.

Educate and engage the human resources group. Many of the changes we've dis-
cussed require the participation or approval of your H R group. But, beyond that,
actively seek to educate them about what changes are afoot in the development
organization. If you're doing a half-day training session on Scrum, ask someone

410 Chapter 20 H u m a n Resources, Facilit ies, and the P M O

from H R to attend. Gabrielle Benefield did this while director of agile product
development at Yahoo!. The senior H R representative who attended her training
was so intrigued that the H R department began using Scrum to manage its own
project of updating the annual review process. Benefield describes the results.

Using Scrum, they completed the project on time, and it was
successful. They loved the rhythm of the iterations and meeting
frequently to keep up to date on progress as the team was distrib-
uted and interrupt-driven.

Removing Team Members
When I saw Derek walking toward me at the conference, I was thrilled. I had
first met him a year earlier when I taught a class at his company. I had been back
a handful of times, and I always enjoyed talking to him, but we hadn't talked in
three months. I thought this would be a good chance to catch up. As we said hello,
I could tell something was really bothering him, so we sat down to talk. Derek
told me that at his team's sprint review the week before, the team members had
decided to ask him to resign as their ScrumMaster and to leave the team. He had
done so and was looking around within his company to find another Scrum team
to join. But the shock of being asked to leave had not yet worn off.

Although rare, Derek's situation is not unheard of The question of whether
the team has the authority to remove someone from the team is a common topic.
Commonly referred to as "voting someone off the island," removing a team mem-
ber is not an action to be considered lightly. Before such measures are taken, efforts
should be made to address problems that lead some or all team members to feel
that they might be better off without one of their members.

A team alone should not have the right to remove someone from the team.
If we think back to Chapter 12, "Leading a Self-Organizing Team," you will recall
that self-organization does not occur in a vacuum. The right preconditions must
be in place for self-organization to occur. Individuals then self-organize with-
in boundaries established by the organization. This was referred to as the CDE
model, which says that for self-organization to occur there must be a container
that bounds the individuals, some differences among them, and transforming ex-
changes. Chapter 12 also made the point that leaders within the organization exert
influence on the self-organizing team by adjusting its containers, differences, and
exchanges. For example, over time and through attrition a team might have be-
come too homogeneous. An astute product owner, functional manager, or even
ScrumMaster might counter that by adding two new team members with radi-
cally different backgrounds, skills, decision-making styles, or so on.

H u m a n R e s o u r c e s 411

Doesn't it seem possible—likely even, in this example—that a team might
have a knee-jerk reaction and vote the new, nonconforming individuals off the
team, negating the work of the leader who deliberately added them? Ultimate
authority for team composition, therefore, must reside with the leadership of the
organization. Those leaders should listen, of course, when team members say they
think they'd be more productive without a member. But, team members should
not be allowed on their own to remove someone from the team.

Career Paths
Although some employees might be worried about being voted off the team,
others will be more worried about the next step in their careers. In most orga-
nizations, it has historically been easy to see one's career path. You developed a
reasonable level of technical proficiency, became a team leader over a small group
of similarly skilled individuals, then a manager, a senior manager, and so on. At
each level up that ladder, you lost a little technical proficiency but had more names
under yours on the org chart. The number of people reporting to you could be
directly correlated to your importance in the organization.

Wi th the flattening of the organizational chart brought about by Scrum and
the elimination of some roles or titles, many employees will wonder what their
new career path will be. They will want to know what type of work they'll be
doing down the road and how they (and everyone else) will know that their work
has become more valuable. After an organization adopts Scrum, a person's success
can no longer be measured by how many people report to him. It can, however,
be measured by how much responsibility the person is given. A new ScrumMaster
might, for example, be given responsibility for one small, perhaps mature, team.
After successfully handling that situation, this ScrumMaster might work with a
different team that has no Scrum experience and is on a more important project.
This might continue until our ScrumMaster is working with multiple teams, lead-
ing a ScrumMaster community of practice, and so on.

This same career path (success on one project leads to increased responsibility
on the next) applies to all roles on a Scrum team, including programmers, testers,
designers, and so on. Early in her career, a programmer might be assigned to a
team to do little more than code. Later, that programmer might be assigned to
another team because we want others to learn from her experience with high-
availability websites. Later again, she might be put on a particular team because her
problem-solving and interpersonal skills will be needed. Success leads to increased
responsibility.

This attitude is prevalent at SAS, a privately owned software development
company with over 4,000 employees. SAS has been in the top 20 of Fortune maga-
zine's Best Companies to Work For list every year the list has been published. An
article in the Harvard Business Review describes the motivational culture at SAS.

412 Chapter 2 0 H u m a n Resources, Facil it ies, and the P M O

SAS operates on the belief that invigorating mental work leads to
superior performance and, ultimately, better products. It does not
try to bribe workers with stock options; it has never offered them.
At SAS, the most fitting thanks for a job well done is an even
more challenging project. (Florida and Goodnight 2005, 126)

" B u t w a i t , if t e a m s a re s e l f - o r g a n i z i n g , h o w is r e s p o n s i b i l i t y f o r p r o b -
l e m s o l v i n g o r d e s i g n i n g a s y s t e m f o r h i g h a v a i l a b i l i t y g i v e n t o o n e
p e r s o n ? "

Responsib i l i ty isn' t g iven to one person; it remains w i t h the team. But
leaders can c o m m u n i c a t e their increased expec ta t ions of one t e a m m e m -
ber: " W e need you on th is t e a m because of your in terpersonal skills. W e
r e m e m b e r h o w you de fused that issue b e t w e e n Francois and J a m e s a
year ago, and w e m igh t have similar conf l ic ts on th is t e a m . " There is noth-
ing that impl ies that a leader's expecta t ions of s o m e o n e or reasons for
put t ing s o m e o n e on a t e a m m u s t remain a secret . They m igh t in an ex-
amp le such as th is one. But w h e n s o m e o n e is put on a t e a m because of
a part icular technical skill, there is no reason not to share that w i t h the ful l
t eam.

With People Involved, There Wil l Always Be People Issues
Because software development is an inherently human-intensive activity, there
will be people problems. It's impossible to identify all of them in advance. Those
covered here are the ones you are most likely to encounter. Other personnel prob-
lems that arise can hopefully be tackled by adhering to the same principles under-
lying the actions proposed for the obstacles in this section.

• M e e t w i t h s o m e o n e in your human resources or personnel depart-
ment . Br ief ly explain w h a t Sc rum is and w h y your depa r tmen t or
t e a m is adopt ing it. Explain the conf l ic ts you fo resee w i t h ex is t ing
personnel pol icies. A s k if th is person can ant ic ipate any others. Ask
for help in mi t igat ing these si tuat ions.

THINGSTO
TRY NOW

Facilities
Any team that has tried to do Scrum in an inappropriate workspace knows how
difficult it can be. An ideal workspace will support team members as they learn to
work in an agile manner. Unfortunately, there are many less-than-ideal workspaces

Faci l i t ies 4 1 3

that actually impede a team's efforts. In fact, a team's physical workspace can have
so much influence on how it works that Gerald Weinberg has asked, " W h o is the
most important process person? The one who arranges the furniture" (Dinwiddie
2007,208).

A team's physical environment can have so much influence on how agile the
team can become that in the second edition of Extreme Programming Explained,
Kent Beck and Cynthia Andres elevated an "Informative Workspace" to the level
of a primary practice (2004). Given the influence that a team's physical environ-
ment can have on its ability to be agile, in this section we will consider two aspects
of that environment: the physical space and the furniture in the space.

The Space
The traditional high-tech office with six-foot (nearly two meter) high cubicle
walls is a definite impediment to collaboration. The most common replacement
for it among teams that have had input into designing their workspaces is what
commercial interior designers call "caves and commons."This approach combines
small, quiet places (caves) with common areas.

A typical pre-Scrum caves-and-commons approach might have included a
dedicated cubicle for each employee and a central area containing perhaps a pair
of couches, a white board, and a bookshelf. The idea was that employees would
meet in the commons area for spontaneous discussions. W h e n given the chance,
Scrum teams take this idea but shift the ratio of caves to common space far in favor
of common space. A Scrum caves-and-commons workspace will typically forgo
the cubicles altogether and feature a large common work area surrounded by a
couple of small offices or meeting rooms that can be used by anyone.

The Scrum teams at 3M had this to say about their switch to an open work
environment: "We have found an open area wonderful in encouraging impromptu
collaboration. Team members can quickly see if other team members are avail-
able." The collaborative spirit and energy inherent in an open area, they say, has
energized the team. They conclude: "Designing a team room focused on collabo-
ration has been beneficial to implementing a Scrum work environment and has
improved the focus and cohesiveness of the team" (Moore et al. 2007, 176).

A further benefit to this type of open work environment is the ease with
which the layout of the area can be changed. As the people on the team are learn-
ing how best to work with one another, they often experiment with different
arrangements in the space. Additionally, as teams change size, it is beneficial to
have the flexibility to reconfigure an open workspace to better accommodate the
needs of the team.

414 Chapter 2 0 H u m a n Resources, Facil it ies, and the P M O

" I d o n ' t w a n t t o w o r k in a s h a r e d space . It's t o o n o i s y ; I n e e d q u i e t t o
c o n c e n t r a t e . "

There are indeed t i m e s on a so f twa re project w h e r e abso lu te qu iet and
pure concent ra t ion is needed. There are more t i m e s w h e r e col laborat ion,
d iscussion, and shared k n o w l e d g e and unders tand ing are crucial. W h e n
s o m e o n e really does need quiet , ret reat ing into a cave should be an op-
t ion respec ted by the team. Al ternat ively, a l though headphones shou ld
general ly be f r o w n e d upon, they can be an acceptab le opt ion if used spar-
ingly and only w h e n abso lu te concent ra t ion is needed.

Fortunately, m o s t people f ind that the benef i ts of mo re f requen t interac-
t ion w i t h their t e a m m a t e s o u t w e i g h s an increase in noise. This w a s the
exper ience of Syed Rayhan and N imat Haque.

Surprisingly, the t e a m l iked the open space concep t f r o m the
beginning. W e did not have any [t rouble] conv inc ing t h e m .
S o m e of t h e m though w e r e apprehens ive w h e t h e r they w o u l d
be able to concent ra te on their tasks due to c lose prox imi ty and
ove rcommun ica t i on . However , they f ound that the interact ion
actual ly he lped t h e m resolve issues faster and a l l owed t h e m
to learn f r o m each other. N o w they agree that the cubic les are
coun te rp roduc t i ve and they w o u l d not w a n t to have it any oth-
er way. (2008, 354)

The War Room Becomes the Whole Space
Before adopting Scrum, many teams used to lust after a "war room," which was a
conference room the team was given permission to occupy and use for all of its
meetings. A dedicated war room becomes less necessary for a Scrum team because
its entire open workspace becomes the war room. Daily scrums and other meet-
ings are often held in the openness of the team's space rather than in a conference
room.

One benefit of the traditional war room was that it provided a convenient
place for unscheduled meetings to occur. Four team members who suddenly de-
cide to have an extended discussion about an issue could simply walk into the
war room without scheduling a meeting on a shared calendar. Because the room
belonged to the team, it would almost certainly be available when needed. Scrum
teams still require a place for spontaneous meetings. But while this is sometimes
still a small conference room dedicated to a team (or shared among a small num-
ber of Scrum teams), it is just as often a small table situated in the middle of the
team's open workspace. Whether impromptu meeting space is behind a door or in

Facilit ies 415

the shared space depends largely on the team's preference for hearing all discus-
sions (and being able to opt into or out of them) versus moving lengthy discus-
sions behind a door to keep the space a bit more quiet.

If you are going to take on the work of reconfiguring space to create a large,
open area, make sure to include enough room for everyone on the team, including
the ScrumMaster and ideally even the product owner. There is nothing worse than
collocating all but a handful of team members. Having the designers, for example,
sit apart from others will cause resentment. Worse, while team members sitting
together bond because of their proximity, those sitting apart will begin to feel like
outsiders on their own project.

This is not to say that an entire 100-person project, comprising perhaps a
dozen teams, must sit in one extremely large open space. For large projects, the
most common, successful approach is to create multiple open areas that can each
comfortably house 20 or so people. Three or four teams who are working to-
gether can then share such an area. When doing this, be careful to have people
sit with their Scrum development teams rather than with their functional teams.
Avoid, for example, having all the programmers in the company sit together in a
different part of the building than the testers.

Executive Sponsorship Is Helpful
It is, of course, the ScrumMaster's job to remove any impediments to productivity.
And a workspace that hinders communication and teamwork is a definite impedi-
ment. However, a ScrumMaster will often need help from the Enterprise Transi-
tion Community or an executive in making improvements to the workspace.
Scrum trainer Gabrielle Benefield found this to be the case when she led Yahoo!'s
transition to Scrum.

An executive sponsor is pretty critical in working with Facilities,
as they tend to be very set in their own process and bureaucracy
and have a lot of power. You get told no a lot; you just need
to keep chipping away and seeing what you can get away with.
Some teams were more proactive and simply removed furniture
themselves (against company policy) and sometimes got away
with it, sometimes not.This is where you need an upper manager
to help remove these impediments, as it can be difficult for team
members to do this and not jeopardize their jobs. When you get
told no you need to find out the real reason behind the answer.
Sometimes it's financial, in which case, see if there's a cheaper
approach or if you can secure funding some other way. If it's a
fire policy, this is pretty much impossible to change. If it's time or
resources, see if you can do it yourselves.

4 1 6 Chapter 2 0 H u m a n Resources, Facil it ies, and the P M O

" I d o n ' t w a n t t o g i v e up m y c u b i c l e , e s p e c i a l l y n o w t h a t I ' ve b e e n he re
l o n g e n o u g h t o h a v e a p r e m i u m s p o t w i t h a w i n d o w . "

A c o m m o n chal lenge w h e n t rans i t ion ing to Scrum is that those w h o have
bene f i t ted f r o m doing tradit ional so f twa re deve lopmen t o f ten have to g ive
up the mos t . Those w h o have earned nice big t i t les b e c o m e s imply " t e a m
m e m b e r s . " Those w i t h cub ic les—or w o r s e yet , o f f i c e s — w i t h nice big w in -
d o w s have to m o v e into a shared, c o m m o n workspace . In many cases,
fancy t i t les and more desirable cubic les have b e c o m e s ta tus symbo ls
w i t h i n t he organizat ion. A n d those w i t h t h e m are unders tandably reluc-
tant to give t h e m up.

S o m e t i m e s an appeal that " w e ' r e do ing th is for the c o m m o n g o o d " w i l l
wo rk . Other t imes , a bet ter approach is to agree that life isn ' t fair, but that
if the t ransi t ion to Scrum is successfu l , the organizat ion wi l l be more suc-
cessfu l , w h i c h wi l l prov ide everyone w i t h bet ter oppor tun i t ies , such as
more chal lenging and in terest ing projects.

The Furniture
Some teams get very creative with their furniture and are fortunate to be given
the budget to go with big ideas. A common approach for teams in this situation
is to combine movable desks with a large open workspace. This allows teams to
form workspaces in whatever arrangements they see fit. Some teams will prefer
to sit facing each other across two-deep desks. Other teams find it unsettling to
look at someone else's face all day and prefer to arrange desks with team members'
backs to one another. Beyond providing the ultimate in ad hoc reconfigurability,
movable desks send a powerful message to the team: it literally reinforces the idea
that they are to organize themselves—and their workspace—to best develop the
product or system they have been asked to produce.

Probably more important than movable desks is the shape and width of the
work surfaces. Most good Scrum teams will eventually incorporate some amount
of pair programming (or, more generally, pairing of any two team members). Even
if they choose to pair on only the most critical tasks, the process can be made
much more feasible with an appropriate work surface. Small or curved work sur-
faces make it difficult for two people to work side-by-side at the same monitor.
The problem is made worse when only one person can put his or her legs under
the desk.

Sweating the Small Stuff
Attention must be paid even to items much smaller than desks. Phones are a com-
mon source of problems. Although it might be easy for a team member to roll a

Facil it ies 417

desk from one location to another or to pack and unpack a desk, changing where
the phone rings always seems far harder than it should be. Some companies try to
get around this with VoIP phones. But the teams that I've talked to that have tried
this generally report having many of the same problems.

John Cornell, director of agile development at Kofax, experienced an entirely
different problem with phones when introducing an open workspace.

The initial plans for the first open space called for office phones
that would be shared amongst team members, replacing the in-
dividual phones that each person previously had in their cubes.
Management did not think this would be an issue as everyone
has mobile phone these days and the vast majority of technical
staff do not receive business-related calls. The staff strongly felt
otherwise. They saw the office phones as critical. Once again, the
team members felt that management was inhibiting their ability
to be productive.

I 'm confident that some of those developers did not have landlines at home
and relied entirely on their mobile phones from there. But, I also suspect that
some of the team members would have felt like second-class citizens without their
phones. Although this was certainly not the message that management intended to
send the team, it is easy to see how it would be interpreted that way.

Where Everyone Sits
Where people sit within a shared, open workspace is usually less critical than it is
when everyone works in a cubicle. With fewer cubicle walls, everyone can enjoy
the view. Frequent pairing keeps people from sitting in the same place all day. And
the ability to move from one part of the open space to another (even without
movable desks) decreases the sense of permanence.

As the protector of the team, the ScrumMaster often sits closest to the main
entry into the team area. Agile coach George Dinwiddie recalls one team where
the team's manager/ScrumMaster acted as a watchdog for the team. One of the
developers referred to it as the manager's "Doberman impression," so called "be-
cause he'd abruptly interrupt his work to halt and interrogate anyone entering
the room" (2007,208). If the manager could provide the needed information, he
did so, and the team was protected from an interruption. If not, and the need was
genuine, the visitor was granted access to the team's area.

Items That Should Be Visible in Your Workspace
Now that we've considered both the space and furniture of a good Scrum work-
space, this section contains a checklist of things that should be visible within the
ideal agile workspace.

4 1 8 Chapter 2 0 H u m a n Resources, Facil it ies, and the P M O

• Big, Visible Charts. A good Scrum team will fill its workspace with a
variety of big, visible charts. One of the most common is the sprint burn-
down chart, showing the number of hours remaining as of each day of
the current sprint. Charts like these provide a strong visual reminder of
the current state of the project.What is shown on these charts will get the
attention of team members, so consider varying the information to show-
case what is most important for that sprint. Ron Jeffries suggests a variety
of charts, including ones that show the number of passing customer ac-
ceptance tests, the pass/fail status of tests by day, sprint and release burn-
down charts, number of new stories introduced to the product backlog
per sprint, and more (2004a).

• Additional feedback devices. In addition to big, visible charts, it is com-
mon for a Scrum team to use additional visual feedback devices in their
workspace. One of the most common is a lava lamp that is turned on
whenever the automated build is broken. I've also worked with teams that
use flashing red traffic lights to indicate exceptional conditions, such as
an issue on a production server. LED signs can be programmed to display
messages from Twitter. Also popular are ambient orbs and Nabaztag rab-
bits, which are wireless programmable devices that can also be configured
to change colors, speak messages, or wiggle their ears as a team desires.
Software architect Johannes Brodwall exhibits the agile preference for
simple solutions and recommends using USB-connected devices, such as
those from Delcom, which he has used to monitor testing, staging, and
production servers (2008). Devices like these make a workspace more
lively, unobtrusively bringing into it information the team might find
helpful.

• Everyone on your team. Each person on the team should ideally be able to
see every other person on the team. This absolutely includes the Scrum-
Master and ideally includes the product owner. I do understand, however,
that product owners often have responsibilities to other groups outside
the development team and so might sit near them instead. Still, in an
ideal world the product owner would be visible to everyone in the team
workspace.

• The sprint backlog. One of the best ways to ensure that everything neces-
sary is completed in the sprint is to make the sprint backlog visible. The
best way to do that is by displaying the sprint backlog on a wall, ideally in
the form of a task board. A task board is usually oriented in rows and
columns, with each row containing a particular user story and one index
card or sticky note for each task involved in that story. An example can be
seen in Figure 20.1. Task cards are organized in columns, minimally

Facil it ies 419

including To Do, In Process, and Done.1 Task boards allow team members
to see at a glance how work is progressing and all the work left to be done.

S + o r j j

As a user,
I want...

& points

As a user,
I want...

5 points

To Po

Oode the...

9

Oode th

Oode the...

PeSiqn a...
•he...

Test the...

Oode the...

Oode the...

Oode the

Test the...
&

T

lu FrooeÇÇ

Oode the...
MO 4

Test the...
SO 3

Oode the...
PO 3

P o n e

Test the...
MO &

Test the...
SO 4

Test the...
so e

FIGURE 20.1
A t a s k b o a r d m a k e s
t h e s p r i n t b a c k l o g
h i g h l y v i s i b l e .

• The product backlog. One problem with running an endless series of
sprints is that each can feel disconnected or isolated from the whole of a
planned released or related set of new capabilities. A good way to reduce
the impact of this problem is by displaying the product backlog some-
where clearly visible. This can be as simple as keeping the shoebox full of
user-story index cards on a table in the middle of the team's space. Even
better, tack the index cards of upcoming user stories on a wall where all
can see them. This allows team members to see how the user stories they
are working on in the current sprint relate to others that are coming soon.

• At least one big whiteboard. Every team needs at least one big white-
board. Locating this in the team's common workspace encourages spon-
taneous meetings. One developer might start using the board to think
through a problem; others might notice and offer to help.

• Someplace quiet and private. As important as open communication is,
there are times when someone needs some peace and quiet. Sometimes
this is for something as simple as a private phone call. Other times it can
be to think through a particularly challenging problem without being
interrupted.

1 For photos of various task boards, see ht tp: / /www.succeedingwithagi le .com.

http://www.succeedingwithagile.com

4 2 0 Chapter 2 0 H u m a n Resources, Facil it ies, and the P M O

THINGSTO
TRY NOW

• Food and drink. It's always a good idea to have food and drink available.
These don't need to be fancy, and they don't even need to be provided
by the organization. I've worked with plenty of teams that buy a small
under-desk refrigerator and share the expense of buying water bottles or
soda for it. Other teams buy a coffee machine. Some teams rotate bring-
ing in snacks, both healthful and not.

• A window. Windows are often a scarce commodity and are doled out to
an organization's favored employees. One of the nice things about an
open workspace is that windows are shared. Even if the view is of the
parking lot and can only be seen across three messy desks, it's nice to be
able to see the window and some natural light.

• Make a prior i t ized list of th ings about the t eam 's physical wo rk -
space that could be a f fec t ing its product iv i ty. Solicit suppor t f r o m
your Enterpr ise Transit ion Commun i t y . See if s o m e o n e f r o m that
group wi l l go talk to the faci l i t ies group w i t h you.

• If there are th ings you can do to improve your team 's w o r k s p a c e
w i t h o u t seek ing permiss ion f i rst , do t hem. Be careful to avoid
b lock ing f i re lanes or v io lat ing other laws, but o f ten an act- then-ask
approach resul ts in at least a f e w improvemen ts .

SEE ALSO
T h e role of t h e p ro jec t
m a n a g e r w a s ad-
d ressed in Chap te r 8,
" C h a n g e d Ro les . "

The Project Management Office
A project management office (PMO) that is engaged in and supportive of transi-
tioning to Scrum can be a tremendous boon. Members of the P M O often view
themselves as protectors and supporters of a practice, so a PMO can help imple-
ment and spread agile practices across the organization. However, when the P M O
is not properly involved, it can be a source of resistance as it tries to defend the
current process, rather than improve it.

One of the reasons why the natural response of most people in the P M O is
to resist the change to Scrum is that much of it is personally and professionally
frightening. Scrum scatters traditional project management responsibilities among
the ScrumMaster, product owner, and the team, leaving project managers to won-
der what their role is. The absence of the P M O in most Scrum and agile literature
adds to the natural concerns of P M O members.

In this section, we will ease those fears by looking at the type of work per-
formed by PMOs in organizations that have successfully transitioned to Scrum.
We will look at the contributions and work of the P M O in three areas: people,
projects, and process.

The Project M a n a g e m e n t Of f i ce 4 2 1

People
Although it's called the Project Management Office, the P M O has tremendous
influence on the people involved in a Scrum transition. An agile P M O should do
the following:

• Develop a training program. There is much to adopting Scrum that will
be new and unfamiliar to many team members. The P M O can be a tre-
mendous aid in putting together a training program, selecting outside
trainers to deliver the training, or delivering the training themselves.

• Provide coaching. Beyond training people, individual and small-group
coaching is incredibly helpful. In a training class, the instructor says,
"Here's how to do a sprint planning meeting," for example, and perhaps
runs the class through an exercise to practice it. With coaching, someone
with deep experience sits with the team and helps them through their
own real sprint planning meeting (or whatever skill is being coached).
Early on, members of the P M O might not have these skills themselves,
but they should focus on acquiring them from outside coaches and then
do the hands-on coaching themselves.

• Select and train coaches. A successful Scrum initiative will eventually
lead to more coaching needs than the P M O can fill on its own.The P M O
should identify and develop coaches by watching the teams they help and
then providing training or assistance to help selected individuals become
skilled coaches. These coaches usually retain their current jobs but are
given additional responsibilities, such as spending up to five hours per
week helping a specific team.

• Challenge existing behaviors. When the organization begins to adopt
Scrum, the members of the P M O look for teams who are falling back
into old habits or whose old habits are preventing them from becoming
agile. Later, members of the P M O can remind teams that Scrum is about
continuous improvement and can help prevent the onset of complacency.

SEE ALSO
Coaches , s u c h as de-
sc r ibed here, can play
a v i ta l role in spread-
ing Sc rum. For o n e
w a y to use t h e m , s e e
" I n te rna l C o a c h i n g " in
Chap te r 3, " P a t t e r n s f o r
A d o p t i n g S c r u m . "

Projects
Although some project-oriented responsibilities go away with the change to an
agile PMO, some responsibilities remain, including the following:

• Assist with reporting. In most organizations large enough to have a PMO,
there is usually something like a weekly report or meeting on the status
of each project with the department head. If this is a meeting, it should
be attended by appropriate project personnel, such as the product owner
or ScrumMaster. But if it is a weekly standardized status report, the P M O
can assist in preparing the report.

422 Chapter 2 0 H u m a n Resources, Facil it ies, and the P M O

• Assist with compliance needs. Many projects need to comply with stan-
SEEALSO . b \

dards (ISO 9001, Sarbanes-Oxley, and so on) or with organization-specific
C o m p l i a n c e w a s . . .
d i s cussed In Chap te r 19, rules, such as those for data security. An agile P M O can assist teams by
" C o e x i s t i n g w i t h O t h e r making them aware of such needs, advising them on how to comply, and
A p p r o a c h e s "

: serving as a central clearinghouse for tips and shared knowledge on com-
pliance and similar matters.

• Manage the inflow of new projects. One of the most important things
an agile P M O can do is assist in managing the rate at which new proj-
ects flow into the development organization. As described in Chapter 10,
"Team Structure," it is important to limit work to capacity. Otherwise
work piles up, leading to a litany of problems. For each project completed,
a new project of the same size can be started. The agile PMO can serve as
gatekeeper and help the organization resist the temptation to start proj-
ects too quickly.

SEE ALSO
A var ie ty of m e t r i c s
and app roaches fo r
assess ing p rog ress
t o w a r d b e c o m i n g agi le
are d i s cussed In Chap-
te r 21 , " S e e i n g H o w Far
You ' ve C o m e . "

Process
As keepers of the process, members of the P M O will find themselves working
closely with the organization's ScrumMasters to make sure Scrum is implemented
as well as it can be. These process-related activities include the following:

• Provide and maintain tools. In general, tool decisions should be left to
individual teams whenever possible. When not, a community of practice
might decide that there are sufficient benefits to choosing one tool for
all projects. As a last resort, tool decisions might sometimes be made by
the PMO, although this should be extremely rare. But the agile P M O
can assist teams by acquiring the appropriate tools and performing any
configuration or customization necessary.

• Assist in establishing and collecting metrics. As it did before becoming
agile, the PMO can identify and collect metrics. Scrum teams are even
more leery of metrics programs than traditional teams, so this is an area
where the P M O should proceed cautiously. One thing an agile P M O
should collect is information on how well teams are doing at delivering
value.

• Reduce waste. The P M O should aggressively help the team eliminate
all wasteful activities and artifacts from its process. An agile P M O should
avoid introducing documents, meetings, approvals, and so on unless ab-
solutely necessary. It should also help teams look for things that they are
doing that might not be adding value.

• Help establish and support communities of practice. One of the most im-
portant things an agile P M O can do is to help encourage the formation
of communities of practice and then support them after they begin. Not

The Project M a n a g e m e n t Of f i ce 4 2 3

only do communities of practice help Scrum spread through the orga-
nization, they also help spread any good idea from one team to another.

• Create an appropriate amount of consistency across teams. Most teams,
especially Scrum ones, bristle at the thought of consistency enforced
through dictate. The best type of consistency across teams comes from
most or all teams agreeing that a particular practice is a good idea.The ag-
ile P M O facilitates this by making sure good ideas spread rapidly among
teams. Two practices they can use for this are communities of practice and
shared coaches.

• Coordinate teams. Because they work with individuals from many differ-
ent teams, P M O members are vital in coordinating the work of separate
teams. Someone from the P M O will often be the first to notice when the
work of two teams starts to diverge or overlap. PMO members can pro-
vide value to teams by alerting teams to these situations when they occur.

• Model the use of Scrum. Through their intensive exposure to Scrum,
most agile PMOs quickly realize its usefulness as a general-purpose proj-
ect management framework. At that point, many choose to use Scrum
itself to run the PMO. They plan monthly sprints, conduct daily scrums,
and so on just like any other team.

• Work with other groups. The P M O can be a great assistance to teams in
working with other groups, especially human resources and facilities, as
already described in this chapter.

Renaming the PMO
Many PMOs choose to rename themselves to better match their revised role.
There is no one standard name, but I've heard these most frequently:

• Scrum Center of Excellence

• Scrum Competence Center

• Scrum Office

• Development Support

In Chapter 2,"ADAPTing to Scrum," I cautioned against naming the effort to
adopt Scrum. Many people have become cynical and suspicious of name changes
and of well-crafted names. That cynicism will be directed at the P M O if it is re-
named but remains otherwise unchanged. So, whatever it's called—PMO, Scrum
Center of Excellence, or so on—to succeed with Scrum, the P M O that supported
the organization's sequential development process will need to change more than
just its name. But as this section has pointed out, there is a great deal an agile P M O
can bring to the organization.

424 Chapter 2 0 H u m a n Resources, Facil it ies, and the P M O

The Bottom Line
You can ignore the implications of Scrum on these groups and be successful—for
awhile. Eventually, though, you will need to engage with these groups to create a
successful, long-term transition. It is almost farcical to think of adopting a process
founded on a preference for "individuals and interactions over process and tools"
without engaging the human resources department. In the typical organization,
this group might have even more influence on how people perceive their jobs and
act in them than do those individuals' functional managers.

Similarly, the physical environment in which we work has a direct influence
on us. Consider the conflicting messages sent when a company proclaims "peo-
ple are our greatest asset" while the facilities group prohibits hanging burndown
charts on the walls. The real message is loud and clear: "The walls are a greater
asset."

A P M O often has tremendous political clout and project experience. By get-
ting this part of the organization on board with Scrum, not only do you avoid a
possible source of resistance, you also benefit from their experience. Members of
the P M O become guardians of self-organization, continuous improvement, own-
ership, communication, experimentation, collaboration, and other values.

It's easy to view human resources, facilities, and the project management of-
fice as obstacles to be overcome. A more productive approach is to view each as
an ally to be enlisted. Though an adversarial relationship might work for a while,
long-term success requires the support of the entire organization. The road to
becoming agile can be a long one; when you can, choose to make friends, rather
than enemies.

Additional Reading
Cockburn , Alistair. 2006. Agile software development: The cooperative game. 2nd ed. Addison-
Wesley Professional.

In this Jolt Award-winning book, Cockburn covers a wide variety of topics, but
Chapter 3, "Communicat ing, Cooperat ing Teams," is essential reading. This chapter
includes wonderful information on the impact of the physical environment on the
project team. This chapter from the first edition is available online atwww.informit.
com/articles/article.aspx?p=24486. D o yourself a favor, though, and pick up the
entire book.

Jeffries, R o n . 2004. Big visible charts. XP, Oc tober 20 .h t tp : / /www.xprogramming .com/
xpmag/Big VisibleCharts.htm.

An excellent description of some of the big, visible charts that should be found in an
agile team's workspace.

http://www.informit
http://www.xprogramming.com/

Addit ional Reading 425

Nickols, Fred. 1997. Don ' t redesign your company's performance appraisal system, scrap
it! Corporate University Review, May—June.

There are many great references about the evils of periodic performance reviews. This
is a good starting point because of its brevity and the strength of the arguments.

SefFernick,Thomas R . 2007. Enabling agile in a large organization: O u r journey down
the yellow brick road. In Proceedings of the Agile 2007 Conference, ed. Jutta Eckstein, Frank
Maurer, Rache l Davies, Grigori Melnik, and Gary Pollice, 200—206. IEEE Compu te r
Society.

SefFernick describes the successful transition to an agile P M O at KeyCorp, a large
financial institution with 1,500 people in its development organization. Included is
h o w the pre-agile P M O was stripped to a core set of members, wi th others re turn-
ing to the development teams, and h o w the P M O reinvented itself as the Software
Development Support Center.

Tengshe, Ash, and Scott Noble. 2007. Establishing the agile P M O : Managing variability
across projects and portfolios. In Proceedings of the Agile 2007 Conference, ed. Jutta Eck-
stein, Frank Maurer, Rachel Davies, Grigori Melnik, and Gary Pollice, 188—193. IEEE
Compu te r Society.

Tengshe and Noble established the agile project management office at Capital O n e
Auto Finance. This paper describes their experience doing so and provides good
advice for transitioning a P M O from traditional to agile.

PART V
N e x t S teps

When you have completed 95 percent of your journey,
you are only halfway there.

—-Japanese proverb

Chapter

S e e i n g H o w Far Y o u ' v e C o m e

oon after beginning your effort to adopt Scrum, someone will ask, " H o w are
we doing?" This is not a question with a simple answer like, "We're doing great."
Similarly and fortunately, you cannot distill your answer down to, "We're Scrum
level three." Adopting Scrum is a complex process, and answering how you're
doing at it will require a complex answer. Fortunately, many early-adopter com-
panies have experimented with ways of doing this, and a handful of suitable ap-
proaches have been documented and are available.

In the following sections, we look at various ways of measuring how far
you've come. We start by looking at three general-purpose agility assessments that
have been used by multiple companies. Next we look at how you might tailor
one of these assessments. We wrap up with a look at the importance of viewing a
Scrum adoption from a balanced perspective and show a scorecard for doing just
that.

The Purpose of Measuring
Before diving into the topic of what to measure, let's consider why we mea-
sure something. Ask most people what the purpose of measuring is, and they
will probably say that it is to determine how big, how heavy, how long, or how
much of something there is. This is an overly ambitious definition of measuring.
The real purpose of measuring is to reduce uncertainty. A measurement does not
need to be exact for it to help in reducing uncertainty. As an example, consider
the soup I had for lunch today. I was at an unfamiliar restaurant, and the tomato
basil soup was appealing. I asked the waitress how big the cup and bowl were so
I could decide between them. Rather than say something like "five ounces and
eight ounces," she used her hands to show me the approximate size of each. That
reduced enough of my uncertainty, and I ordered the bowl.

This is an important point because discussions of software metrics often bog
down in pursuit of perfection. We don't need perfect measurements. We need
measurements that help us answer questions. The most common questions around
the success of a Scrum adoption are ones like these:

4 3 0 Chapter 21 Seeing H o w Far You 've C o m e

Has our investment in adopting Scrum been worthwhile?

What should we focus on improving next?

Should we continue with Scrum?

Are we better at software development than we were a year ago?

Are we producing better products?

Do our products have fewer defects?

Are we faster than we used to be?

THINGSTO
TRY NOW

• Talk to t e a m s that have already s tar ted adopt ing Scrum and f ind ou t
w h a t met r i cs t hey have col lected. A lso, ask t h e m w h i c h met r i cs
they w i s h t h e y ' d col lected.

• Before ini t iat ing your o w n met r i cs program, make a list of the ques-
t ions you are t ry ing to answer .

SEE ALSO
W e w i l l s e e s o m e
e x a m p l e s of m e a s u r i n g
t h i n g s s u c h as S c r u m
impac t on qual i ty in t he
sec t i on " A Ba lanced
Scorecard fo r S c r u m
T e a m s " later in th i s
chapter .

General-Purpose Agility Assessments
Many of these questions can be answered directly. For example, to determine
whether our products have fewer defects after adopting Scrum, you could com-
pare the number of customer-reported defects reported in the first 90 days after
release to data collected on past, pre-Scrum projects. You might even normalize
the data for number of lines of code, person-months invested in the project, or
number of users. Sometimes, though, what we're interested in is the more esoteric
question: How agile are we?

I understand the arguments that say we shouldn't care how agile we are; we
should care only if we are producing better products more quickly and at a lower
cost, so what we should really measure is how well the development organiza-
tion achieves those goals. At one level, I'd like to say that the best way to see if the
development organization did a better job this year than last is to see if products
it developed accounted for more revenue. There are many problems with this ap-
proach, however. For example, there can be a long lag between when the develop-
ment organization improves and when revenue increases as a result. Additionally,
external factors, such as a recession or shift in demand for the company's products,
can overwhelm the effect of improvements by the developers. Or changes in how
the organization's sales staff are compensated could shift their attention toward
other products.

Clearly, looking at metrics such as the revenue generated for a product tells
us something about the overall product development process, but it is ultimately
unsatisfying at answering questions about how well a software development team
did. To address this we can use proxy metrics, which are generally leading indica-
tors that stand in for other measures that are too expensive to collect, jumble too

General-Purpose Agi l i ty A s s e s s m e n t s 4 3 1

many factors together, or can only be collected too late to be of use. How agile a
team or organization has become is a useful proxy metric.

To see why, suppose we looked at your project team last year and are looking
at it again now. Through some form of assessment, we find that the team has be-
come better at working within sprints. Perhaps it is better able to plan how much
work fits within a sprint. Perhaps team members work more closely with one
another during the sprint. Perhaps sprints more consistently produce potentially
shippable product increments. Whatever it is, your team is better at sprinting than
it was a year ago. Does this mean your team is producing better products more
quickly and cheaply? No. But it is indicative that it might be. When we measure
to see how agile a team is, we are looking to see if the team is improving in ways
that we can predict should lead to improvements in what we truly desire—better
business results. But we use the proxy measure of "how agile is the team" because
it can be measured well in advance of business results and because it allows us to
focus on just one factor of business success—the development team.

Let's take a look at three general-purpose approaches to measuring how agile
a team is.

Shodan Adherence Survey
One of the earliest assessment approaches and one that continues to have merit
is Bill Krebs' Shodan1 Adherence Survey (Williams, Layman, and Krebs 2004).
Krebs' approach is a self-administered survey of 15 questions, which cover the
spectrum of the Extreme Programming practices. An example question is shown
in Table 21.1. As you can see, each question includes a brief description and a list
of facts that would be true of a team fully following the practice. Questions were
answered on a scale from 0 ("disagree with using this practice") to 10 ("fanatical
about this practice").

The Shodan Adherence Survey results in a number from 0 to 100% that in-
dicates how strongly the 15 practices are followed. This final score is determined
by combining the respondents' answers with Krebs' fixed weighting of the impor-
tance of each practice area. Daily scrums contribute the least to the final score (less
than 1%), while pair programming contributes the most (at 12.5%).

Using the Shodan Adherence Survey
This 15-question survey is short enough that it could be completed at the con-
clusion of every sprint. My opinion is that this is too frequent. We want to use
the survey to look for trends and to find areas in which we need to improve.
These become harder to detect when the survey is given too frequently. Another

1 Shodan is Japanese for "first degree." It is commonly used in martial arts to refer to
someone w h o has earned the lowest black belt and by Go players to refer to a strong
amateur.

432 Chapter 21 See ing H o w Far You've C o m e

TABLE 21.1
A s a m p l e q u e s t i o n
f r o m t h e S h o d a n
A d h e r e n c e S u r v e y .

problem I've seen is teams who incorporate this survey into their sprint retro-
spectives in place of the more open-ended discussion that should be part of a
retrospective.

In my view, the correct use of a Shodan Adherence Survey involves having
all team members answer all questions perhaps every six months and certainly no
more often than every three months. This will allow meaningful comparisons to
be made between results from different times.

By periodically administering the Shodan Assessment Survey, an organization
can spot trends; for example, how well are we doing with customer acceptance
tests? A company-specific variation could be made that incorporates addition-
al important agile practices or that changes the weights Krebs assigned to the
practices.

Customer Acceptance Tests

Cus tomer acceptance tes ts exist to ensure bo th the developers and
cus tomer k n o w w h a t they wan t . All accep tance tes ts m u s t be passed
before the product can be del ivered to the customer . How important
are customer acceptance tests to the development of your product?

• Accep tance tes ts are used to ver i fy s y s t e m funct ional i ty and
cus tomer requ i rements .

• A cus tomer provides accep tance criteria.
• A cus tomer uses acceptance tes ts to de te rm ine w h a t has been

accomp l i shed at the end of an i terat ion.
• Accep tance tes t ing is au tomated .
• A user s to ry is not f in ished unti l i ts acceptance tes ts pass.

Accep tance tes ts are run automat ica l ly every night.

Strengths and Weaknesses
The survey has the advantage of having only 15 questions, although that number
is deceptive due to the compound nature of each question. A disadvantage of the
Shodan approach is that its results are not directly actionable. A low score in a
practice could be the result of low adherence to any one of the bullet point state-
ments comprising the question. Further investigation would be needed before a
coach or consultant would know how to help the team improve at the practice.

Agile: EF
Krebs, the originator of the Shodan Adherence Survey, and his colleagues at IBM
have also introduced additional approaches to assessing how well agile teams are

General-Purpose Agi l i ty A s s e s s m e n t s 433

doing. Most notable among these is the Agile Evaluation Framework, or Agile:EF
(Krebs and Kroll 2008).The Agile:EF takes to heart the agile advice to keep things
simple and is therefore less of an actual framework than a process for assessing
teams.

In this approach, Krebs and coauthor Per Kroll suggest having team members
complete a very short questionnaire, perhaps as often as the end of every sprint.
Questions are kept shorter than in the Shodan survey. But, as in that approach,
each question concerns one agile practice. Each question is answered with a score
from 1-10, with 10 indicating the practice is done 100% of the time, 1 indicating
it is never done, and 5 indicating the practice is done 50% of the time. Agile:EF
does not provide a recommended set of questions. The authors instead recom-
mend that existing sets of questions be used. The Shodan Assessment Survey ques-
tions could, for example, be used.

Figure 21.1 illustrates how the results of an Agile:EF assessment might be re-
ported. In this figure the solid bar indicates the team's mean result. The darker,
thinner line indicates how widely opinions vary. If you are assessing a sufficiently
large group, calculate the standard deviation and indicate it with these lines. If you
are assessing just one team, use the thin line to indicate the lowest and highest
responses.

U$er sfories

Automated un i t t e s t s

I t e r a t i v e

Soruivi meeting

Pairing

fc.eflec-'tions

FIGURE 21.1
S a m p l e r e s u l t s
f r o m a n A g i l e : E F
s u r v e y s h o w i n g
t h e m e a n r e s u l t
a n d o n e s t a n d a r d
d e v i a t i o n a r o u n d it .

Strengths and Weaknesses
As a general approach, Agile:EF has much to recommend it. Periodic, quick, un-
obtrusive assessments are likely to have a higher response rate than longer, more
detailed assessments. Although the ability to use any set of questions with Agile:EF
is a strength, it is also a drawback that limits Agile:EF from realistically living up
to its name as a framework.

Although I like Agile:EF's focus on simplicity and quick surveys, my experi-
ence is that you will not get useful results by asking the team the same 15 or so

4 3 4 C h a p t e r 2 1 S e e i n g H o w Far Y o u ' v e C o m e

questions at the end of every sprint. Instead I recommend having multiple sets of
questions, each focusing on a different aspect of the software development process.
Cycle through the sets of questions by asking a different set after each sprint or
once a month . By the time you are ready to repeat a set of questions, enough time
should have elapsed for the team to have made meaningful improvements in the
areas asked about by the survey.

SEE ALSO
For an e x a m p l e of a
f i ve- leve l agi le ma tu r i t y
m o d e l mode l , s e e t he
desc r ip t i on of t he S ldky
Ag i l e M a t u r i t y Index at
h t t p : / / w w w . a g l l e j o u r n a l
. c o m / c o n t e n t / v i e w /
411 /33 / .

NOTE
T h e C A a s s e s s m e n t
can be taken on l ine at
w w w . C o m p a r a t i v e
Agi l i ty , c o m .

Comparative Agility Assessment
A handful of years ago, some of my clients began to ask me, " H o w are we doing?"
My replies were always something like, "You're doing pretty well at pair program-
ming, and I like how teams have shifted from writing requirements documents
to talking about user stories. But teams really haven't embraced the idea of au-
tomated testing yet, and that's where we need to focus most." But this wasn't the
type of answer they wanted; they wanted to know, " H o w are we doing compared
to our competition ?"

At first this question bothered me. It doesn't matter how your competitors
are doing at agile, I reasoned. If you're not perfect yet, keep improving. It took
me awhile, but I eventually realized the flaws in my thinking. A business does not
need to be perfect; it needs only to be better than (and stay ahead of) its com-
petition. Google is the dominant search engine today not because the results it
shows are perfect but because its results are usually better than those shown by its
competition.

This means that agile does not need a five-level maturity model similar to
C M M I . Organizations are not striving for perfection against some idealized list of
agile principles and practices. Rather, they are trying to be more agile than their
competitors. This does not mean that becoming agile is itself the goal. Producing
better products than the competition remains the goal. But being more agile than
one's competitors is indicative of the organization's ability to deliver better prod-
ucts more quickly and cheaply.

Wi th this in mind, Kenny Rub in and I created the Comparative Agility as-
sessment (CA), which is available for free online. Like the Shodan Adherence
Survey and Agile:EF, a CA assessment can be based on individual responses to
survey questions. However, it was also designed to be completed by an experi-
enced ScrumMaster, coach, or consultant on behalf of a team or company based
on interviews or observation.

Survey responses for the organization are aggregated and may then be com-
pared against the entire CA database. Responses can also be compared to a subset
of the database. You can, for example, choose to compare your team to all other
companies doing web development, all companies that are about six months into
their agile adoption efforts, all companies in a specific industry, or a combination

http://www.agllejournal

General-Purpose Agi l i ty A s s e s s m e n t s 435

of such factors. You can also compare your team against its own data from a prior
period, showing you what improvements have been made since then.

At the highest level, the CA approach assesses agility on seven dimensions:
teamwork, requirements, planning, technical practices, quality, culture, and knowl-
edge creation. Partial results showing a team assessed on three dimensions are
shown in Figure 21.2. This figure shows how one particular team compared to a
population of other teams pulled from the CA database (in this case, other teams
doing web development). Zero represents the mean value of all matching teams in
the database. The vertical lines labeled from - 2 to 2 each represent one standard
deviation from the mean. From Figure 21.2 we can see that this team is doing
much better than average at Planning, a little better than average at Requirements,
and significantly worse than average at Quality.

Flamm

AII~encompaii'ma, taik.-oriented
plan? ¿-reared up front;
reluctance* to update plan?; little
buy-in to datei from team.

Vocument-œntric-; collected
up front; little acknowledgment
of etMergence.

-1 O +-1

K.equirewentç

Orea+ed af multiple leVeli
of detail; frequently updated;
created fcij team with
full t>Kij-!n.

Collected at different leVeli
of detail; proareÇÇlv'elij refined;
conVerÇation-foc^ied, augmented
with documentation

FIGURE 21.2
T h e r e s u l t s o f
a C o m p a r a t i v e
A g i l i t y a s s e s s m e n t
s h o w t h a t t h i s
t e a m is b e t t e r t h a n
a v e r a g e a t p l a n -
n i n g a n d r e q u i r e -
m e n t s b u t w o r s e a t
q u a l i t y .

-1 O +-1 +-2

£?Kalrhj te tested In after
development; little ewphaçte on
or effective uie of automaton.

¿Pual'ltu

(Puality te built into the product
during each Çprlnf; automated
unit and acceptance teçtç.

Each of the three dimensions shown in Figure 21.2 is composed of from three
to six characteristics. A set of questions is asked to assess a team's score on each
characteristic. For example, characteristics of the planning dimension include

• When planning occurs

• Who is involved

• Whether both release and sprint planning occur

4 3 6 C h a p t e r 2 1 S e e i n g H o w Far You 've C o m e

• Whether critical variables (such as scope, schedule and resources) are
locked

• H o w progress is tracked

The questions for the "when does planning occur" characteristic are shown
in Table 21.2. As can be seen in that figure, questions are answered on a scale in-
cluding true, more true than false, neither true nor false, more false than true,false, and not
applicable.

TABLE 21.2
One of t he charac-
ter is t ics cons idered
by t he Compara t i ve
Ag i l i t y assessment
is w h e n a t e a m
plans.

Up-front planning is helpful without being
excessive.

Team members leave planning meetings knowing
what needs to be done and have confidence they
can meet their commitments.

Teams communicate the need to change release
date or scope as soon as the need is discovered.

Effort spent on planning is spread approximately
evenly throughout the project.

Strengths and Weaknesses
A strength of the Comparative Agility assessment is that it was designed to lead
more easily to actionable results. Like the other assessments, the results point first
to a shortcoming in one of the seven dimensions, but unlike the other assessments,
drilling into that dimension reveals the specific characteristic the organization is
struggling with.This should help the team or its ScrumMaster more easily identify
actions to take. For example, if we were to look into the low score for quality in
Figure 21.2, we would see that there are three characteristics to the quality dimen-
sion: automated unit testing, customer acceptance tests, and timing. Because the
CA approach assesses each characteristic individually, it is possible to see which
of these characteristics is dragging down the organization's overall quality score.

Creat ing Your O w n A s s e s s m e n t 437

The comparative nature of the CA assessment was intended to be its biggest
strength. By seeing how your organization compares with other organizations,
improvement efforts can be focused on the most promising areas.

The most significant weakness of CA is the breadth of the survey. The survey
includes nearly 125 questions about the development process. There are two com-
mon solutions:

• Perform a full assessment only once or twice a year. (Quarterly might be
acceptable and relevant in some organizations.)

• Assess only one of the seven dimensions per month.

• If you have never su rveyed any of your agile teams, do so now.
Don ' t wa i t six w e e k s wh i l e you create the per fec t survey. Re-
v i e w the ques t ions on the Comparat ive Agi l i ty assessmen t or the
Shodan Adhe rence Survey, and select 15 that you th ink wi l l g ive
you usefu l or in terest ing in format ion and start.

• Wh i l e wa i t i ng for resul ts to c o m e in f r o m that f i rst set of survey
quest ions , th ink about your long- term s t ra tegy and create or se lect
the approach you ' l l use routinely.

THINGSTO
TRY NOW

Creating Your Own Assessment
Some organizations choose to create their own assessments. Doing so requires
more work, of course, but it brings the advantage of being able to fully tailor the
assessment. Organizations with large Scrum initiatives such as Ultimate Software,
JDA Software,Yahoo!, and Salesforce.com have pursued this approach. If you take
this route, by all means start by looking at the questions in approaches such as the
Shodan Adherence Survey and the Comparative Agility assessment. Discard any
questions that are irrelevant in your organization or that will not provide interest-
ing results. If, for example, automated testing is an established practice and one that
all teams already do well, you can save time by dropping those questions.

Most of the company-specific assessments I've seen include a fair number
of questions aimed at employee opinions about the change. Yahoo!, for example,
asked questions similar to these about its transition to Scrum:

• Since adopting Scrum, how productive do you think your team is?

• Since adopting Scrum, how has morale changed?

• Since adopting Scrum, how has your sense of accountability and feeling
of ownership in the project changed?

• Since adopting Scrum, has the degree of collaboration and cooperation
in the team changed?

4 3 8 C h a p t e r 2 1 S e e i n g H o w Far You 've C o m e

OBJECTION

• What do you think of the overall quality of what has been developed
since adopting Scrum?

Questions were answered with Scrum is much worse, Scrum is worse, Scrum is
about the same, Scrum is better, or Scrum is much better.

Salesforce.com asked similar questions during its transition to Scrum:

• D o you think Scrum is an effective approach?

• What has been the impact of Scrum on the quality of our products?

• Would you recommend Scrum to your colleagues inside or outside the
company?

Beyond these qualitative metrics, Salesforce.com also collected some effective,
but simple, quantitative metrics. This allowed the company to look at its Scrum
transition f rom multiple perspectives, which is the topic of the next section.

" I d o n ' t l i ke q u e s t i o n s l i ke t h e s e . W h o c a r e s w h a t e m p l o y e e s t h i n k
a b o u t h o w p r o d u c t i v e t h e y a r e o r w h e t h e r q u a l i t y h a s i m p r o v e d ? "

T h o s e invo lved in d e v e l o p i n g t h e s o f t w a r e are in an exce l l en t pos i t i on
t o a s s e s s c h a n g e s in h o w t h e y w o r k . Cer ta in ly , t h e y w i l l exh ib i t b iases if
s o m e o n e has p rev ious l y a n n o u n c e d t h a t b o n u s e s w i l l be g i ven if S c r u m
d o u b l e s p roduc t i v i t y . Bu t I haven ' t s u g g e s t e d d o i n g tha t . Ne i t he r d id t h e
c o m p a n i e s t h a t u s e d t h e s e q u e s t i o n s . W i t h o u t an i ncen t i ve to m is lead ,
m o s t e m p l o y e e s w i l l a n s w e r t ru th fu l l y . A n d the i r a n s w e r s t o q u e s t i o n s
such as t h e s e can be as use fu l as c u s t o m e r s ' a n s w e r s to s im i la r l y sub jec -
t i ve q u e s t i o n s .

A Balanced Scorecard for Scrum Teams
It's well known that if we introduce a new metric and tell teams that they will
be evaluated against that metric, they will alter their behavior to optimize that
metric. Tell a team that it will be measured on the number of defects in the defect
tracking system and that number will go down—perhaps because of good, honest
improvements, but perhaps also because team members will find ways to more
informally communicate about some bugs, thereby bypassing the defect tracking
system. Even if we could devise a metric that couldn't be gamed, one number does
not present a complete view Maybe the team decreased the number of defects
by dramatically cutting back on productivity. It delivered 90% less functionality
than before because every line of code is so heavily scrutinized. We need a more
balanced view than can be provided by any one number.

A Balanced Scorecard for Sc rum Teams 4 3 9

The idea of providing a balanced view into an organization led Robert
Kaplan and David Norton to create what they call a balanced scorecard. Their idea
is that to fully understand the performance of a business, it is necessary to look
beyond the income statement and balance sheet, which are merely two measures
of how the business is doing. The view presented by looking only at financial
statements is no more complete than the view of a development organization
given only by the number of defects in the bug database. Kaplan and Norton sug-
gest that a business should be looked at from four perspectives: financial, customer,
business processes, and learning and growth. These different perspectives make up
the balanced scorecard (1992).

Since 2000, I've used balanced scorecards as a way for software development
groups to assess themselves from multiple perspectives. The initial four perspec-
tives suggested by Kaplan and Norton are not necessarily the best fit when ap-
plied directly to a software development department, IT group, or especially an
individual team. I've experimented with a variety of different perspectives over
the years, but I think the best I've found are the four listed here, suggested by Liz
Barnett for Forrester Research.

• Operational excellence. Teams strive to produce high-quality products
with high rates of productivity while meeting target costs and dates.

• User orientation. Teams focus on delivering features desired by users and
customers.

• Business value. Teams deliver value to the business in the form of cost
savings, increased revenue, or other similar ways.

• Future orientation. While delivering products and new features today,
teams build skills and capabilities for the future (Barnett, Schwaber, and
Hogan 2005).

If a balanced scorecard is created near the time you start adopting Scrum,
and the team, department, or organization is then periodically evaluated against
it, progress should be visible. A team that is doing well at Scrum should be able
to improve simultaneously in each of these perspectives. Even better, a balanced
scorecard takes the focus off strictly becoming agile and places it on achieving
whatever goals have led the organization to try to become agile by adopting
Scrum.

Constructing the Balanced Scorecard
Each perspective on a balanced scorecard is augmented by typically one to four
strategic objectives. Progress toward each objective is measured by both leading
and lagging indicators, for which target values are preidentified. If we consider the
operational excellence perspective, for example, we might identify objectives such
as improving productivity, increasing quality, producing better estimates, lowering
total development cost, and so on. The set of objectives you choose should not

4 4 0 Chapter 21 Seeing H o w Far You 've C o m e

TABLE 21.3
A b a l a n c e d s c o r e -
c a r d p r o v i d e s m u l
t i p l e p e r s p e c t i v e s
o n p e r f o r m a n c e .

be a laundry list of admirable goals; instead, choose only those objectives you can
focus on.

For each objective, it is important to identify metrics that will tell us if we
are achieving (or have achieved) the goal. Although you must identify at least one
metric for each objective, it will usually be beneficial to identify at least one lead-
ing indicator and one lagging indicator. A leading indicator is a metric that you
expect to see change in advance of achieving the objective. For the objective of
improving quality, for example, a leading indicator would be the number of test
cases written. Having more test cases does not guarantee that the product is of
higher quality, but it might be a good indicator that it is.

A lagging indicator, by contrast, is a metric that changes after the objective is
achieved or that can only be measured at that time. Continuing with the example
of improving quality, a lagging indicator might be the number of post-release
defects reported by customers. Lagging indicators are usually the metrics used to
ascertain whether an objective has truly been met. But they suffer, of course, from
not being measurable until afterward. This is why a combination of leading and
lagging indicators is often best. Table 21.3 shows examples of objectives, leading
indicators, and lagging indicators for the operational excellence perspective.

Perspective Objective Leading Indicators Lagging Indicators

Operational
excellence

Improve
productivity

Percentage of product
backlog items dropped
per sprint
(target = 5-15%)

Number of features
delivered per developer
(target = 20% increase)

Percentage of source
control check-ins
occurring on weekends
(target = less than 5%)

Schedule
predictabil-
ity

Number of projects
completed within -1 to
+2 sprints as predicted at
project midpoint
(target = 95%)

Higher
quality

Percentage of tests pass-
ing in continuous builds
(target = 95%)

Number of defects
reported in first 30 days
post-release
(target = 50% reduction)

A B a l a n c e d S c o r e c a r d f o r S c r u m T e a m s 4 4 1

Perspect ive Objective Leading Indicators Lagging Indicators
TABLE 21.3
Continued

User
orientation

Improve
uptime

Server downtime
(planned + unplanned)
is less than 120 minutes
per year.

Increased
user
satisfaction

Increased responses from
customer focus group
(target = improve e-mail
responses by 20%)

Net promoter score
(target = improve by
25%)

Better scores on quarterly
customer survey
(target = 80% say
"exceeds" or "far exceeds
expectations")

Business
value

More
frequent
major
releases

Release burndown
charts produced and
displayed for all projects
(target = 100%)

At least one major release
every quarter
(target = no more than
90 days between)

More
features in
releases

Number of user-visible
product backlog items per
release (target = 300)

Future
orientation

Improve
employee
satisfaction

Number of complaints
to human resources
(target = 1 per month)

Number of employees
saying they are having
a great or the best time
working here
(target = 80%)

Improve
our under-
standing of
Scrum and
agile prac-
tices

Attendance at various
agile conferences
(target = send at least
40 people this year to
conferences with agile
content)

Number of employees
who would recommend
Scrum to a friend at
another company
(target = 80%)

Favor Simple Metrics
F r o m reading Table 21 .3 y o u m i g h t have no t i ced that some of the met r ics are
qui te simple. Surely, you m i g h t be th ink ing , the n u m b e r of features delivered
per developer (the first lagging indica tor s h o w n in Table 21.3) is t o o simple to
be helpful . W h a t const i tutes a feature? Is it really appropr ia te for small features
to c o u n t t he same as b ig features? In general , simple met r ics such as this can be

442 Chapter 21 Seeing H o w Far You 've C o m e

helpful, especially when compared over longer periods of time and considered in
combination with other simple metrics.

The number of features delivered per developer is one of the simple metrics
that I referred to earlier that Salesforce.com used to assess the benefits of its Scrum
adoption. Twelve months after initiating the transition, the company measured a
38% increase in the number of features delivered per developer over the preceding
year. Was it possible that one of the reasons for this increase was that the features
were smaller? Of course. But a simple metric such as this one helped them quan-
tify the general feeling of being more productive than they had been. Consider
this metric in relation to the purpose of measuring given at the start of this chap-
ter: reducing uncertainty. Prior to taking this measurement, those in Salesforce.
corn's Enterprise Transition Community might have been uncertain if Scrum had
been helping teams be more productive. After measuring, they had their answer.

Another simple metric Salesforce.com used showed the improved flow of
features to customers. The cumulative value chart created by Steve Greene and
Chris Fry is shown in Figure 21.3, which we also saw in Chapter l , "Why Becom-
ing Agile Is Hard (ButWorth It)."Again counting each feature the same regardless
of its size or importance, this chart shows both how many new features were de-
livered and when they were delivered. The general idea is that the area under the
curves represents the overall value of the features to users—a feature delivered
sooner is more valuable than one delivered later. In 2006, before adopting Scrum,
Salesforce.com delivered no new features to users until January 2007. Compare
the total area under the 2006 line with the total area under the 2007 line, during
which time Salesforce. corn's use of Scrum led to more frequent releases and more
total features delivered.

FIGURE 21.3
A y e a r a f t e r b e g i n -
n i n g i t s t r a n s i t i o n
t o S c r u m , S a l e s -
f o r c e . c o m u s e d t h i s
p o w e r f u l c h a r t t o
i l l u s t r a t e a 5 6 8 %
i m p r o v e m e n t i n
t h e s i m p l e m e t r i c
t h e c o m p a n y c a l l e d
c u m u l a t i v e v a l u e
d e l i v e r e d .

Cumulative Value (features) delivered In Major IZ.eleaiei

-2500
I

-2 OOO «3 «3

-1500 0 s
£

-1 OOO §
-500 s

s
s 0

Mar Afril Maij June. July Ak<j Sep Ock No»/ Pe¿- Jan f¿t>

Month

Should W e Really Bother w i t h This? 4 4 3

It would be easy to poke holes in simple metrics like this one: Not all features
are the same size, not all features are equally important to all customers, there were
more developers in 2007 than in 2006, and so on. Although each of these criti-
cisms could be valid, none do anything to seriously cripple the impact of a chart
such as Figure 21.3 in helping everyone see the benefits brought by Scrum to
Salesforce.com.

• Make a list of s imp le met r i cs you can easi ly col lect that w i l l answer
s o m e of the open ques t ions about your Scrum adopt ion. Start col-
lect ing t hem.

• Create a balanced scorecard. It can be for a project , the depart-
men t , or even for the Sc rum transi t ion. Begin by ident i fy ing objec-
t i v e s — w h a t w o u l d you like to achieve? Then ident i fy one or more
leading indicators for each that can be used to gauge w h e t h e r
you are on track to achiev ing the goal. Finally, ident i fy at least one
lagging indicator for each object ive that can be used to de te rm ine
w h e t h e r the ob ject ive w a s met .

THINGSTO
TRY NOW

Should We Really Bother with This?
Collecting metrics, even simple ones, takes effort and is not something that we
in the software industry have a stellar record of doing. With so much else that
demands our time and attention, should we really bother collecting data on how
well we're doing at becoming agile? Yes, we should. I can point to three major
benefits:

• Metrics help fight the pull of organizational gravity. As pointed out way
back in Chapter 2,"ADAPTing to Scrum," there are reasons why the sta-
tus quo existed before you began to adopt Scrum. Organizational gravity
seeks to pull us back to that status quo. Periodic assessments and metrics
showing the benefits of Scrum will be one of the best ways to fight the
pull of organizational gravity.

• Metrics help us promote the transition effort. Not only does a good as-
sessment program help fight organizational gravity, but it can also help
get other groups interested in adopting Scrum. Think again about the
ADAPT model of Chapter 2 and recall the importance of the promotion
step. To get others interested in also adopting Scrum, it is important to
promote your team's early successes. Metrics help quantify these successes.

• Metrics help us know where to focus further improvement efforts. Met-
rics should lead to action. If you are collecting data that never leads to
action, stop collecting that data and instead collect some different data. A
good assessment program will help you identify areas for improvement
(and for praise). If you find teams are doing less of a valuable practice than

4 4 4 C h a p t e r 2 1 S e e i n g H o w Far Y o u ' v e C o m e

t h e y used to, invest igate why. If y o u f i n d tha t s o m e t e a m s have a d o p t e d a

n e w prac t ice and are o u t p e r f o r m i n g o t h e r t eams , seek ways t o spread t h e

use o f tha t pract ice .

As m u c h as I k n o w it is h e l p f u l a n d i m p o r t a n t t o col lect m e t r i c s o n h o w wel l

a t e a m is d o i n g at a d o p t i n g S c r u m and b e c o m i n g agile, I w a n t t o e n d this c h a p t e r

w i t h a c a u t i o n a r y n o t e . W h e n e v e r n u m b e r s are co l lec ted , t h e r e is usual ly s o m e o n e

in t h e o rgan i za t i on w h o b e c o m e s t o o a t t ached t o t h e m and gives t h e m u n d u e

s i g n i f i c a n c e . T h e m e t r i c s are t h e n used t o bea t u p teams. I ' m n o t g o i n g t o g o so far

as t o say tha t m e t r i c s shou ld neve r b e used as a s t i c k — m y boss at t h e a u t o repai r

c e n t e r w h e r e I w o r k e d d u r i n g col lege was p robab ly r i g h t t o yell at m e w h e n I

d idn ' t m e e t m y m o n t h l y q u o t a . B u t t h e m e t r i c s de sc r ibed in this c h a p t e r are v e r y

d i f fe ren t . As such , t h e y s h o u l d b e used t o f o c u s e f fo r t and aid u n d e r s t a n d i n g , n o t

t o p lace b l a m e o r e n f o r c e c o m p l i a n c e .

Additional Reading
Gilb,Tom. 2005. Competitive Engineering: A handbook for systems engineering, requirements
engineering, and software engineering using planguage. But te rwor th-Heinemann.

Gilb, the originator of the Evo process, takes a rigorous approach to measurement.
His b o o k shows numerous examples of quantifying and measuring what you might
think unmeasurable. Gilb's approach is particularly useful w h e n used to define the
leading and lagging indicators of a balanced scorecard.

Hubbard, Douglas W 2007. How to measure anything: Finding the value of "intangibles" in
business. Wiley.

A wonderful b o o k that really does live up to its name. It offers many different ways of
measuring things and makes the underlying math relatively easily to follow. If you are
struggling with how to measure something, this book will probably give you some
ideas.

Kaplan, R o b e r t S., and David P. Nor ton . 1992. T h e balanced scorecard: Measures that
drive performance. Harvard Business Review, January-February, 71—79.

This was the article that started the balanced scorecard movement . It was followed by
a book by the same authors, but this short article remains the best quick introduction
to the subject.

Krebs, William, and Per Kroll, 2008. Using evaluation frameworks for quick reflec-
tions. Agile Journal, February 9 .h t tp : / /www.agi le journal .com/ar t ic les /columns/
column-articles/750-using-evaluation-frameworks-for-quick-reflections.

This article is the best introduction to the Agile:EF approach to assessing a team's
progress.

http://www.agilejournal.com/articles/columns/

Addit ional Reading 445

LefHngwell, Dean. 2007. Scaling software agility: Best practices for large enterprises. Addison-
Wesley Professional.

Chapter 22 of this book includes additional information on using balanced scorecards.
T h e same chapter also includes a team-oriented agile assessment survey similar to the
ones presented in this chapter. T h e assessment is available online at scalingsoftware
agility.files.wordpress.com/2008/01/team-agility-assessment-in-pdf.

Mair, Steven. 2002. A balanced scorecard for a small software group. IEEE Software,
November /December , 21—27.

This article provides background on the balanced scorecard approach and shows
h o w to create one for a small department using Kaplan and Norton 's original four
perspectives.

Williams, Laurie, Lucas Layman, and William Krebs. 2004. Extreme programming evalua-
tion framework for object-oriented languages, version 1.4. N o r t h Carolina State Univer-
sity Depar tment of Compu te r Science, TR-2004 -18 .

This technical report describes the Extreme Programming: Evaluation Framework
(XP:EF), which builds on the Shodan Adherence Survey to include project context
and outcome metrics. T h e additional data collected might be of interest to researchers
or even Project Management Offices looking for additional rigor. However, a team
simply looking to improve can stick with just the Shodan survey, which is also the
heart of XP:EF and is described fully in an appendix.

Chapter

Y o u ' r e N o t D o n e Yet

w e've come a long way together. My hope is that you have been implementing
many of the recommended practices and "things to try" throughout the book. If
so, you've hopefully made a lot of progress. You've established an Enterprise Tran-
sition Community (ETC) to introduce Scrum into your organization. The ETC,
in turn, has created an environment that encourages improvement communities
to form and flourish. Some of these improvement communities have disbanded
already, after accomplishing what they sought to improve; other improvement
communities have expanded their focus or are still hard at work at more persistent
improvement opportunities.

By now Scrum has become the default way of working for at least some teams
in your organization. It started with individuals on those teams becoming aware of
the need to change how they developed software. As the awareness grew, it turned
into a desire to develop software differently. In response, individuals acquired the
ability to work in an agile manner. This led to early success with Scrum, which
was promoted to others so that they could begin their own cycles of awareness,
desire, and ability. Finally, the implications of doing Scrum were transferred to
other parts of the organization so that organizational gravity did not pull everyone
and every team back to where it started.

Along the way you have changed not only people's job descriptions but also
how they view their roles on the team. Teams are now structured around the de-
livery of features rather than around the technologies or layers of the architecture.
And although given the opportunity to self-organize, teams are subtly influenced
by leaders who have themselves learned how to work on self-organizing teams.
Team members have incorporated new technical practices that help them write
higher-quality code. The team understands the importance of its product back-
log, how to work effectivity within Scrum's strictly timeboxed sprints, and how
to plan with incomplete information. Quality has probably improved—not only
are testers integrated into the development process, but programmers are helping
with automated tests as well.

By now, you might also have scaled Scrum onto larger projects or projects
spread across multiple cities or continents.You've learned how to overcome some

448 Chapter 22 You're Not Done Yet

of the bigger challenges created by those projects. Scrum is now more deeply in-
tegrated into the organization and might even coexist with other corporate man-
dates, such as CMMI or ISO 9001 compliance. Employees in human resources,
facilities, and the project management office are now your allies in creating sus-
tainable change. The organization has made tremendous progress.

Don't stop.
I don't care how agile you have become or how well you do Scrum. It doesn't

matter how good you are today; if you're not better next month, you're no longer
agile.You must always, always, always try to improve.

Wait, you say, I have a final objection. Being agile isn't my goal, delivering
great products is. If I 'm good enough, why can't I stop? To that I say, of course
being agile is not your goal. Your primary goal is to develop amazing products,
quickly and cheaply, that thrill your customers and users. To do that, though, I
believe you will need to be agile. And to be agile, you must continuously improve.

Continuous improvement is easier than it might sound. You've planted all
the seeds already. Your improvement communities will play a key role inside the
risk-tolerant, idea-generating, nurturing culture fostered by the ETC. Through
trial-and-error experimentation, these communities will lead the organization to-
ward better and better ways of working. Beyond that, though, they will engage
employees' passion. The organization will shift from seeing problems to seeing
possibilities.

And with that, you are on your way to succeeding with agile.

R e f e r e n c e L is t

Adler, Paul S.,Avi Mandelbaum,Vien Nguyen, and Elizabeth Schwerer. 1996. Getting the
most out of your product development process. Harvard Business Review, March—April,
13-151.

Adzic, Gojko. 2009. Bridging the communication gap: Specification by example and agile acceptance
testing. N e u r i Limited.

Allen-Meyer, Glenn. 2000a. Nameless organizational change: No-hype, low-resistance corporate
transformation. Syracuse University Press.

Allen-Meyer, Glenn. 2000b. Overview: Nameless organizational change; No-hype, low-resistance
corporate transformation. Previously available atht tp: / /www.nameless.org.

Allen-Meyer, Glenn. 2000c. 21st century schizoid change. OD Practitioner 32 (3): 22—26.

Ambler, Scott. 2008a. Agile adoption rate survey, February, h t tp : / /www.ambysof t . com/
surveys/agileFebruary2008.html.

. 2008b. Scott Ambler on ágiles present and future. Interview by Floyd Marinescu.
I n f o Q website, December 1 .ht tp: / /www.infoq.com/interviews/Agile-Scot t -Ambler .

. n.d. Agile Data H o m e Pagehttp: / /www.agiledata .org.

Ambler, Scott W , and Pramod J. Sadalage. 2006. Refactoring databases: Evolutionary database
design. Addison-Wesley.

Anderson, Philip. 1999. Seven levers for guiding the evolving enterprise. In The biology of
business: Decoding the natural laws of enterprise, ed. John Henry Clippinger III, 113—152.
Jossey-Bass.

Appelo,Jurgen. 2008. We increment to adapt, we iterate to improve. Methods & Tools, Sum-
mer, 9—22.

Armour , Phillip G. 2006. Software: Hard data. Communications of the ACM, September,
15-17.

Avery, Chris topher M . 2005. Responsible change. Cutter Consortium Agile Project Manage-
ment Executive Report 6 (10): 1—28.

Avery, Christoper M. , M e r i Aaron Walker, and Erin O'Toole. 2001. Teamwork is an indi-
vidual skill: Getting your work done when sharing responsibility. Berret t-Koehler Publishers.

http://www.nameless.org
http://www.ambysoft.com/
http://www.infoq.com/interviews/Agile-Scott-Ambler
http://www.agiledata.org

450 Reference List

Babinet, Eric, and Rajani Ramanathan. 2008. Dependency management in a large agile
environment. In Proceedings of the Agile 2008 Conference, ed. Grigori Melnik, Philippe
Kruchten, and Mary Poppendieck, 401—406. IEEE Compu te r Society.

Bain, Scott L. 2008. Emergent design:The evolutionary nature of professional software development.
Addison-Wesley Professional.

Barnett , Liz. 2005. Metrics for agile development projects: Emphasize value and customer
satisfaction. Wi th Carey Schwaber and Lindsay Hogan. Forrester, ht tp: / /www.forrester .
com/Research /Document /Excerp t /0 ,7211 ,37380 ,00 .h tml .

. 2008. Incremental agile adoption. Agile Journal, February 11. h t t p : / /
agi le journal .com/ar t ic les /columns/f rom-the-edi tor-mainmenu-45/755- incremental -
agile-adoption.

Beavers, Paul A. 2007. Managing a large "agile" software engineering organization. In
Proceedings of the Agile 2007 Conference, ed. Jutta Eckstein, Frank Maurer, Rache l Davies,
Grigori Melnik, and Gary Pollice, 296—303. IEEE Compu te r Society.

Beck, Kent. 2002. Test-driven development: By example. Addison-Wesley Professional.

Beck, Kent, and Cynthia Andres. 2004. Extreme programming explained. 2nd ed. Addison-
Wesley Professional.

. 2005. Getting started with XP: Toe dipping, racing dives, and cannonballs. P D F
file at Three Rivers Institute website. www.threeriversinstitute.org/Toe%20Dipping.
pdf.

Beck, Kent, Mike Beedle, Arie van Bennekum, Alistair Cockburn , Ward Cunningham,
Mart in Fowler, James Grenning, J im Highsmith, Andrew Hunt , R o n Jeffries, Jon
Kern, Brian Marick, R o b e r t C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland,
and Dave Thomas. 2001. Manifesto for agile software development. h t t p : / / w w w .
agilemanifesto.org/.

Benefield, Gabrielle. 2008. Rol l ing out agile in a large enterprise. In Proceedings of the 41st
Annual Hawaii International Conference on System Sciences, 461—470. IEEE Compu te r
Society.

Boehm, Barry W. 1981. Software engineering economics. Prentice Hall.

Boehm, Barry, and Richard Turner. 2005. Management challenges to implementing agile
processes in traditional development organizations. IEEE Software, September /October ,
30-39 .

Bos, Erik, and Christ Vriens. 2004. An agile C M M . In Extreme Programming and Agile Meth-
ods: XP/Agile Universe 2004, ed. C. Zannier, H. Erdogmus, and L. Lindstrom, 129—138.
Springer.

Bradner, E., G. Mark, andT.D. Hertel. 2003. Effects of team size on participation, aware-
ness, and technology choice in geographically distributed teams. In Proceedings of the
36th Annual Hawaii International Conference on System Sciences, 271a. IEEE Compu te r
Society.

http://www.forrester
http://www.threeriversinstitute.org/Toe%20Dipping
http://www

Reference List 451

Bridges, William. 2003. Managing transitions: Making the most of change. 2nd ed. Da Capo
Press.

Brodwall, Johannes. 2008. An informative workplace. Thinking inside a bigger box, N o v e m -
ber 23. ht tp: / /brodwall . com/ johannes /b log /2008 /11 /23 /an- in fo rmat ive -workp lace / .

Brooks, Frederick P. 1995. The mythical man-month: Essays on software engineering. 2nd ed.
Addison-Wesley Professional. (Orig. pub. 1975.)

Campbell, Donald T. 1965. Variation and selective retention in socio-cultural evolution.
In Social change in developing areas: A reinterpretation of evolutionary theory, ed. Herber t R .
Barringer, George I. Blanksten, and R a y m o n d W Mack, 19—49. Schenkman.

Cao, Lan, and Balasubramaniam Ramesh. 2008. Agile requirements engineering practices:
An empirical study. IEEE Software, January/February, 60—67.

Carmel, Erran. 1998. Global software teams: Collaborating across borders and time zones. Pren-
tice Hall.

Carr, David K., Kelvin J. Hard, and William J. Trahant. 1996. Managing the change process: A
field book for change agents, team leaders, and reengineering managers. McGraw-Hil l .

Catmull, Ed. 2008. H o w Pixar fosters collective creativity. Harvard Business Review, Sep-
tember, 65—72.

Cichelli, Sharon. 2008. Globally distributed Scrum. Girl Writes Code blog entry, May 9.
ht tp: / /www.invisible-ci ty.com/sharon/2008/05/global ly-distr ibuted-scrum.html.

Cirillo, Francesco. 2007. T h e pomodoro technique. P D F from website of same name.
h t t p : / / w w w . p o m o d o r o t e c h n i q u e . c o m / r e s o u r c e s / c i r i l l o / T h e P o m o d o r o T e c h n i q u e _
v l -3 .pdf .

Clark, Kim B., and Steven C. Wheelwright . 1992. Managing new product and process develop-
ment: Text and cases. T h e Free Press.

Cockburn , Alistair. 2000. Balancing lightness wi th sufficiency. Cutter ITJournal, November.

. 2006. Agile software development: The cooperative game. 2nd ed. Addison-Wesley Pro-
fessional.

. 2008. Using bo th incremental and iterative development. Crosstalk, May, 27—30.

Cohn , Mike. 2004. User stories applied: For agile software development. Addison-Wesley Profes-
sional.

. 2005. Agile estimating and planning. Addison-Wesley Professional.

Conner , Daryl R . 1993. Managing at the speed of change: How resilient managers succeed and
prosper where others fail. R a n d o m House.

Conway, Melvin E. 1968. H o w do committees invent? Originally published in Datamation,
April 1968. Currently published on author's website, h t tp : / /www.melconway.com/
research/committees.html.

http://brodwall
http://www.invisible-city.com/sharon/2008/05/globally-distributed-scrum.html
http://www.pomodorotechnique.com/resources/cirillo/ThePomodoroTechnique_
http://www.melconway.com/

452 Reference List

Cooper , R o b e r t G. 2001. Winning at new products: Accelerating the process from idea to launch.
3rd ed. Basic Books.

Coyne, Kevin P., Patricia Gorman Clifford, and R e n é e Dye. 2007. Breakthrough thinking
f rom inside the box. Harvard Business Review, December , 71—78.

Creasey,Tim, and Jeff Hiatt, eds. 2007. Best practices in change management. Prosci.

Crispin, Lisa, and Janet Gregory. 2009. Agile testing: A practical guide for testers and agile teams.
Addison-Wesley Professional.

Crosby, Philip. 1979. Quality isfree:The art of making quality certain. McGraw-Hil l .

Cunningham, Ward. 1992. The WyCash portfolio management system. In Addendum to the
Proceedings on Object-Oriented Programming Systems, Languages, and Applications, 29—30.
A C M . Also a th t tp : / / c2 .com/doc /oops la92 .h tml .

Davies, Rachel , and Liz Sedley. 2009. Agile coaching.The Pragmatic Bookshelf.

Deemer, Pete, Gabrielle Benefield, Craig Larman, and Bas Vodde. 2008. The Scrum primer.
Scrum Training Institute.

DeGrace, Peter, and Leslie Hulet Stahl. 1990. Wicked problems, righteous solutions: A catalogue
of modern software engineering paradigms. Prentice Hall.

DeMarco,Tom, Peter Hruschka,Tim Lister, Suzanne Rober tson , James Roberts , and Steve
McMenamin . 2008. Adrenaline junkies and template zombies: Understanding patterns of proj-
ect behavior. Dorset House.

DeMarco, Tom, and Timothy Lister. 1999. Peopleware: Productive projects and teams. 2nd ed.
Dorset House.

Deming,W. Edwards. 2000. Out of the crisis. M I T Press.

de Pillis, Emmeline, and Kimberly Furumo. 2007. Count ing the cost of virtual teams.
Communications of the ACM, December, 93—95.

Derby, Esther. 2006. A manager's guide to supporting organizational change. Crosstalk,
January, 17—19.

Derby, Esther, and Diana Larsen. 2006. Agile retrospectives: Making good teams great. Pragmatic
Bookshelf.

Deutschman, Alan. 2007. Inside the mind of Jeff Bezos. Fast Company, December 19.
h t tp : / /www.fas tcompany.com/magazine /85/bezos_l .h tml .

Dinwiddie, George. 2007. C o m m o n areas at the heart. In Proceedings of the Agile 2007
Conference, ed. Jutta Eckstein, Frank Maurer, Rache l Davies, Grigori Melnik, and Gary
Pollice, 207-211. IEEE Compu te r Society.

D r u m m o n d , Brian Scott, and John Francis "JF" Unson. 2008. Yahoo! distributed agile:
Notes from the world over. In Proceedings of the Agile 2008 Conference, ed. Grigori
Melnik, Philippe Kruchten, and Mary Poppendieck, 315—321. IEEE Compu te r Society.

http://c2.com/doc/oopsla92.html
http://www.fastcompany.com/magazine/85/bezos_l.html

Reference List 453

Duarte, Deborah L., and Nancy Tennant Snyder. 2006. Mastering virtual teams: Strategies,
tools, and techniques that succeed. 3rd ed. Jossey-Bass.

Duck, Jeanie Daniel. 1993. Managing change: T h e art of balancing. Harvard Business Re-
vieiv, November—December, 109—119.

Duvall, Paul, Steve Matyas, and Andrew Glover. 2007. Continuous integration: Improving soft-
ware quality and reducing risk. Addison-Wesley Professional.

Dyba,Tore, Er ik Arisholm, Dag I. K. Sjoberg,Jo Erskine Hannay, and Forrest Shull. 2007.
Are two heads better than one? O n the effectiveness of pair programming. IEEE Sqft-
ivare, June, 12—15.

Edmondson, Amy, Richard Bohmer , and Gary Pisano. 2001. Speeding up team learning.
Harvard Business Review, October, 125—132.

Elssamadisy, Amr. 2007. Patterns of agile practice adoption:The technical cluster. C4Media.

Emery, Dale H. 2001. Resistance as a resource. Cutter IT Journal, October .

Eoyang, Glenda Holladay. 2001. Conditions for self-organizing in human systems. P h D
diss.,The U n i o n Institute and University.

Feathers, Michael. 2004. Working effectively with legacy code. Prentice Hall P T R .

Fecarotta, Joseph. 2008. MyBoeingFleet and agile software development. In Proceedings of
the Agile 2008 Conference, ed. Grigori Melnik, Philippe Kruchten, and Mary Poppendi-
eck, 135—139. IEEE Compu te r Society.

Feynman, Richard P. 1997. Surely you're joking, Mr. Feynman! Adventures of a curious character.
W W . N o r t o n & Co.

Fisher, Kimball. 1999. Leading self-directed work teams. McGraw-Hil l .

Florida, Richard, and James Goodnight . 2005. Managing for creativity. Harvard Business
Review, July, 125—131.

Fowler, Martin. 1999. Refactoring: Improving the design of existing code. Wi th contr ibu-
tions by Kent Beck, John Brant, William Opdyke, and D o n Roberts . Addison-Wesley
Professional.

. 2006. Using an agile software process wi th offshore development. Mart in Fowler's
personal website, July 18.http: / /martinfowler.com/art icles/agileOffshore.html.

Fry, Chris, and Steve Greene. 2007. Large-scale agile transformation in an on-demand
world. In Proceedings of the Agile 2001 Conference, ed. Jutta Eckstein, Frank Maurer,
Rache l Davies, Grigori Melnik, and Gary Pollice, 136—142. IEEE Compu te r Society.

Gabardini, Juan. 2008. E-mail to Scrum Development mailing list, February 23. h t t p : / /
groups.yahoo, com/group/scrumdevelopment /message/25071.

http://martinfowler.com/articles/agileOffshore.html

454 Reference List

Gates, Bill. 1995. E-mail to Microsoft executive staff and his direct reports, May 26. D o w n -
loaded from the U.S. Depar tment of Justice online case files, h t tp : / /www.usdo j .gov /
atr/cases/exhibits/20.pdf.

George, Boby, and Laurie Williams. 2003. An initial investigation of test-driven develop-
ment in industry. In SAC '03: Proceedings of the 2003 ACM symposium on applied comput-
ing, 1135-1139. A C M .

Gilb,Tom. 1988. Principles of software engineering management. Addison-Wesley Professional.

. 2005. Competitive Engineering: A handbook for systems engineering, requirements engi-
neering, and software engineering using planguage. But te rwor th-Heinemann.

Gladwell, Malcolm. 2002. The tipping point: How little things can make a big difference. Back
Bay Books.

Glazer, Hillel, JefFDalton, David Anderson, Mike Konrad, and Sandy Shrum. 2008. CMMI
or agile: Why not embrace both! Software Engineer ing Institute at Carnegie Mellon,
November , h t tp : / /www.se i .cmu.edu/pub/documents /08 . repor t s /08 tn003 .pdf .

Goldberg, Adele, and Kenneth S. R u b i n . 1995. Succeeding with objects: Decision frameworks for
project management. Addison-Wesley Professional.

Goldstein, Jeffrey. 1994. The unshackled organization: Facing the challenge of unpredictability
through spontaneous reorganization. Productivity Press.

Gonzales,Victor M. , and Gloria Mark. 2004. Constant, constant, multi-tasking craziness:
Managing multiple working spheres. In Proceedings of the CHI 2004 Connect Conference,
113-120. A C M .

Gratton, Lynda. 2007. Hot spots: Why some teams, workplaces, and organizations buzz with
energy—and others don't. Berret t-Koehler Publishers.

Gratton, Lynda, Andreas Voigt, andTamara J. Erickson. 2007. Bridging faultlines in diverse
teams. MIT Sloan Management Review, Summer, 22—29.

Greene, Steve. 2007. Wall posting on the Facebook page of Adaptive Development M e t h -
odology (ADM), Oc tober 27 .h t tp : / /www.facebook.com/wal l .php?id=4791857957.

. 2008. Unleashing the fossa: Scaling agile in an ambitious culture. Session pre-
sented at Agile Leadership Summit, Orlando, h t tp : / /www.sl ideshare .net /sgreene/
unleashing-the-fossa-scaling-agile-in-an-ambitious-culture-presentation.

Greene, Steve, and Chris Fry. 2008. Year of living dangerously: H o w Salesforce.com de-
livered extraordinary results through a "big bang" enterprise agile revolution. Ses-
sion presented at Scrum Gathering, Stockholm, h t tp : / /www.sl ideshare .net /sgreene/
scrum-gathering-2008-stockholm-salesforcecom-presentation.

Griskevicius, V , R . B. Cialdini, and N . J . Goldstein. 2008. Applying (and resisting) peer
influence. MIT Sloan Management Review,Winter, 84—88.

Grossman, Lev. 2005. H o w Apple does it. Time, Oc tober 24, 66—70.

http://www.usdoj.gov/
http://www.sei.cmu.edu/pub/documents/08.reports/08tn003.pdf
http://www.facebook.com/wall.php?id=4791857957
http://www.slideshare.net/sgreene/
http://www.slideshare.net/sgreene/

Reference List 455

Hackman, J. Richard. 2002. Leading Teams: Setting the stage for great performances. Harvard
Business School Press.

Hackman, J. Richard, and Diane Coutu . 2009. W h y teams don't work. Harvard Business
Review, May, 98-105.

Hiatt, Jeffrey. 2006. ADKAR: A model for change in business, government and our community.
Prosci Research.

Highsmith, Jim. 2002. Agile software development ecosystems. Addison-Wesley.

. 2005. Managing change: Three readiness tests. E-Mail Advisor, July 14. Cut te r
Consor t ium.

. 2009. Agile project management: Creating innovative products. 2nd ed. Addison-Wesley
Professional.

Hodgetts, Paul. 2004. Refac tor ing the development process: Experiences wi th the in-
cremental adoption of agile practices. In Proceedings of the Agile Development Conference,
106-113. IEEE Compu te r Society.

Hofstede, Geert, and Gert-Jan Hofstede. 2005. Cultures and organizations: Software of the
mind. 2nd ed. McGraw-Hil l .

Hogan ,Ben . 2006. Lessons learned from an extremely distributed project. In Proceedings of
the Agile 2006 conference, ed. Joseph Chao, Mike Cohn , Frank Maurer, Helen Sharp, and
James Shore, 321—326. IEEE Compu te r Society.

Honious, Jeff, and Jonathan Clark. 2006. Something to believe in. In Proceedings of the Agile
2006 conference, ed. Joseph Chao, Mike Cohn , Frank Maurer, Helen Sharp, and James
Shore, 203—212. IEEE Compu te r Society.

Hubbard, Douglas W 2007. How to measure anything: Finding the value of "intangibles" in
business. Wiley.

Iacovou, Charalambos L., and R o b b i e Nakatsu. 2008. A risk profile of offshore-outsourced
development projects. Communications of the A CM, June, 89—94.

James, Michael. 2007. A ScrumMaster's checklist, August 13. Michael James' blog on
Danube's websi te .ht tp: / /danube.com/blog/michaeljames/a_scrummasters_checklis t .

Jeffries, R o n . 2004a. Big visible charts. XP, Oc tober 20 .h t tp : / /www.xprogramming .com/
xpmag /B igVisible Charts. htm.

. 2004b. Extreme programming adventures in C#. Microsoft Press.

Johnston, Andrew. 2009. L h e role of the agile architect, June 20. Conten t from Agile
Architect website, ht tp: / /www.agilearchitect .org/agile/role.htm.

Jones, Do-Whi le . 1990. L h e breakfast food cooker, ht tp: / /www.ridgecrest .ca.us/
~do_while/ toaster .htm.

Kaplan, R o b e r t S., and David P. N o r t o n . 1992.Lhe balanced scorecard: Measures that drive
performance. Harvard Business Review, January-February, 71—79.

http://danube.com/blog/michaeljames/a_scrummasters_checklist
http://www.xprogramming.com/
http://www.agilearchitect.org/agile/role.htm
http://www.ridgecrest.ca.us/

456 Reference List

Karten, Naomi . 1994. Managing expectations. Dorset House.

Katzenbach, Jon. R . 1997. Real change leaders: How you can creategroii'th and high performance
at your company. Three Rivers Press.

Katzenbach, Jon R . , and Douglas K. Smith. 1993. The ivisdom of teams: Creating the high-
performance organization. Collins Business.

Keith, Clinton. 2006. Agile methodology in game development:Year 3. Session presented
at Game Developers Conference, San Jose.

Kelly, James, and Scott Nadler. 2007. Leading from below. MIT Sloan Management Review,
March 3. ht tp: / /s loanreview.mit .edu/business- insight /ar t ic les/2007/1/4917/
leading-from-below.

Kerievsky, Joshua. 2005. Industrial XP: Making X P work in large organizations. Cutter
Consortium Agile Project Management Executive Report 6 (2).

Koskela, Lasse. 2007. Test driven: TDD and acceptance TDD for Java developers. Manning.

Kotter, John P. 1995. Leading change: W h y transformation efforts fail. Harvard Business
Review, March-Apri l , 59-67.

. 1996. Leading change. Harvard Business School Press.

Krebs, William, and Per Kroll, 2008. Using evaluation frameworks for quick reflec-
tions. Agile Journal, February 9. h t tp : / /www.agi le journal .com/ar t ic les /columns/
column-articles/750-using-evaluation-frameworks-for-quick-reflections.

Krug, Steve. 2005. Don't make me think: A common sense approach to web usability. 2nd ed.
N e w Riders Press.

LaFasto, Frank M. J., and Carl E. Larson. 2001. When teams work best: 6,000 team members
and leaders tell what it takes to succeed. Sage Publications, Inc.

Larman, Craig, and Victor R . Basili. 2003. Iterative and incremental development: A brief
history. IEEE Computer, June, 47—56.

Larman, Craig, and BasVodde. 2009. Scaling lean & agile development:Thinking and organiza-
tional tools for large-scale Scrum. Addison-Wesley Professional.

Larson, Carl E., and Frank M . J . LaFasto. 1989. Teamwork: What must go right/what can go
wrong. SAGE Publications.

Lawrence, Paul R . 1969. H o w to deal wi th resistance to change. Harvard Business Review,
January—February, 4—11.

Leffingwell, Dean. 2007. Scaling software agility: Best practices for large enterprises. Addison-
Wesley Professional.

Liker, Jeffrey K. 2003. The Toyota way. McGraw-Hil l .

Little, Todd. 2005. Context-adaptive agility: Managing complexity and uncertainty. IEEE
Software, May—June, 28—35.

http://sloanreview.mit.edu/business-insight/articles/2007/1/4917/
http://www.agilejournal.com/articles/columns/

Reference List 457

Luecke, Richard. 2003. Managing change and transition. Harvard Business School Press.

MacDonald, John D. 1968. The girl in the plain brown wrapper. Fawcett.

Machiavelli, Nicolló. 2005. The prince, trans. Peter Bondanella. Oxford University Press.

Mah, Michael. 2008. H o w agile projects measure up, and what this means to you. Cutter
Consortium Agile Product & Project Management Executive Report 9 (9).

Mair, Steven. 2002. A balanced scorecard for a small software group. IEEE Software,
November /December , 21—27.

Mangurian, Glenn, and Keith Lockhart. 2006. Responsibility junkie: Conduc to r Keith
Lockhart on tradition and leadership. Harvard Business Review, October.

Mann , Chris, and Frank Maurer. 2005. A case study on the impact of Scrum on overtime
and customer satisfaction. In Proceedings of the Agile Development Conference, 70—79. IEEE
Compu te r Society.

Manns, Mary Lynn, and Linda Rising. 2004. Fearless change: Patterns for introducing new ideas.
Addison-Wesley.

Marick, Brian. 2007. Everyday scripting with Ruby: For teams, testers, and you. Pragmatic
Bookshelf.

Marsh, Stephen, and Stelios Pantazopoulos. 2008. Automated functional testing on the
LransCanada Alberta gas accounting replacement project. In Proceedings of the Agile
2008 Conference, ed. Grigori Melnik, Philippe Kruchten, and Mary Poppendieck,
239-244. IEEE Compu te r Society.

Martin, Angela, R o b e r t Biddle, and James Noble. 2004. L h e X P customer role in practice:
Lhree studies. In Proceedings of the Agile Development Conference, 42—54. IEEE Compu te r
Society.

Martin, R o b e r t C. 2008. Clean code: A handbook of agile software craftsmanship. Prentice Hall.

McCarthy, Jim. 2004. Twenty-one rules of thumb for shipping great software on time.
Posted as part of a David Gris twood blog ent ry .h t tp : / /b logs .msdn.com/
David_Gr is twood/a rch ive /2004/06 /24 /164849 .aspx.

McCarthy, Jim, and Michele McCarthy. 2006. Dynamics of software development. Microsoft
Press.

McFarland, Keith R . 2008. Should you build strategy like you build software? MIT Sloan
Management Review, Spring, 69—74.

McKinsey & Company. 2008. Creating organizational transformations: McKinsey global
survey results. McKinsey Quarterly, August, h t tp: / /www.mckinseyquar ter ly .com/
Creating^organizational_transformations_McKinsey_Global_Survey_results_2195.

McMichael , Bill, and Marc Lombardi. 2007. ISO 9001 and agile development. In Pro-
ceedings of the Agile 2001 Conference, ed. Jutta Eckstein, Frank Maurer, Rachel Davies,
Grigori Melnik, and Gary Pollice, 262—265. IEEE Compu te r Society.

http://blogs.msdn.com/
http://www.mckinseyquarterly.com/

458 Reference List

Mediratta, Bharat. 2007. T h e Google way: Give engineers room. As told to Julie Bick. The
NewYork Times, Oc tober 21. h t t p : / /www.ny t imes . eom/2007 /10 /21 / jobs /2 lp re .h tml .

Mello, Antonio S., and Mart in E. Ruckes. 2006. Team composition. The Journal of Business
79 (3): 1019-1039.

Meszaros, Gerard. 2007. xUnit test patterns: Refactoring test code. Addison-Wesley.

Miller, Ade. 2008. Distributed agile development at Microsoft patterns & practices. Micro-
soft. Download from the publisher's website. h t tp : / /www.pnpgu idance .ne t /Pos t /
DistributedAgileDevelopmentMicrosoftPatternsPractices.aspx.

Miller, Lynn. 2005. Case study of customer input for a successful product. In Proceedings of
the Agile Development Conference, 225—234. IEEE Compu te r Society.

Mintzberg, Henry. 2009. Rebui lding companies as communities. Harvard Business Review,
July-August , 140-143.

Molokken-Ostvold , Kjetil, and Magne Jorgensen, 2005. A comparison of software project
overruns: Flexible versus sequential development methods. IEEE Transactions on Software
Engineering, September, 754—766.

Moore , Pete. 2005. E=mr: The great ideas that shaped our world. Friedman.

Moore , Richard, Kelly RefF, James Graham, and Brian Hackerson. 2007. Scrum at a For-
tune 500 manufacturing company. In Proceedings of the Agile 2007 Conference, ed. Jutta
Eckstein, Frank Maurer, Rache l Davies, Grigori Melnik, and Gary Pollice, 175—180.
IEEE Compu te r Society.

Mugridge, Rick , and Ward Cunningham. 2005. Fit for developing software: Framework for
integrated tests. Prentice Hall.

Nicholson, Nigel. 2003. H o w to motivate your problem people. Harvard Business Review,
January, 56—65.

Nickols, Fred. 1997. Don ' t redesign your company's performance appraisal system, scrap it!
Corporate University Review, May—June.

Nielsen, Jakob. 2008. Agile development projects and usability. Alertbox, the author's on-
line column, N o v e m b e r 17.ht tp: / /www.usei t .com/aler tbox/agi le-methods.html.

Nonaka , Ikujiro, and HirotakaTakeuchi. 1995. The knoivledge-creating company:HowJapanese
companies create the dynamics of innovation. Oxford University Press.

Ohno , Taiichi. 1982. Workplace management, trans. Jon Miller. Gemba Press. Q u o t e d in
Poppendieck 2007.

Olson, Edwin E., and Glenda H. Eoyang. 2001. Facilitating organization change: Lessons from
complexity science. Pfeiffer.

Paulk, Mark. 2001. Extreme programming from a C M M perspective. IEEE Software,
November , 19—26.

http://www.nytimes.eom/2007/10/21/jobs/2lpre.html
http://www.pnpguidance.net/Post/
http://www.useit.com/alertbox/agile-methods.html

Reference List 459

Pichler, R o m a n . Forthcoming. Agile product management with Scrum: Creating products that
customers love. Addison-Wesley Professional.

Poppendieck, Mary. 2007. E-mail to Lean Development mailing list, Oc tober 6. h t t p : / /
tech.groups.yahoo.com/group/ leandevelopment/message/2111.

Poppendieck, Mary, and Lom Poppendieck. 2006. Implementing lean software development:
From concept to cash. Addison-Wesley Professional.

Porter, Joshua. 2006. L h e freedom of fast iterations: H o w Netfl ix designs a winning web
site. User Interface Engineering, N o v e m b e r 14.ht tp : / /www.uie .com/ar t ic les /
fast_iterations/.

Putnam, Doug. Leam size can be the key to a successful project. An article in QSM's Pro-
cess Improvement Series, h t tp : / /wwwqsm.com/process_01 .h tml .

Ramasubbu, Narayan, and Rajesh Krishna Balan. 2007. Globally distributed software de-
velopment project performance: An empirical analysis. In Proceedings of the 6th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering, 125—134. A C M .

Ramingwong , Sakgasit, and A. S. M. Sajeev. 2007. Offshore outsourcing: Lhe risk of keep-
ing mum. Communications of the ACM, August, 101—3.

Rayhan, Syed H. , and Nima t Haque. 2008. Incremental adoption of Scrum for successful
delivery of an IL project in a remote setup. In Proceedings of the Agile 2008 Conference,
ed. Grigori Melnik, Philippe Kruchten, and Mary Poppendieck, 351—355. IEEE C o m -
puter Society.

Reale, Richard C. 2005. Making change stick: Twelve principles for transforming organizations.
Positive Impact Associates, Inc.

Rico, David F. 2008. W h a t is the R O I of agile vs. traditional methods? An analysis of ex-
treme programming, test-driven development, pair programming, and Scrum (using
real options). A downloadable spreadsheet from David Rico ' s personal websi teht tp : / /
davidfrico.com/agile-benefits.xls.

Robar ts , Jane M. 2008. Practical considerations for distributed agile projects. In Proceed-
ings of the Agile 2008 Conference, ed. Grigori Melnik, Philippe Kruchten, and Mary
Poppendieck, 327—332. IEEE Compu te r Society.

Robbins , Stephen P. 2005. Essentials of organizational behavior. Prentice Hall.

Rossi, Ernest Lawrence. 2002. L h e 20-minute ultradian healing response: An interview
wi th Ernest Lawrence Rossi. Posted in the Interviews section of the author's personal
website, June 11 .ht tp: / /ernestrossi .com/interviews/ultradia.htm.

Sanchez, Julio Cesar, Laurie Williams, and E. Michael Maximilien. 2007. O n the sustained
use of a test-driven development practice at IBM. 2007. In Proceedings of the Agile 2007
Conference, ed. Jutta Eckstein, Frank Maurer, Rachel Davies, Grigori Melnik, and Gary
Pollice, 5—14. IEEE Compu te r Society.

http://www.uie.com/articles/
http://wwwqsm.com/process_01.html
http://ernestrossi.com/interviews/ultradia.htm

460 Reference List

Schatz, Bob, and Ibrahim Abdelshafi. 2005. Primavera gets agile: A successful transition to
agile development. IEEE Software, May/June, 36—42.

. 2006. T h e agile marathon. In Proceedings of the Agile 2006 conference, ed. Joseph
Chao, Mike Cohn , Frank Maurer, Helen Sharp, and James Shore, 139—146. IEEE C o m -
puter Society.

Schubring, Lori. 2006. Through the looking glass: O u r long day's journey into agile. Agile
Development, Spring, 26—28. http://www.agilealliance.org/agile_magazine.

Schwaber, Ken. 2004. Agile project management with Scram. Microsoft Press.

. 2006.The canary in the coal mine. Recorded video of session at Agile 2006 C o n -
ference, 1 hour, 9 min., 14 sec.; embedded on I n f o Q website, November 13. h t t p : / /
www.infoq.com/presentations/agile-quali ty-canary-coalmine.

. 2007. The enterprise and Scram. Microsoft Press.

. 2009. Scram guide, March. Posted as a downloadable P D F resource on the Scrum
Alliance website, ht tp: / /www.scrumall iance.org/resources/598.

Schwaber, Ken, and Mike Beedle. 2001. Agile software development with Scram. Prentice-Hall.

Schwartz,Tony, and Catherine McCarthy. 2007. Manage your energy, no t your time. Har-
vard Business Review, October , 63—73.

Seffernick,Thomas R . 2007. Enabling agile in a large organization: O u r journey down the
yellow brick road. In Proceedings of the Agile 2001 Conference, ed. Jutta Eckstein, Frank
Maurer, Rache l Davies, Grigori Melnik, and Gary Pollice, 200—206. IEEE Compu te r
Society.

Shaw, D. M. 1960. Size of share in task and motivation in work groups. Sociometry 23:
203-208.

Sliger, Michele. 2006. Bridging the gap: Agile projects in the waterfall enterprise. Better
Software, July/August, 26—31.

Sliger, Michele, and Stacia Broderick. 2008. The software project manager's bridge to agility.
Addison-Wesley Professional.

Sosa, Manuel E., Steven D. Eppinger, and Craig M. Rowles. 2007. Are your engineers
talking to one another w h e n they should? Harvard Business Review, January, 133—142.

Spann, David. 2006. Agile manager behaviors: W h a t to look for and develop. Cutter Con-
sortium Executive Report, September.

Stangor, Charles. 2004. Social groups in action and interaction. Psychology Press.

Steiner, I. D. 1972. Group process and productivity. Academic Press Inc.

Striebeck, Mark. 2006. Ssh! We are adding a process In Proceedings of the Agile 2006
conference, ed. Joseph Chao, Mike Cohn , Frank Maurer, Helen Sharp, and James Shore,
185-193. IEEE Compu te r Society.

http://www.agilealliance.org/agile_magazine
http://www.infoq.com/presentations/agile-quality-canary-coalmine
http://www.scrumalliance.org/resources/598

Reference List 461

. 2007. Agile adoption at Google: Potential and challenges of a t rue bo t tom-up
organization. Session presented at Agile 2007 conference, Washington, D C .

Subramaniam,Venkat, and Andy Hunt . 2006. Practices of an agile developer: Working in the real
world. Pragmatic Bookshelf.

Summers, Mark. 2008. Insights into an agile adventure wi th offshore partners. In Proceed-
ings of the Agile 2008 Conference, ed. Grigori Melnik, Philippe Kruchten, and Mary
Poppendieck, 333—339. IEEE Compu te r Society.

Sutherland, Jeff, Carsten Ruseng Jakobsen, and Kent Johnson. 2007. Scrum and C M M I
level 5: T h e magic pot ion for code warriors. In Proceedings of the Agile 2007 Conference,
ed. Jutta Eckstein, Frank Maurer, Rachel Davies, Grigori Melnik, and Gary Pollice,
272-278. IEEE Compu te r Society.

Sutherland, Jeff, Guido Schoonheim, Eelco Rustenburg, and Mauri tz Ri jk . 2008. Fully
distributed Scrum: T h e secret sauce for hyperproductive offshore development teams.
In Proceedings of the Agile 2008 Conference, ed. Grigori Melnik, Philippe Kruchten, and
Mary Poppendieck, 339-344. IEEE Compu te r Society.

Sutherland Je f f , AntonViktorov, and Jack Blount. 2006. Adaptive engineering of large soft-
ware projects wi th distr ibuted/outsourced teams. In Proceedings of the Sixth International
Conference on Complex Systems, ed. Ali Minai, Dan Braha, and Yaneer Bar-Yam. N e w
England Complex Systems Institute.

Sutherland, Jeff, Anton Viktorov, Jack Blount, and Nikolai Puntikov. 2007. Distributed
Scrum: Agile project management wi th outsourced development teams. In Proceedings
of the 40th Annual Hawaii International Conference on System Sciences, 274a. IEEE C o m -
puter Society.

Sy, Desiree. 2007. Adapting usability investigations for agile user-centered design. Journal of
Usability Studies 2 (3): 112—132.

Tabaka, Jean. 2006. Collaboration explained: Facilitation skills for software project leaders.
Addison-Wesley Professional.

. 2007.Twelve ways agile adoptions fail. Better Software, November , 7.

Takeuchi, Hirotaka, and Ikujiro Nonaka. 1986. T h e new new product development game.
Harvard Business Review, January, 137—146.

Tengshe, Ash, and Scott Noble. 2007. Establishing the agile P M O : Managing variabil-
ity across projects and portfolios. In Proceedings of the Agile 2007 Conference, ed. Jutta
Eckstein, Frank Maurer, Rache l Davies, Grigori Melnik, and Gary Pollice, 188—193.
IEEE Compu te r Society.

Thaler, Richard H., and Cass R . Sunstein. 2009. Nudge: Improving decisions about health,
wealth, and happiness. Updated ed. Penguin.

Therr ien, Elaine. 2008. Overcoming the challenges of building a distributed agile or-
ganization. In Proceedings of the Agile 2008 Conference, ed. Grigori Melnik, Philippe
Kruchten, and Mary Poppendieck, 368—372. IEEE Compu te r Society.

462 Reference List

Thomas, Dave. 2005. Agile programming: Design to accommodate change. IEEE Software,
May/June, 14-16.

Loftier, Alvin. 1970. Future shock. R a n d o m House.

Tubbs, Stewart L. 2004. A systems approach to small group interaction. 8th ed. McGraw-Hil l .

Turner, Richard, and Apurva Jain. 2002. Agile meets C M M I : Culture clash or c o m m o n
cause? In Extreme Programming and Agile Methods: XP/Agile Universe 2002, ed. D. Wells
and L.A.Williams, 153—165. Springer.

Unson, J. F. 2008. E-mail to Scrum Development mailing list, May 26. h t tp : / /groups .
yahoo.com/group/scrumdevelopment /message/29481.

Vax, Michael, and Stephen Michaud. 2008. Distributed agile: Growing a practice together.
In Proceedings of the Agile 2008 Conference, ed. Grigori Melnik, Philippe Kruchten, and
Mary Poppendieck, 310—314. IEEE Compu te r Society.

Venners, Bill. 2003. Tracer bullets and prototypes: A conversation with Andy H u n t and
Dave Thomas, part VIII. Artima Developer, April 21. h t tp : / /www.a r t ima .com/ in tv /
tracer.html.

VersionOne. 2008. L h e state of agile development: Lhird annual survey. Posted as a down-
loadable P D F in the Library of Whi t e Papers on the Vers ionOne websi teht tp: / /www.
versionone. c o m / p d f / 3rdAnnualStateOfAgile_FullDataReport .pdf.

Wake,William C. 2003. Refactoring workbook. Addison-Wesley Professional.

Ward, Allen C. 2007. Lean product and process development. Lean Enterprise Institute.

Wenger, Etienne, Richard M c D e r m o t t , and William M. Snyder. 2002. Cultivating communi-
ties of practice. Harvard Business School Press.

Williams, Laurie, Lucas Layman, and William Krebs. 2004. Extreme programming evalua-
tion framework for object-oriented languages, version 1.4. N o r t h Carolina State Un i -
versity Depar tment of Compu te r Science, LR-2 0 0 4 -1 8 .

Williams, Laurie, Anuja Shukla, and Annie I .Anton . 2004. An initial exploration of the
relationship between pair programming and Brooks' law. In Proceedings of the Agile De-
velopment Conference, 11—20. IEEE Compu te r Society.

Williams, Wes, and Mike Stout. 2008. Colossal, scattered, and chaotic: Planning wi th a
large distributed team. In Proceedings of the Agile 2008 Conference, ed. Grigori Melnik,
Philippe Kruchten, and Mary Poppendieck, 356—361. IEEE Compu te r Society.

Woodward, E .V, R . Bowers, V.Lhio, K.Johnson, M. Srihari, and C.J . Bracht. For thcom-
ing. Agile methods for software practice transformation. IBM Journal of Research and
Development 54 (2).

Wright , Graham. 2003. Achieving ISO 9001 certification for an X P company. In Extreme
Programming and Agile Methods: XP/Agile Universe 2003, ed. F Maurer and D. Wells,
43—50. Springer.

http://groups
http://www.artima.com/intv/
http://www

Reference List 463

Yegge, Steve. 2006. Good agile,bad agile. Stevey's Blog Rants, September 2 7 . h t t p : / /
s teve-yegge.blogspot.com/2006/09/good-agile-bad-agile_27.html.

Young, Cynick, and Hiroki Terashima. 2008. H o w did we adapt agile processes to our
distributed development? Overcoming the challenges of building a distributed agile
organization. In Proceedings of the Agile 2008 Conference, ed. Grigori Melnik, Philippe
Kruchten, and Mary Poppendieck, 304—309. IEEE Compu te r Society.

I ndex

Abdelshafi, Ibrahim, 49
rotating ScrumMasters, 123

ability, 31
accountability, 32
developing, 31-33
sharing information, 32-33
targets, 33
training, 32

abnormal termination, 280
acceptance test-driven development. See A T D D
accountability

ability, 32

individuals versus teams, 406
A C H (Achievement Orientation), 359
achieving compliance, 400-401
A C T (Agile Champions Team) ,65
ADAPT (Awareness, Desire, Ability, Promotion,

Transfer), 21
ability

accountability, 32
developing, 31-33
sharing information, 32-33
targets, 33
training, 32

awareness. See awareness
desire, 26

communication, 27-28
engaging employees, 30-31
fear, 29-30
incentives, 29
increasing, 27-30
momentum, 28
sense of urgency, 28
test driving Scrum, 28-29

promotion, 34-35
agile safari, 36
attracting attention, 36-37
communication, 35-36

transfer
facilities, 38-39
finance, 39-10
human resources (HR), 38
marketing, 39

adapting to Scrum, 21-23,41
adding resources, 294
adjusting containers, 223-224
adopting Scrum

levels of, 22

reasons for moving slowly,2 4
Adzic, Gojko,250
agendas, scrum of scrum meetings, 342-343
Agile Champions Team (ACT) ,65

agile:EF, general-purpose agility assessments, 432-433
agile phobias, resistance, 100-101
agile safari, promotion, 36
agility, public display of agility, 4748

reasons for using, 48-19
Allen-Meyer, Glenn,34

improvement community members, 76
all-in pattern

reasons for using, 45-16
versus start-small pattern, 46-47

altering exchanges, 226-227
alternatives to changing scope, 293-294

adding resources, 294
adjusting scope, 295
cutting quality, 294
extending schedules, 294-295

Amazon.com, two-pizza teams, 178
Ambler, Scott, 143
amplifying differences, 224-226
analysts, 137-139
Andersen Consulting, 164
Andersen, Ole, 369
Anderson, Philip, 220,227

self-organization,
Andres, Cynthia, 58

overtime, 288
annual reviews, 405
anticipating resistance, 97-98
architects, 142-143

non-coding architects, 143-144
areas of conflict, Scrum and sesquential development,

391-393
Armour , Phillip,181
artificial intelligence (AI) programmers, 226
assessments

comparative agility assessments, 434-136
creating your own, 437-138
general-purpose agility assessments, 430-431

agile :EF, 432433
Shodan Adherance Survey, 431432

A T D D (acceptance test-driven development), 317-318
details, 318-320

attitudes, expectations (pilot projects),91
attracting attention, promotion, 36-37
attributes of

product owners, 130-131
ScrumMasters, 118-120

automation, testing, 311-313
benefits of, 316-317
manual testing, 314
sprints, 314-316
user interface tests, 313-314

465

466 Index

Avery, Christopher, 7, 61,217
avoiding activity-specific sprints, 269-270
awareness, 23-24

developing
communication, 25
exposure to new people and experiences, 25-26
focusing on reasons for change, 26
with metrics, 25
pilot projects, 26

Babinet, Eric, 348
backlog management, 330
backlogs, improvement backlogs, 6243
balanced scorecards

metrics, benefits of, 113 -I I I
teams, 438-+39

constructing balanced scorecards, 439^140
favoring simple metrics, I II 113

Barnett, Liz, 58
Beach H u t Deli, 205
Beck, Kent, 5 8

overtime, 2 8 8 ^ 8 9
behavior, reinforcing learning, 210-211
Benefield, Gabnelle, 396, 410,415
Biddle, Rober t , 129
big-room approach, spring planning meetings, 346-347
billiard ball sprints, 266
Bio Ware,25
Boehm, Barry, 168,391
boundaries, responsibilities of product owners, 126427
Boy Scout Rule , 159
Bridges, William,30
Brodwall, Johannes,2 64
Brooks, Fred, 158,294
business processes, Scrum and sequential

development, 391
business sponsor engagement, attributes of pilot

projects, 83

Capability Maturity Model Integration (CMMI),
399-400

career paths, human resources, 411412
Carmel, Erran, 362,368
categorizing people, 99
Catmull, Ed,214
C D E (Container, Differences, Exchange), 223225
challenging teams, 211
change, 58

communicating about, 101
hearing f rom leaders, 101-102
hearing f rom peers, 102-103

changing scope, alternatives to, 293-294
adding resources, 294
adjusting scope, 295

cutting quality,294
extending schedules, 294-295

charts, 418
chief product owner, 329
China, cultural differences, 360-361
choosing when to start pilot projects, 84-85
Cichelli, Sharon, 357
Cirillo, Francesco; pomodoro292
Clark, Jonathan, 82
Clark, Kim, 193
C M M I (Capability Maturity Model Integration),

399-400
coaching, ability,32
Cockburn, Alistair, 6257
coherence, distributed teams, 359

cultural differences, 359-361
team subcultures, 362-363
trust, 365-366

collaborating collocated teams, 356-357
collaboration

attributes of ScrumMaster, 119
encouraging through commitment , 215-217

collective ownership, 160-161
commitment

attributes of ScrumMaster, 120
historical velocity, 301-302
team size changes frequently, 303-304
through encouraging collaboration, 215-217
whole- team commitment , 204

commitments, making, 300-301
committing, 296-297

data for, 297-300
communication, 236

awareness, developing,25
about change, 101

hearing f rom leaders, 101-102
hearing f rom peers, 102-103

desire, 27-28
distributed teams

documentation, 372-373
lateral communication, 374
product backlogs, 373

emergent requirements, 242-243
promotion, 35-36
teams, 198

user stories, product backlogs, 238-239
writ ten documents, 236-241

communities of practice, cultivating, 347-348
creating environments for, 350-351
formal or informal, 349-350
participation, 351-352

comparative agility assessments, 434^136
compliance, 396-397

achieving, 400^+01
C M M I (Capability Maturity Model Integration),

399-400

Index 467

ISO 9001, 397-399
component teams, 183-185

building components as needed, 185-186
deciding when to use, 186-187

components, building as needed, 185-186
conditions of satisfaction, 248
conference calls, sprint planning meetings, 378-379
confidence, 217
connectors, 358
Conner , Daryl, 91
conservers, 99
constructing balanced scorecards, 439-140
contact visits, 369-370
containers

adjusting, 223-224
influencing self-organization, 221-223

continuous integration, 162-163
Cooper, Dr. Robert ,394
coordinating work among teams, 340

scrum of scrums meetings, 340-343
synchronizing sprints, 343-345

Cornell, John,417
corporate multitasking, 195
costs, benefits of transitioning, 11-12
Crispin, Lisa, 150,202
Crosby, Philip, 148294
cross-functional teams, documentat ion,253
cultivating communities of practice, 347-348

creating environments for, 350-351
formal or informal, 349-350
participation, 351-352

cultural differences, 362
distributed teams, 359-361
holidays, 361-362

Cunningham, Ward320

daily scrum, distributed teams (meetings), 381-384
dampening differences, 224-226
data

for committing, 297-300
for estimating, 297-300

database administrators, 148
debt, technical debt. See technical debt
Deemer, Pete; pilot projects,92
DEEP (Detailed Appropriately, Estimated, Emergent,

Prioritized), 254
product backlogs, 253-254

deliberately distributed teams, 357-358
delivering something valuable, sprints, 262-265
dependencies, managing, 333-334

integration teams, 337-339
kickoff meetings, 336-337
rolling lookahead planning, 334-336
sharing team members, 337

design, 166-167
adapting to user needs, 167-168
guiding, 169-170

designing teams for learning, 209-210
desire, 26

communication, 27-28
engaging employees, 30-31
fear, 29-30
incentives, 29
increasing, 27-30
momentum, 28
sense of urgency, 28
test driving Scrum, 28-29

desks, 416

details, A T D D , 318320
development, Scrum and sequential development, 391
DHL, 206,207
diehards, 110-112
differences

amplifying, 224-226
dampening, 224-226
influencing self-organization, 221-223

Dinwiddie, George,417
disbanding IC (improvement communities),78
distributed teams

coherence, 359
cultural differences, 359-361
team subcultures, 362-365
trust, 365-366

collaborating collocated teams, 356-357
communication

documentation, 372-373
lateral communication, 374
product backlogs, 373

deliberately distributed teams, 357-358
get-togethers

contact visits, 369-370
seeding visits, 367-369
traveling ambassadors, 370-372

meetings, 375-377
daily scrum, 381-384
low-fidelity videoconferencing, 378
scrum of scrums, 384-385
sharing the pain, 377
small talk, 376

sprint planning meetings, 378-381
sprint reviews and retrospectives, 385-386

subgroups, 366
diversity, finding the right people, 190
Doberman impression, 417
documentation

communication, distributed teams, 372-373
cross-functional teams, 253

Drummond , Brian, 365
Duarte, Deborah, 365
Dunbar, Robin , 332
duration, attributes of pilot pro jects, 83

468 Index

Electronic Entertainment Expod (E3), 289
eliminating knowledge waste, 213-215
emergent requirements, 242-243

product backlog, 242-243
employee engagement,

benefits of, 13-14
desire, 30-31

encouraging collaboration through commitment ,
215-217

end of project testing, 308-310
energizing the system, 231-232
energy, planning, 291292
engaging employees, desire, 30-31
Enterprise Transition Communi ty (ETC), 6365

responsibilities of, 68-70
sprints, 65-66

sponsors and product owners, 66-67
Eoyang, Glenda,68
epics, 247-248
ePlan Services, 259
estimating, 296-297

data for, 297-300
E T C (Enterprise Transition Community) , 6365

responsibilities of, 68-70
sprints, 65-66

sponsors and product owners, 66-67
evolution

influencing, 227-228
defining performance, 229
energizing the system, 231-232
introducing vicarious selection systems, 230-231
managing meaning, 229-230
selecting external environments, 228-229

excellence, striving for, 155-156
collective ownership, 160461
continuous integration, 162-163
pair programming, 164-166
refactoring, 158-160
test-driven development, 156-157

exchanges
altering, 226-227

influencing self-organization, 222-223
executive sponsorship, space (facilities), 415416
expectations, pilot projects, 88-89

attitudes, 91
involvement, 91-92
predictability, 90-91
progress, 89-90

extending
schedules, 294-295
sprints, 278-279

external ScrumMasters, 122
extract method, 159

facilities, 412-413
charts, 418
feedback devices, 418
food and drink, 420
furniture, 416417
privacy, 419
product backlog, 419
proximity of team members, 418
space, 4 1 3 4 1 4

executive sponsorship, 415416
war rooms, 414415

spring backlog, 4 1 8 4 1 9
task boards, 419
transfer, 38-39
whiteboards, 419
windows, 420

facilities groups, 405
failure of pilot projects, 87-88
Farm Credit Services of America, E T C , 65
fear, desire, 29-30
feature teams, 182-184, 188-189

decisionmakers, 188
Fecarotta, Joe,400
FedEx, 206
feedback

sprints, 283
testing at end of project, 309

feedback devices, 418
Feynman, Richard,277
Fichtner, Abby, 8157
finance, transfers, 3 9 4 0
followers, 112-114
food and drink, 420
Ford, Doris, 141
Fowler, Martin, 240,367

traveling ambassadors, 370
frequency of scrum of scrum meetings, 342
Fry, Chris, 32,442
Fuji-Xerox, 127
functional managers, 144-145

leadership, 145-146
personnel responsibilities, 146

furniture, facilities, 416417
future shock, transitioning, 9

gang programming, 158
Garbardini, Juan, 399
Gates, Bill, 231
general-purpose agility assessments, 430-431

agile:EF, 432433
Shodan Adherance Survey, 431432

get-togethers
contact visits, 369-370
seeding visits, 367-369

Index 469

traveling ambassadors, 370-372
Gladwell, Malcolm, 358
goals

ability, 33
IC (improvement communities),76
sprints, 279-281

avoiding redirecting teams, 281-283
Goldman, Sylvan, 103
Goldstein, Professor Jeffrey ,73
Google, improvement communities, 7273
governance, 394-396

non-agile governance, 395-396
Gratton, Lynda, 216,231
Greene, Steve, 32,442
grooming product backlog, 244-245
grouplets, Google,72
grow-and-split pattern, 51-52

reasons for preferring, 53
guidelines for team structure, 197-199
guiding design, 169-170

Hackman, Richard, 212
hand-offs, 214
Haque, Nimat ,414
Hewlett-Packard, 210
High M o o n Studios, 85

overtime, 289
Highsmith, J im,231
Hofstede, Geert, 359
Hogan, Ben, 371
holidays, cultural differences, 361-362
Honious, Jeff, 82
hot spots, 216
Houle, Benoit

promotion, 36
transfers, facilities, 39

human resources (HR), 406
career paths, 411-112
people issues, 412
performance reviews, 408-110
reporting structures, 407

reporting to product owners, 407-108
reporting to ScrumMaster, 407

reviews, 405

team members, removing, 410-111
transfer, 38

humility, attributes of ScrumMaster, 119

IBM
ability, 33
improvement communities, 71

IC (improvement communities), 70^73
catalysts for improvement, 72-73
disbanding, 78

goals, 76
members, 76-77
sprints, 74-75

impending doom, pilot projects, 84-85
importance, attributes of pilot projects, 83
improvement backlogs, 62-63
improvement communities. See IC
improving, 447-148

technical practices, 171-172
incentives, desire,29
increasing

desire, 27-30
passion, 291-292

I N D (Individualism), 359
individuals

accountability, 406
multitasking, 194-195
putting on one project, 191-192
putting on one task, 193-194
resistance, 98-100, 104-106

diehards, 110-112
followers, 112-114
saboteurs, 109-110
skeptics, 106-108

stopping the treadmill, 195-197
influencing

evolution, 227-228
defining performance, 229
energizing the system, 231-232
introducing vicarious selection systems, 230-231
managing meaning, 229-230
selecting external environments, 228-229

self-organization, 220-221
containers, 221-223
exchanges, 222-223

influential, attributes of ScrumMasters, 120
integrating

testing in projects, 309-310
testing in the process, 308

integration teams, 337-339
internal coaching, reasons for preferring, 53
internal ScrumMasters, 122
interrupt-driven organizations, 281
introducing new technical practices, 55

delaying, 56-57
starting soon, 55-56

introducing vicarious selection systems, 230-231
involvement, expectations (pilot projects), 9192
iron triangle, 292-293

changing scope. See changing scope
project context, 296

ISO (International Organization for Standardization)
9001, compliance, 397-398

470 Index

Jain, Apurva,399
Jakobsen, Carsten,400
Jeffries, R o n , 129,418
job satisfaction, benefits of, 13-14
Jobs, Steve, 268269
Johnson , Kent ,400
Johns ton , Andrew,! 43
Jones, D o - W h i l e , 1 6 6
Jones, Q u i n n , 65

Katzenbach, Jon , 202
Keith, Cl in ton, 17, 8 5 2 8 9
Kerievsky, Joshua,57
kickoff meetings, 336-337
knowledge

attributes of ScrumMasters, 120
sharing, 210

knowledge waste, eliminating, 2 1 3 2 1 5
Kofax, 417
Kot ter , John ,5
Krebs, Bill, 431

large p roduc t backlogs, 330-333
Lasorda, T o m m y 2 1 5
lateral communica t ion , distributed teams, 374
Lawrence, Paul, 97,114
leaders, communica t ing about change, 101-102
leadership, 232-233

funct ional managers, 145-146
learning, team learning, 209

eliminating knowledge waste, 213-215
ensuring learing condit ions exist, 209-212
supportive learning environments , creating, 2 1 2 2 1 3

levels of adopt ing Scrum, 22
Lewin, Kurt , 219
Liker, Jeffrey,! 45
low-fidel i ty videoconferencing, 378
L T O (Long-Term Orienta t ion) , 359

MacDona ld , J o h n D. ,27
M a h , Michael , 10
M a n a g e m e n t By Flying Around (MBFA),370
M a n a g e m e n t By Walk ing A r o u n d (MBWA)370
managing dependencies, 333-334

integration teams, 337-339
kickoff meetings, 336-337
rolling lookahead planning, 334-336
sharing team members , 337

managing meaning, 229-230
M a n n , Chris, 13
Manns , Mary Lynn, 6
manua l testing, 314

market ing, transfers, 39
Marsh, Stephen, 163
Mart in , Angela, 129
Mart in , R o b e r t C „ 159
Maurer , Frank, 13
M B F A (Management By Flying Around) ,370
M B W A (Management By Walk ing Around) 370
McCarthy, Cather ine , 291
McCar thy , J im,258
McClel land, Kent ,
measurements , 430. See also assessments

purpose of, 429-430
meet ings

distributed teams, 375-377
daily scrum, 381-384
low-fideli ty videoconferencing, 378
scrum of scrums, 384-385
sharing the pain, 377
small talk, 376
sprint p lanning meetings, 378-381
sprint reviews and retrospectives, 385-386
telling everyone w h o is speaking, 377

one-ci ty retrospectives, 386
regional meetings, 383-384
wr i t ing meetings, 382

members , I C (improvement communit ies) , 7 6 7 7
metrics

benefits of, 443-444
developing awareness,25

milestones, sprints, 259
Miller, Ade,368

lateral communica t ion , 374
Miller, Lynn, 151,273
Mintzberg, Henry , 67
m o m e n t u m , desire,28
M o o r e , Pete,118
mot ivat ion, 216
multi tasking

corporate multitasking, 195
individuals, 194-195

m u m effect, 374

Nessier, Roge r ,379
n e w technical practices, introducing, 55

delaying, 56-57
starting soon, 55-56

Nielsen, Jakob, 153
Noble , James,129
non-agi le governance, 395-396
n o n - c o d i n g architects, 143-144

O C R (optical character recognition), 170
Olson, Edwin , 68,222

Index 471

one-city retrospectives, meetings,386
open space, 336
optical character recognition (O C R) , 170
organizational gravity, 405
originators, 99
Oticon, 369
overcoming resistance

diehards, 111
followers, 113
saboteurs, 109-110
f rom skeptics, 107

overlapping user experience design (UED), 271-272
overtime, 13-14, 287291

productivity and, 290-291

pair programming, 164-166
Pantazopoulos, Stelios, 163
Paranen, Jyri, 150-151
participation, communities of practice, 351-352
passion, increasing, 291-292
patterns

all-in pattern, 44
reasons for using, 4 5 4 6
versus start-small pattern, 4 6 4 7

choosing your approach to spreading
Scrum, 54

grow-and-split pattern, 51-52
reasons for preferring, 53

split-and-seed pattern, 50-51
reasons for preferring, 52-53

start-small pattern, 43
versus all-in pattern, 4 6 4 7
reasons for using, 4 4 4 5

Paulk, Mark, 399
paying down technical debt, 321-322
paying off technical debt, 320-321
PDI (Power Distance Index),359
peers, communicating about change, 102-103
people

categorizing, 99
P M O , 421
Scrum and sequential development, 391

people issues, human resources,412
performance, influencing evolution,229
performance reviews, human resources, 408410
personnel responsibilities, functional managers, 146
PetroSleuth, 16
Philips Research, 52
phones, 416-417
Pichler, R o m a n , 2 5 3
piecemeal transitions, 57
pilot projects

attributes of ideal pilot projects, 82-83
awareness, developing,2 6

choosing when to start, 84-85
expectations, 88-89

attitudes, 91
involvement, 91-92
predictability, 90-91
progress, 89-90

failure of 87-88
selecting, 81-82

pilot teams, selecting, 86-87
planning, 285

energy, 291-292
overtime, 287-291

progressively refining plans, 286-287
rolling lookahead planning, 334-336

Piatt, Lew,210
PMI (Project Management Institute), 292
P M O (project management office), 405,420

people, 421
processes, 4 2 2 4 2 3
projects, 4 2 1 4 2 2
renaming, 423

pomodoro ,292
Poppendieck, Mary, 195
Poppendieck, T o m J 9 5
potentially shippable, working software (sprints), 258-260
potentially shippable guidelines, identifying, 260-262
Power Distance Index (PDI),359
predicatability, expectations (pilot projects), 9091
preparing in this sprint for the next, 266-268
pragmatists, 99
Primavera Systems, 397

E T C sprints, 67
privacy, 419
processes, P M O , 422423
product backlog, 330-333,419

DEEP, 253-254
distributed teams, communicat ion,373
emergen requirements, 330-333,419
grooming, 244-245
iceberg, 243-245
items, 208
refining requirements for, 245-246
starting without specifications, 249-252

cross-functional teams, 253
user stories, 238-239

refining, 246-248
views, 332

productivity
benefits of transitioning, 11-12
overtime and, 290-291
small teams, 180-182

product line owner, 329
product logs, starting without specifications (specifying

by example), 250-251

472 Index

product owners, 125, 128429
attributes of, 130-131
E T C sprints, 66-67
overcoming problems, 132-134
reporting to, 4 0 7 4 0 8
responsibilities of, 125-127
scaling, 327-328

sharing responsibility, dividing functionality, 328329
ScrumMasters as, 131-132
teams, 129-130

programmers, 146-147
progress, expectations (pilot projects), 89-90
project context, iron triangle, 296
Project Management Institute (PMI), 292
project management office (PMO), 405,420

people, 421
processes, 4 2 2 4 2 3
projects, 4 2 1 4 2 2
renaming, 423

project managers, 139-142
projects, P M O , 421422
promotion, 34-35

agile safari, 36
attracting attention, 36-37
communication, 35-36

P T O N , Salesforce.com,77
public display of agility, 4748

reasons for using, 4 8 4 9
versus stealth transition, 50

Putnam, Doug, 180

QSM, 180
quality, 293

benefits of transitioning, 15-16
reducing, 293-294
teams, 323
whole- team responsibility,202

Ramanathan, Rajani, 348
Rayhan, Syed,414
R e e d Elsevier, 82
refactoring, 158-160
referencing success, 396
refining

plans, 286-287
user stories, 246-248

regional meetings, 383-384
reinforcing learning, behavior, 210-211
removing team members, 4 1 0 4 1 1
renaming P M O , 4 2 3
reporting structures, 407

reporting to product owners, 4 0 7 4 0 8
reporting to ScrumMaster, 407

requirements, refining for product backlog, 245246

resistance
agile phobias, 100-101
anticipating, 97-98
individuals, 98-100, 104-106

diehards, 110-112
followers, 112-114
saboteurs, 109-110
skeptics, 106-108

as a useful red flag, 114
waterfallacies, 100-101

resources, adding,294
responsibilities of

E T C , 68-70

product owners, 125-127, 328-329
responsibility

attributes of ScrumMaster, 119
whole- team responsibility, 201-203
writ ten documents, 237

retention, 227
reviews, 405

human resources, 408410
Rico , David, 11,12
Ringelmann, Max, 179
Rising, Linda, 6
Robarts, Jane, 364

documentation, distributed teams, 373
traveling ambassadors, 371

Robbins, Stephen, 179
roles, ScrumMasters. See ScrumMasters
rolling lookahead planning, 334-336
rotating ScrumMasters, 122-123
Rubin , Kenny, 358, 434

saboteurs, 105, 109-110
Sabre Airline Solutions, 187
Salesforce.com, 3

ability, 32
balanced scorecards, 442
communities of practice, 348
kickoff meetings, 336
P T O N , 77
testing automation, benefits of, 316

SAS, career paths, 411412
scaling

product owners, 327-328
sharing responsibility, dividing functionality, 328329

Scrum, 352
spring planning meetings, 345

big-room approach, 346-347
staggering by a day, 345-346

scatter, 213
scenarios of interaction, Scrum and sequential

development, 390-391

Index 473

Schatz, Bob, 49
rotating ScrumMasters, 123

Schubring, Lori, 21
desire, 28
promotion, attracting attention, 36

Schwaber, Ken, 142 266
Schwartz, Tony291
scope, adjusting,295
Scrum, sequential development and, 389-391

areas of conflict, 391-393
coexisting, 393-394
governance, 394-396
scenarios of interaction, 390-391

ScrumMasters, 117-118,142
attributes of 118-120
external, 122
internal ScrumMasters, 122
overcoming problems, 123-125
as product owners, 131-132
reporting to, 407
rotating, 122-123
tech leads as, 121-122

scrum of scrum meetings, 340-343
agendas, 342-343
distributed teams, 384-385
frequency of 342

Sears, 145
seeding visits, 367-369
Seffernick, Thomas,65
selecting

pilot projects, 81-82
pilot teams, 86-87

selecting external environments, 228-229
selection, 227
self-organization, influencing, 220-221

containers, 221-223
differences, 221-223
exchanges, 222-223

self-organizing teams, 189-190,220
finding the right people, 190-191

sense of urgency, desire,28
separating estimating from committ ing

commitment , 300-301
data for, 297-300
historical velocity, 301-302
team size changes frequently, 303-304

sequential development, Scrum and, 389-391
areas of conflict, 391-393
coexisting, 393-394
governance, 394-396
scenarios of interaction, 390-391

Shamrock Foods, 61-62
shared visions, team subcultures, 363

sharing
information, ability, 32-33
knowledge, 210
team members, 337

Shodan Adherance Survey, 431432
size

attributes of pilot projects, 83
of teams, 178-179

skeptics, 105-108
Sliger, Michele, 26-27,393
small talk, meetings (distributed teams), 376
Smith, Douglas, 202
Snyder, Nancy365
social loafing, 179
space (facilities), 413-414

executive sponsorship, 415-416
war rooms, 414-115

specialists, 204-205
split-and-seed pattern, 50-51

reasons for preferring, 52-53
sponsors, E T C sprints, 66-67
spreading Scrum, choosing approach to, 54-55
sprint backlog, 4 1 8 4 1 9
sprint planning meetings

distributed teams, 378-381
scaling

big-room approach, 346-347
staggering by a day, 345-346

sprint reviews and retrospectives, distributed teams
(meetings), 385-386

sprints
automation, 314-316
billiard ball sprints, 266
delivering something valuable, 262-265
E T C , 65-66

sponsors and product owners, 66-67
feedback, 283
goals, 279-281

avoiding redirecting teams, 281-283
IC (improvement communities), 74^75
preparing in this sprint for the next, 266-268
synchronizing, 343-345
team work, 268-269

architecture and database design, 274-276
avoiding activity-specific sprints, 269-270
overlapping U E D (user experience design), 271-272
think holistically, work incrementally, 273274

timeboxes, 276-278
extending, 278-279

working software,258
defining potentially shippable, 258-260
identifying potentially shippable guidelines, 260-262

stage-gate process, 394
stakeholder satisfaction, benefits of transitioning, 16

474 Index

start-small pattern, 43
reasons for using, 4 4 4 5
versus all-in pattern, 4 6 4 7

stealth transition, 4 7 4 8
reasons for using, 49-50
versus public display of agility, 50

Stout, Mike, 187
subgroups, 366
success, referencing, 396
supportive learning environments, creating, 212-213
sustainable pace, 288-290
Sutherland, Jeff, 357, 368,400
S W - C M M (Software Capability Maturity Model), 399
Sy, Desiree, 151271
synchronizing sprints, 343-345

Tabaka, Jean,67
ScrumMasters, 121

targets, ability,33
task boards, 419
T D D (test-driven development), 156-158
team learning, 209

eliminating knowledge waste, 213-215
ensuring learing conditions exist, 209-212

team members
analysts, 137-139
architects, 142-143

non-coding architects, 143-144
database administrators, 148
functional managers, 144-145

leadership, 145-146
personnel responsibilities, 146

programmers, 146-147
project managers, 139-142
removing, 410411
sharing, 337
testers, 148-151
User Experience Designers (UEDs), 151-153

teams
accountability, 406
balanced scorecards, 4 3 8 4 3 9

constructing, 439-440
favoring simple metrics, 4 4 1 4 4 3

communication, 198
component teams, 183-185

building components as needed, 185-186
deciding when to use, 186-187

coordinating among,
scrum of scrums meetings, 340-343
synchronizing sprints, 343-345

cross-functional teams, 253
designing for learning, 209-210
distributed teams. See distributed teams
feature teams, 182-184, 188-189

decision makers, 188

guidelines for structure, 197-199
hand-offs, 206-207
individuals

multitasking, 194-195
putting on one project, 191-192
putting on one task, 193-194
stopping the treadmill, 195-197

motivating challenges, 211
pilot teams, selecting, 86-87
product backlog items, 208
product owners, 129-130
productivity, small teams, 180182
quality, 323

Scrum and sequential development teams, 392
self-organizing, 189-190

finding the right people, 190-191
self-organizing teams, 220
size of, 178-179
specialists, 204-205
split-and-seed pattern, 51
two-pizza teams, 177-178
tying up loose ends, 207-208
whole- team commitment , 204
whole- team responsibility, 201-203

team subcultures
distributed teams, 362-363
reach agreements, 364-365
shared visions, 363

teamwork, sprints, 268-269
architecture and database design, 274-276
avoiding activity-specific sprints, 269-270
finish-to-finish relationships, 270-271
overlapping U E D (user experience design), 271-272
think holistically, work incrementally, 273274

teamwork factors, performance reviews, 408
tech leads as ScrumMasters, 121-122
technical debt

paying down, 321-322
paying off, 320-321

technical practices, improving, 171472
Terashima, Hiroki,376
test automation pyramid, 311-313
test-driven development (TDD), 156-158
test driving Scrum, desire, 28-29
testers, 148-151
testing

automation, 311-313
benefits of, 316-317
manual testing, 314
sprints, 314-316
user interface tests, 313-314

end of project testing, 308-310
integrating into processes, 308-310
manual testing, 314

tests, ATDD. See A T D D

Index 475

Thierren, Elaine,363
Thomas, Dave,! 71
time to market, benefits of transitioning, 14-15
timeboxes, sprints, 276-278

extending, 278-279
Toffler, Alvin9
Topp, Gregory,138
training

ability, 32
P M O (project management office), 421

transfer, 37-38
facilities, 38-39
finance, 39-10
human resources (HR), 38
marketing, 39

transitioning, 5
benefits of 10-11

current process no longer working, 17
employee engagement and job satisfaction, 13-14
productivity and costs, 11-12
quality, 15-16
stakeholder satisfaction, 16
time to market, 14-15

end state is unpredictable, 6-7
future shock, 9
pervasiveness of Scrum, 7-8
to Scrum, 8-9

successful change is not entirely top-down
or bot tom-up, 5-6

transitions
piecemeal, 57
stealth, 4 7 4 8

reasons for using, 49-50
versus public display of agility, 50

traveling ambassadors, 370-372
trust, distributed teams, 365-366
Truxaw, Mat t377

promotion, 36
Turner, Richard, 391

C M M I , 399
two-pizza teams, 177-178

UAI (Uncertainty Avoidance Index),359
U E D (user experience design), 151-154

overlapping, 271-272
unattended interfaces, integation teams, 338
Uncertainty Avoidance Index (UAI),359
United States, cultural differences, 360-361
unobservable features, 264
Unson, J. F., 33365

improvement communities, 73
User Experience Designers (UEDs), 151-153

overlapping, 271-272
user interface tests, 313-314

user stories, 241
product backlogs, 238-239
refining, 246-248

"Valley of Death,"23
variation, 227
velocity, 297-298

calculating averages, 305
historical velocity, 301-302

VersionOne survey, 12,16
vicarious selection systems, 230-231
views, product backlog, 332
visions, responsibilities of product owners,125

Ward, Allen, 213215
war rooms, 414-115
waterfallacies, resistance, 100401
waterfall-at-end, Scrum and sequential development, 390
waterfall-in-tandem, Scrum and sequential development,

391
waterfall-up-front, Scrum and sequential development,

390
Weinberg, Gerald,413
Wenger, Etienne, 349
Wheelwright , Steven, 193
whiteboards, 419
whole- team commitment , 204
whole- team responsibility, 201-203
Williams, Wes,l 87
windows, 420
Wingard, Trond, 84252
Woodward, Elizabeth

ability, 32
E T C , 66

working software,258
sprints

defining potentially shippable, 258-260
identifying potentially shippable guidelines, 260-262

writ ing meetings, 382
writ ten documentation, 236-241

Xebia, 368

Y-Z
Yahoo!

ability, 33
expectations, 91
improvement communities,73

Young, Cynick,376

