. % 1%;@ % %ﬁ#ﬁfﬁf?f . Aetees

& =

=9 -l
2
SUCCEEDING ™
WITH AGILE

SOFTWARE DEVELOPMENT
UsSING SCRUM

Mike COHN

Foreword by Tim Lister

SUCCEEDING
WITH AGILE

Software Development Using Scrum

MIKE COHN

vvAddison-Wesley

Upper Saddle River, NJ e Boston e Indianapolis ® San Francisco
New York e Toronto ® Montreal ® London ® Munich e Paris ® Madrid
Cape Town @ Sydney ® Tokyo ® Singapore ® Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Wihere those designations appear mn this book,
and the publisher was aware of a trademark claim, the designations have been

printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but

make no expressed or implied warranty of any kind and assume no responsibil-
1ty for errors or omissions. No liability is assumed for incidental or consequen-
tial damages 1 connection with or arising out of the use of the information or

programs contained herem.

The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing

focus, and branding interests. For more information, please contact

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales

international@pearson.com
Visit us on the Web: www.informit.com/aw
The Library of Congress Cataloging-in-Publication data is on file.
Copyright © 2010 Mike Cohn

All rights reserved. Printed in the United States of America.This publication 1s
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or

likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671-3447

ISBN-13:978-0-321-57936-2

ISBN-10: 0-321-57936-4

Text printed in the United States on recycled paper at Edwards Brothers in
Ann Arbor, Michigan.

Second printing January 2010

Editor-in-Chief

Karen Gettman

Executive Editor
Chris Guzikowski

Senior Development
Editor
Chris Zahn

Managing Editor
Kristy Hart

Project Editor
Jovana San Nicolas-Shirley

Copy Editor
San Dee Phillips

Indexer
Lisa Stumpf

Proofreader
Karen Gill

Publishing Coordinator
Raina Chrobak

Cover Designer
Alan Clements

Compositors
Jake McFarland
Bumpy Design

mailto:corpsales@pearsontechgroup.com
mailto:international@pearson.com
http://www.informit.com/aw

Contents

FOREWORDttt i it e s e et e e eeee e e e Xvi
ACKNOWLEDGMENTS . - - & & v« s v m s s m m s mmnmemsnenensenenns XIX
ABOUT THE AUTHOR. . - - & i it i e et i s e e e e e e e e e nm - XX
INTRODUCTION ittt it it s it s e se e nsneeneannnn XXV
Partl GettingStarted............... 1

1 Why Becoming Agile Is Hard (ButWorth It). 3

Why Transitioning IsHard 5

Why It's Worth the Effort 10

Looking Forward. 17

Additional Reading. 18

2 ADAPTING O SCIUM ..\ttt 21
AWETBNESS . .o 23

DESITE . o 26

Ability 31

Promotion 34

Transfer. ..o 37

Putting It All Together. 40

Additional Reading. 41

3 Patterns for Adopting Scrum. ... 43

Start Smallor Go AllIn. ... o 43

Public Display of Agility or Stealth. 47

Patterns for Spreading Scrum 50

Introducing New Technical Practices. 55

One Final Consideration. o 57

Additional Reading. 58

4 lterating Toward Agility ... 61

The Improvement Backlog 62

The Enterprise Transition Community 63

Improvement Communities. 70

One Size Does Not FitAll. oo 79

Looking Forward 79

Additional Reading. 80

Xi

Part 1l

Part Il
10

Your First Projects. 81

Selectinga Pilot Project. 81
Choosing the Right Timeto Start. 84
SelectingaPilotTeam 86
Setting and Managing Expectations 88
IWsdustaPilot 92
Additional Reading. 92
Individuals 95
Overcoming Resistance. ...t 97
Anticipating Resistance 97
Communicating About the Change. 101
The Hows and Whys of Individual Resistance. 104
Resistance asa UsefulRedFlag 114
Additional Reading. 115
New Roleso 117
The Role of the ScrumMaster 117
The Product Owner.o 125
New Roles, Old Responsibilities 134
Additional Reading. 135
Changed Roles. ... 137
Analysts .o 137
Project Managers. 139
Architects . ..o 142
Functional Managers 144
Programmers. 146
Database Administrators 148
TOStOIS 148
User Experience Designers. o 151
Three Common Themes 153
Additional Reading. 153
Technical Practices ...t 155
Strive for Technical Excellence.o o 155
Design: Intentional yet Emergent. L. 166
Improving Technical Practices Is Not Optional. 171
Additional Reading. 172
TeamsS . oo 175
Team Structuret 177
Feed Them Two Pizzas 177

Favor Feature Teams. 182

11

12

13

14

15

Self-Organizing Doesn’'t Mean Randomly Assembled. 189

Put People on One Project 191
Guidelines for Good Team Structure 197
Onward . ..o 199
Additional Reading. 199
Teamworko 201
Embrace Whole-Team Resposibility. 201
Rely On Specialists but Sparingly 204
Do a Little Bit of Everything All the Time. 206
Foster Team Learning o i 209
Encourage Collaboration Through Commitment 215
All Together Now 217
Additional Reading. 218
Leading a Self-Organizing Team.cooin... 219
Influencing Self-Organization. 220
Influencing Evolution 227
There's More to Leadership Than Buying Pizza 232
Additional Reading. 233
The ProductBacklog ... 235
Shift from Documents to DisCUSSIONS 236
Progressively Refine Requirements 242
Learn to Start Without a Specification. 249
Make the Product Backlog DEEP 253
Don'tForgettoTalk. 254
Additional Reading. 254
SPIINES . 257
Deliver Working Software Each Sprint 258
Deliver Something Valuable Each Sprint............... 262
Prepare in This Sprint forthe Next. 266
Work Together Throughout the Sprint 268
Keep Timeboxes Regularand Strict. 276
Don't Change the Goal 279
Get Feedback, Learn, and Adapt 283
Additional Reading. 284
Planning 285
Progressively Refine Plans 286
Don't Plan on Overtime to SalvageaPlan................................ 287
Favor Scope Changes When Possible 292
Separate Estimating from Committing. 296
SUMMAIY. . oot e 305
Additional Reading. 305

xiii

Xiv

16

Part IV
17

18

19

20

Integrate Testing into the Process 308
Automate at Different Levels. ... o 311
Do Acceptance Test=Driven Development. 317
Pay Off Technical Debt. 320
QualitylsaTeam Effort 323
Additional Reading. 323
The Organization...............ccouiiiin... 325
Scaling Scrum ... 327
Scaling the Product Owner. 327
Working with a Large Product Backlog 330
Proactively Manage Dependencies 333
Coordinate Work Among Teams. 340
Scaling the Sprint Planning Meeting 345
Cultivate Communities of Practice. 347
SerumBoes Scale. 352
Additional Reading. 353
Distributed Teams 355
Decide How to Distribute Multiple Teams. 356
Create CONBIENCE. ... o 353
Get TogetherinPerson. 367
Change How You Communicate. o, 372
MeBLINGS. .. . 375
Proceed with Caution. 386
Additional Reading. 387
Coexisting with Other Approaches 389
Mixing Scrum and Sequential Development 389
GOVEINANCE. .. oo 3%
ComplianCe.o 396
Onward . ..o 402
Additional Reading. 402
Human Resources, Facilities,and the PMO 405
Human Resources.o 406
Facilities . ..o 412
The Project Management Office. 420
The BottomLine 424
Additional Reading. 424

Part V
21

22

NexXt Steps . .o v v i e e e 427

Seeing How Far You've Comeooiiiinnt. 429
The Purpose of Measuringo 429
General-Purpose Agility Assessments. 430
Creating Your Own AsSessment. 437
A Balanced Scorecard for Scrum Teams 438
Should We Really Bother with This? 443
Additional Reading. 444
Youre NotDoneYet ... 447
Reference Listo 449
INdEX . 465

XV

Foreword

All the time I hear people talking about software projects as journeys, and I think
they are implying that software projects are not just journeys, but they are jour-
neys into the unknown. We start with funding from a sponsor, muster together a
stout-hearted crew, head out in what we guess might be a useful direction, and the
rest 1s The Odyssey. We live the tales of the brave Odysseus: tales of Lotus Eaters,
the Cyclops, Circe, the Sirens, Scylla, and Calypso. We succeed or fail only with
the help or rage of the gods. How wonderfully romantic, and how perfectly silly.

[think that the more appropriate analogy along this line 1s the project as an
expedition. We have a goal or a short list of goals. We have some well-proven maps;
we have some vaguer ones, too. We have the advice and journals from those who
have been out there and made it back to tell their stories.

We don’t walk out the door and face the unknown; but on the other hand,
there are some big question marks, and these bring us into a high-risk position. We
accept these risks, because if the expedition can succeed there are surely significant
rewards. We have skills, but there are uncertainties.

How do we deal with this? I recommend that we look back, oh, about 300
years, to the York Factory on Hudson Bay in Canada. At that time this was the
headquarters of the Hudson Bay Company. The Hudson Bay Company’s main
line of business was to be the supplier of all necessary provisions for fur traders
going out on, you guessed it, expeditions, from Hudson Bay. The fur traders devel-
oped a great way to start an expedition, and it was called “The Hudson Bay Start.”
Having done their one-stop shopping at The Company, the fur traders would go
out of Hudson Bay only a mile or two and set up camp. Wihy? Certainly not to set
up traps; they wanted to discover what they forgot to bring while they were less
than an hour’s hike back into town! Being the excellent project person that you
are, you know that for the vast majority of time the leather-faced expert fur trader
would reappear for another shopping trip.

Wihat the heck does all this have to do with the book in your hands right
now? Wath Succeeding with Agile, Mike Cohn has delivered The Hudson Bay Start
for agile development. This is it. This is a weather-beaten experienced fur trapper
giving you the checklist to work through before you begin your expedition. By
reading this book, you will find that Mike brings up issues that you never thought
of, offers advice on how you might handle situations, and helps you define new
roles on your team.

Xvii

Don’t be the only person on your team to read this book; with self-organizing
teams anyone can be expedition leader at any given time. This book 1s going to
lead to many very interesting discussions; [guarantee it.

[worry a bit that I am saying that Mike has handed you a book without
choices for you. He points out early and often that you must make your choices
on individual, team, and organizational issues.

Succeeding with Agile 1s not about having a single successful project; it 1s about
how agility can transform an organization. I guess in Hudson Bay terms, it’s about
how to have a great career as Voyageurs.

If you have any lingering doubts about Mike as an experienced expedition
leader, notice that his company 1s Mountain Goat Software.

Tim Lister
Principal, The Atlantic Systems Guild, Inc.
New York City

Acknowledgments

owe a tremendous debt to my official reviewers: Brad Appleton, Johannes Brod-
wall, Rachel Davies, Ron Jeffties, Brian Marick, and Linda Rising. They read and
commented on the entire manuscript, sometimes multiple times. Each offered
tremendously valuable insights that have immeasurably improved the book.

Special thanks also to Tod Golding, Kenny Rubin, Rebecca Traeger, and my
wife, Laura, who spent hours discussing the table of contents with me.There were
times we thought those conversations would never end.

There’s no way to thank Rebecca Traeger enough. She 1s a miracle worker as
an editor, adviser, and sounding board. As she 1s the former editor for the Agile
Alliance and the Scrum Alliance, I contend that she 1s the best-read person in the
agile world. She’s also the world’s greatest editor. She worked wonders with this
book, doing more slicing and dicing than aVeg-O-Matic on a late-night infomer-
cial. This book is significantly better for her involvement in it.

Wow A foreword by Tim Lister. 'm incredibly honored. I've known Tim for
a handful of years, and so I e-mailed him to ask if he’d write the Foreword. I didn’t
know it, but he was vacationing at the time I e-mailed him and so he replied a
week later. I saw the e-mail reply first on my phone, which only displayed the
first two lines. Before I tapped the message to see the full e-mail, I had flashbacks
of getting college admission letters—would it be good news or bad news? I was
ecstatic when he said yes. I was then doubly thrilled when he had such nice things
to say in his Foreword. Thank you, Tim.

My assistant, Jennifer Rai, provided invaluable help throughout this project.
From tracking down references, to getting permissions, to keeping my research
organized, she did 1t all. I appreciate her dedication, professionalism, and the con-
sistent thoroughness of her work. I couldn’t ask for more in an assistant.

For the past two years I have been posting chapters to this book’s website at
www.SucceedingWithAgile.com.I have been fortunate to have had a wonder-
ful group of people download, review chapters, and provide comments to me. [
would like to thank the following individuals for reading draft chapters posted on
that site or for providing anecdotes that made their way into the book: Fridgof
Ahlswede, Peter Alfvin, Ole Andersen, Joshua Boelter, Mikael Boman, Rowan
Bunning, Butterscotch, Bill Campbell, Mun-Wai Chung, Scott Collins, Jay Conne,
John Cornell, Lisa Crispin, Alan Dayley, Ken DeLong, Scott Duncan, Sigftid
Dusci, Mike Dwyer, Pablo Rodriguez Facal, Abby Fichtner, Hillel Glazer, Karen
Greaves, Janet Gregory, Ratha Grimes, Geir Hedemark, Fredrik Hedman, Ben
Hogan, Matt Holmes, Sue Holstad, Benoit Houle, Eric Jimmink, Quinn Jones,

http://www.SucceedingWithAgile.com

Martin Kearns, Jeft Langr, Paul Lear, Lowell Lindstrom, Catherine Louis, Rune
Mai, Artem Marchenko, Kent McDonald, Susan Mclntosh, Alicia McLain, Ulla
Merz, Ralph Miner, Brian Lewis Pate, Trond Pedersen, David Peterson, Roman
Pichler, Walter Ries, Adam Rogers, René Rosendahl, Kenny Rubin, Mike Russell,
Michael Sahota, George Schlitz, Lori Schubring, Ratfi Simonian, Jamie Tischart,
Ryan Toone, Matt Truxaw, J. E Unson, Srinivas Vadhri, Stefan van den Oord,
Bas Vodde, Bill Wake, Daniel Wildt, Trond Wingird, Riidiger Wolf, Elizabeth
Woodward, Nick Xidis, Alicia Yanik, and Mauricio Zamora.

Thank you to Jeft Schaich who did a wonderful job creating the illustrations
for this book. When [was first introduced to Jeft, I was told he might be as much
of a perfectionist as | am. He may be, and his drawings show it.

Stephen Wilbers, author of Keys to Great Writing, provided some much needed
editing and advice early on. I am thankful for his suggestions and encouragement.

As always, the staft at Pearson was wonderful to work with. Chris Guzikowski
showed tremendous patience with me, especially early on when I refused to com-
mit to a deadline of any sort. Chris Zahn provided excellent guidance during those
early days when I was working to organize what [wanted to say. Jake McFarland
designed the mterior of the book and did a wonderful job. Jake also showed tre-
mendous patience with my endless barrage of InDesign questions, for which [am
extremely thankful. Raina Chrobak was extremely helpful throughout the project,
but especially down the home stretch, which is always a frantic period.

Jovana San-Nicolas Shirley was fantastic as this book’s project editor. She kept
everything moving smoothly, coordinating each of us involved in the final months
of the project. I appreciate her willing replies to my e-mails at all hours of the day
and night. San Dee Phillips did a top-notch (or 1s it top notch?) job for the final
copy edit. I thank her for going over the manuscript at exactly the right level and
for so carefully finding all the last little errors that really polished the text.

Thank you as well to cover designer Alan Clements. What a beautiful cover!
Can you judge a book by its cover? I hope so based on the number of people who
have already told me they love this one. Lisa Stumpf did a marvelous job with our
indexing. She herself should be indexed under thorough and meticulous. Karen
Gill did the final proofreading and was fantastic at finding all the little inconsisten-
cies and problems. Kim Scott of Bumpy Design took care of the final page com-
position. I appreciate her joining at the end to help all of us make the deadline.

I would also like to thank Chris Guzikowski and Karen Gettman of Pearson
for offering me the opportunity to edit a Signature Series of books for Addison-
Wesley. I can still clearly remember sitting at Ken Kaplan’s place in Ben Lomond
in the woods of California in 1985 reading C Primer Plus. It was written by
Stephen Prata but was part of a series by Mitchell Waite. I didn’t know what a se-
ries editor did, but it sounded important and cool. Now I'm learning what a series
editor does and am incredibly honored by their confidence in me.

My thanks also go to Lyssa Adkins, Lisa Crispin, Janet Gregory, Clinton Keith,
Roman Pichler, and Kenny Rubin. Each has written or 1s writing a book that waill
be part of this series. We have had many discussions about writing, agile, how to
make certain points, and more. Through these discussions, each has improved this
book.

A special thank you to all of my clients and to everyone who has ever at-
tended one of my classes. I'm not smart enough to sit around, think big thoughts,
and come up with great ideas on my own. Everything [know ['ve learned from
working with teams and observing what worked or from talking with participants
in classes. This book would be four pages long if not for you. Thank you.

Thank you to Ken Schwaber, Jeff Sutherland, Mike Beedle, Jetf McKenna,
Martine Devos, and others who were there in the earliest days of Scrum. Without
them writing about Scrum, presenting about it at early conferences, and talking
about 1t, Scrum wouldn’t be what it 1s today. Thank you as well to all of the train-
ers and coaches in the Scrum community who push so hard to improve how we
do Scrum while pushing just as hard to keep Scrum from becoming more than
the simple framework it 1s. My conversations with you so many of you have influ-
enced me in more ways than you know

There’s no way to thank my family enough for all the sacrifices they made
while allowing me the time to work on this book. I couldn’t ask for a more won-
derful and loving wife than I have in Laura. Our daughters, Savannah and Delaney,
remain my practically perfect precious princesses. I cherish every moment with
them. And with this book finally done, I promise them many more hours and days
doing all the things we haven’t done enough of lately—now it’s my turn to make
you the ones who know how far love goes.

About the Author

Mike Cohn is the founder of Mountain Goat Software, through which he pro-
vides training and consulting on Scrum and agile software development. Mike
specializes in helping companies adopt Scrum and become more agile as a way
of building extremely high performance development organizations. In addition
to this book, he 1s the author of User Stories Applied for Agile Software Development,
Agile Estimating and Planning, and books on Java and C++ programming.

With more than 25 years of experience, Mike has previously been a technol-
ogy executive in companies of various sizes, from start-up to Fortune 40. He has
also written articles for Better Software, IEEE Computer, Cutter I'T" Journal, Software
Test and Quality Engineering, Agile Times, and the C/C++ Users Journal. Mike 1s a
frequent speaker at industry conferences and 1s a founding member of the Agile
Alliance and Scrum Alliance. He 1s also a Certified Scrum Trainer, having co-
taught the first Certified ScrumMaster class with Ken Schwaber in May 2003.

For more information, visit www.mountaingoatsoftware.com. Mike main-
tains a popular blog at blog. mountaingoatsoftware.com. He can also be found on
Twitter as mikewcohn and by e-mail at mike@mountaingoatsoftware.com.

http://www.mountaingoatsoftware.com
mailto:mike@mountaingoatsoftware.com

Introduction

his 1s not a book for those who are completely new to Scrum or agile. There
are other books, classes, and even websites for that. It you are completely new
to Scrum, start with one of those.! Nor 1s this a book for purists. They can find
many blogs that will argue the one, true way of agile or Scrum. This 1s a book for
pragmatists. It 1s for those who have started with Scrum and then encountered
problems or for those who have not yet started with Scrum but who know they
want to. They don’t need to read again about how to draw a burndown chart or
what three answers each person gives at the daily scrum. They need advice on the
harder stufft—how to introduce and spread Scrum, how to get people to let go of
doing a big design at the start of the project, how to deliver software that works
by the end of each sprint, what managers do, and more. If these concerns sound
familiar, this 1s a book for you.

To answer these questions, this book draws on my experience with Scrum
over the past 15 years, but especially over the last 4. For the last 4 years, every
evening after I spent the day with one of my clients, I would go back to my hotel
room and make notes about the problems they were facing, the questions they
asked, and the advice I gave. I then followed up, either with return visits or e-mails.
I wanted to know for sure what advice was working to solve which problems.

As I collected the questions, problems, and advice, I was able to look for com-
mon themes. Some obstacles were completely unique to one client or one team.
Others were more prevalent and repeated across many teams and organizations.
It 1s these more universal problems—and my advice on overcoming them—that
form the basis of this book. This advice 1s particularly evident in two ways: First,
most chapters include boxes labeled Things to Try Now. These re-create the advice
I found myself giving most often or that was most helpful in particular situations.
Second, most chapters also include boxes labeled Objection. I have tried in these
boxes to reproduce a typical conversation in which someone disagreed with the
point I was making at the time. As you read these objections, try to hear the voice
of some of your coworkers. I suspect you have heard many of the same objections.
In these boxes, you will see how I've sought to overcome them.

1 A good starting point 1s www.mountaingoatsoftware.com/scrum.

http://www.mountaingoatsoftware.com/scrum

xXxvi

Introduction

What Else I've Assumed About You

Beyond assuming that you understand the basics of Scrum and now want to either
introduce it into your organization or get good at it, [assume that you have some
influence within the organization. That doesn’t mean I have aimed this book at
directors, vice presidents, and the CEQO. The type of influence I am assuming 1s
just as likely to come from your personality and individual credibility with your
coworkers as it 1s to come from whatever job title 1s on your business card. Sure,
having a fancy title can help. But as we’ll see, the type of influence needed to suc-
ceed with Scrum more often comes from opinion leaders.

How This Book Is Organized

Wihen I began this book four years ago, my working subtitle was Getting Started
and Getting Good, as those were the two things I really wanted to help with. In
collecting anecdotes and giving advice, I realized that getting started and getting
good at Scrum are the same thing. There are not separate techniques we apply to
start and then different techniques we use to get good at it.

Part I 1s about getting started—it includes advice on whether to start small
or convert everyone at once, how to help people move from being aware that a
new process 1s needed to desiring change to having the ability to do it, and how
to select initial projects and teams. You will use the basic mechanisms introduced
in this section not only to get started but also to get good. Among these are the
improvement communities and improvement backlogs of Chapter 4, “Iterating
Toward Agility.”

In Part II, I focus on individuals and the changes each needs to make as part
of the process of adopting Scrum. Chapter 6,“Overcoming Resistance,” describes
the type of resistance some individuals may exhibit. In it, I offer advice for think-
ing about why someone is resistant and then provide guidance on how to help
the person get past the resistance. Chapters 7 and 8 describe the new roles that
exist on a Scrum project and the changes necessary in the traditional roles, such as
programmer, tester, project manager, and so on. Chapter 9, “Technical Practices,”
describes some of the technical practices (continuous integration, pair program-
ming, test-driven development, and so on) that should be used or at least ex-
perimented with and that can change much of how individuals approach their
day-to-day work.

In Part III, we expand outward from individuals to teams. We look first at how
to structure teams to best achieve the benefits of Scrum. Next,in Chapter 11,“Team-
work,”I cover the nature of teamwork on a Scrum project. In Chapter 12,“Leading
a Self-OrganizingTeam,” we look at what it means to lead a self-organizing Scrum
team. In that chapter, I provide specific advice for what ScrumMasters, functional

A Note on Some Terms

managers, and other leaders can do to help a team self-organize for success. Chap-
ters 13—15 round out Part Three with a discussion of sprints, planning, and quality.

Part IV expands our focus outward once more, this time to the organization.
In Chapter 17,“Scaling Scrum,” we take an extended look at what 1s necessary to
scale Scrum up to work on large, multi-team projects. In Chapter 18, “Distributed
Teams,” we consider the additional complexities of distributed teams. Then, in
Chapter 19,“Coexisting with Other Approaches,” we add yet more complexity by
discussing how to make Scrum work when part of the project uses a sequential
process or when there are compliance or governance requirements. Part IV con-
cludes with Chapter 20, “Human Resources, Facilities, and the PMQO),” focusing
on special considerations of the impact of Scrum on an organization’s human
resources, facilities, and project management office groups.

Part V contains two chapters. Chapter 21, “Seeing How Far You’ve Come,”
summarizes various approaches to measuring how far an organization has pro-
gressed in becoming agile. Chapter 22, Youre Not Done Yet,” concludes the book
with the reminder that being agile requires continuous improvement. It doesn’t
matter how good you are today; to be agile you must be better next month.

A Note on Some Terms

As with most things, writing about Scrum 1s harder than talking about it. It 1s too
easy to misinterpret a sentence or take one sentence out of context.To avoid these
problems, I have tried to be careful and precise in my use of certain terms. I use
the word developer, for example, to refer to anyone on the development side of
the project. This includes programmers, testers, analysts, user experience designers,
database administrators, and so on.

The word team poses its own challenges. It, of course, includes the develop-
ers, but does team include the ScrumMaster and product owner? Naturally, this
depends on the context. When I have wanted to be especially clear, I use whole
team to refer to everyone: developers, product owner, and ScrumMaster. However,
slavish use of whole team would have reduced the readability of the book. So you
will encounter ream as well, but usually in places where the context makes it suf-
ficiently clear which group I'm referring to.

In referring to Scrum and agile teams, I have also needed a term to refer to
those teams that are neither. In various places, I have used sequential, traditional, and
even non-agile. Each conveys a slightly different meaning and 1s used appropriately.

XXvii

xxviii

Introduction

How to Use This Book

Many books have a heading like the one above this sentence. But those headings
usually say How to Read This Book. The best way to read this book is to use it.
Don’t just read it. When you encounter a Things to Try Now section, try some of
them. Or note them and try them at your next retrospective or planning meeting,
it that 1s what [recommended.

[t is not necessary to read the book in order. In fact, there could well be entire
chapters you do not need to read. If in your organization’s quest to become good
at Scrum, you have no significant problems with planning and no distributed
teams, then skip or skim those chapters. I do, however, recommend that everyone
read at least the first four chapters and read them in order. They lay the foundation
for much of what follows.

In Chapter 4 you will be introduced to the idea of improvement communi-
ties and improvement backlogs. An improvement community 1s a group of like-
minded individuals who are passionate about driving improvements in a particular
area. One improvement community could form when three people passionate
about the product backlog decide to collect best practices and advice to share
across teams. Another improvement community could include hundreds of people
interested in improving how your organization tests its applications. An improve-
ment backlog is exactly what it sounds like—a prioritized list of things that an
improvement community would like to help the organization get better at.

One of my hopes 1s that improvement communities—including the Enter-
prise Transition Community that guides and energizes the transition effort—will
use this book to load their improvement backlogs. In fact, many of the top-level
section headings have been deliberately worded so that those headings can go right
onto an improvement backlog. As examples, consider “Shift from Documents to
Discussions”in Chapter 13,“Prepare in This Sprint for the Next” in Chapter 14,and
“Automate at Different Levels” in Chapter 16.

As a long-time Scrum trainer and consultant, I have worked with hundreds
of teams and organizations, and I've come to believe that success with Scrum i1s
possible for every organization. Some will have a harder time than others. Some
will be challenged by a rigid corporate culture. Others will confront entrenched,
difficult personalities facing personal loss. The lucky ones will have supportive
leadership and passionately engaged employees. What each of these organizations
will have in common, though, is the need for pragmatic and proven advice. I have
written this book with the hope of providing it.

PART |

Getting Started

Wiallingness to change 1s a strength
even 1if it means plunging part of the company
into total confusion for a while.

—TJack Welch

Chapter

Why Becoming Agile Is Hard (But Worth It)

any software development organizations are striving to become more agile.
And who can blame them? Successful agile teams are producing higher-quality
software that better meets user needs more quickly and at a lower cost than are
traditional teams. Besides, who wouldn’t want to be more agile? It just plain
sounds good, doesn’t 1t? It 1s almost as though one cannot be too thin, too rich, or
too agile. But beyond the buzzword and hype, organizations that take becoming
agile seriously by adopting a process such as Scrum are seeing dramatic benefits.

They are seeing significant gains in productivity with corresponding decreases
in cost. They are able to bring products to market much faster and with a great-
er degree of customer satistaction. They are experiencing greater visibility into
the development process, leading to greater predictability. And for them, out-of-
control, will-it-ever-be-done projects have become a thing of the past.

One company to realize these benefits by adopting Scrum 1s Salesforce.com.
Founded in 1999 1n a San Francisco apartment, Salesforce.com is one of the true,
lasting dot-com-era success stories. With revenue of more than $450 million and
2,000 employees in 2006, Salesforce.com had noticed the frequency of its releases
had dwindled from four a year to one a year. Customers were getting less and
waiting longer to get it; something needed to be done. The company decided
to transition to Scrum. During the first year of making the switch, Salesforce.
com released 94% more features, delivered 38% more features per developer, and
delivered over 500% more value to its customers compared to the previous year
(Greene and Fry 2008). In the ensuing two years, revenue more than doubled to
more than $1 billion. With results like these, it is not surprising that so many or-
ganizations have transitioned to Scrum. Or at least tried to.

[say “tried to” because transitioning to Scrum and other agile methods is
hard—much harder than many companies anticipate. The changes required to
reap all of the rewards being agile can bring are far reaching. These changes de-
mand a great deal from not only the developers but the rest of the organization
as well. Changing practices 1s one thing; changing minds is quite another. It 1s my
aim 1n this book to show not only how to transition well but also how to succeed
long term.

Chapter 1 Why Becoming Agile Is Hard (But Worth It)

I've personally witnessed several failed agile adoptions that could have been
prevented. The first was in a company that had spent more than a million dollars
on its transition effort. Executives brought in outside trainers and coaches and
hired five people into an “Agile Office” to which new Scrum teams could turn
for advice. The company’s failure was the result of thinking that the implications
of adopting Scrum would be restricted to only the development organization. The
executives who initiated this transition thought that educating and supporting
developers would be sufticient. They failed to consider how Scrum would touch
the work of salespeople, the marketing group, and even the finance department.
Without changes to these areas, organizational gravity pulled the company back
where it had started.

For completely different reasons, Josef ultimately failed at introducing Scrum
to his company. A newly promoted and first-time project manager, Joset was in-
stantly attracted to Scrum because it fit his natural management style. Josef easily
convinced his team—who had all been his peers as little as one month before—to
try Scrum on their new project. The project was wildly successful, earning ac-
colades for the team and winning Josef the chance at a2 much larger project. Josef
introduced the new project team to Scrum, and most members were willing to
try the new approach. Although those working on the project were happy to
use Scrum, some of the functional managers to whom they reported got ner-
vous about what Scrum might mean to their careers. Josef’s luck ran out. The
functional managers—in particular the directors of quality assurance and database
development—banded together and convinced the vice president of engineering
that Scrum was inappropriate for projects of the complexity and importance be-
ing done in their company.

Caroline fared a little better. A vice president of development in a large data
management company, Caroline had more than 200 developers in her organiza-
tion. After seeing the benefits of Scrum on one project, she excitedly launched
an initiative to introduce Scrum across her division. All employees were provided
with training or coaching. Within a few months nearly all teams were producing
working software at the end of each two-week sprint. This was great progress.
When I visited this company a year later, though, the employees had failed to
make any additional headway. To be sure, teams were producing higher-quality
software and doing it a bit faster than they had before starting with Scrum, but
her company’s gains were only a fraction of what they could have been. Caroline’s
company had forgotten that continuous improvement is part of Scrum.

Frightening, 1sn’t it? Each of these failures was a well-intentioned effort to
transition to Scrum. Yet all the good intentions in the world could not keep them
from failing. Don’t worry, though. Transitioning to Scrum may be hard, but it’s
entirely possible with the right approach. In this chapter we examine why transi-
tioning to any agile development process, including Scrum, 1s especially difficult.

Why Transitioning Is Hard | 5

We detail some of the challenges that derailed the companies I've mentioned.
Most important, though, we look at the reasons why the benefits of becoming an
agile organization are more than worth the effort.

Why Transitioning Is Hard

All change 1s hard. I've seen employees in an uproar over something so small as a
change in their company’s healthcare plan. Larger changes can be even more pain-
ful. But there are certain attributes of transitioning to Scrum that make it more
difficult than most other changes. They are as follows:

e Successful change 1s not entirely top-down or bottom-up.
e The end state is unpredictable.

e Scrum is pervasive.

e Scrum is dramatically different.

e Change 1s coming more quickly than ever before.

e Best practices are dangerous.

Successful Change Is Not Entirely Top-Down or Bottom-Up

Successtul organizational change cannot be fully top-down or bottom-up. In a
top-down change, a powerful leader shares a vision of the future and the orga-
nization follows the leader toward that vision. Imagine a charismatic, respected,
and powerful leader such as Steve Jobs telling his Apple employees that they are
moving beyond computer hardware and software to dominate digital music. His
reputation and style might have pointed the company in a new direction, but that
alone would not have been enough to pull off such a monumental feat. Change
management expert John Kotter agrees.

No one individual, even a monarch-like CEQ, 1s ever able to
develop the right vision, communicate it to large numbers of
people, eliminate all the key obstacles, generate short-term wins,
lead and manage dozens of change projects, and anchor new ap-
proaches deep in the organization’s culture. (1996, 51-52)

By contrast, in a bottom-up change, a team or some individuals decide that a
change 1s needed and they set about making it happen. Some teams undertake a
bottom-up change with an “ask for forgiveness later” attitude. Others flaunt that
they are breaking the rules. Still others attempt to fly under the corporate radar
as long as possible.

Most successful changes, and especially a change to an agile process like
Scrum, must include elements of both top-down and bottom-up change. Mary

Chapter 1 Why Becoming Agile Is Hard (But Worth It)

Lynn Manns and Linda Rising agree, writing in Fearless Change,*““We believe that
change 1s best introduced bottom-up with support at appropriate points from
management—both local and at a higher level” (2004, 7). An organization at-
tempting to transition to Scrum without support from the top will encounter
resistance that cannot be overcome from below This usually occurs as soon as the
new Scrum process begins to affect how areas outside the original team do their
work. In response, middle managers protect their departments by striking out
against changes created by Scrum. Top-down support will be needed to remove
these kinds of impediments and obstacles.

Similarly, without bottom-up engagement, the transition will feel like sitting
under a ceiling fan in an open-air restaurant in Mexico: just a bunch of hot air
blowing down from above. When this happens, individuals resist being told what
to do. Bottom-up participation will be needed because it will be the individual
team members who work through the issues of discovering how Scrum will work
best within their organization.

Key to any successful adoption of Scrum will be combining elements of both
bottom-up and top-down change.

The End State Is Unpredictable

Perhaps you’ve read a book on Extreme Programming and have decided that 1s
the right approach for your company. Or maybe you attended a Certified Scrum-
Master training course and think Scrum sounds good. Or maybe you read a book
on a different agile process, and it sounds perfect for your organization.

In all likelihood, you’re wrong.

None of these processes as described by their originators is perfect for your
organization. Any may be a good starting point, but you will need to tailor the
process to more precisely fit the unique circumstances of your organization, indi-
viduals, and industry. Alistair Cockburn concurs: “Having a chance to change or
personalize a process to fit themselves seems to be a critical success factor for a
team to adopt a process. It’s the act of creation that seems to bind teams to ‘their
own’ process.”!

You may have a clear vision of what “doing Scrum” means to you, and you
may get others to buy into exactly that same vision, but where the organization
ends up 1s likely to be somewhat different. In fact, to even refer to end states in a
Scrum transition is incorrect; there can be no end state in a process that calls for
continuous improvement.

This creates a problem for an organization that wants to transition to Scrum
through a traditional change approach that relies on gap analysis and then on
closing the identified gaps. If we cannot anticipate the end state of a Scrum

1 This and all other uncited references are personal communications between the

speaker and me.

Why Transitioning Is Hard | 7

transition, we cannot identify all of the gaps between there and the current state.
So, a gap analysis—driven change approach will not work.The closest we can come
1s to identify gaps between where we are now and an improved, intermediate state.

After identifying these smaller gaps, though, we are still left with the problem
of how to close them. It 1s difficult (and often impossible) to predict exactly how
people will respond to the many small changes that will be needed on the way
to becoming agile. Teamwork expert Christopher Avery views organizations as
living systems.

We can never direct a living system, only disturb it and wait to see
the response....We can’t know all the forces shaping an organiza-
tion we wish to change, so all we can do 1s provoke the system
in some way by experimenting with a force we think might have
some impact, then watch to see what happens. (2005, 22-23)

So, a transition to Scrum cannot be a process that “articulates and defines the
entire change process required to bridge the gap between ‘as 1s” and ‘to be’” and
creates tactical plans,” as I read in a traditional change management book (Carr,
Hard, and Trahant 1996, 144-5). Creating such a plan would require leaping two
impossible hurdles: first, knowing exactly where we’ll want to end up; and second,
knowing exactly the steps to get there. Because we cannot overcome these impos-
sibilities, the best we can do 1s adopt a “provoke and observe” approach (Avery
2005, 23) in which we try something, see if it moves us closer to an intermediate,
improved state, and if so do more of it. These pokings and proddings of the orga-
nization are not random. They are carefully selected based on experience, wisdom,
and intuition to drive a successful transition to Scrum.

Scrum Is Pervasive

When a change 1s 1solated, when it doesn’t affect everything a person does, that
change 1s often easier to introduce into an organization. Consider the case of an
organization using a non-agile process that decides to introduce a mandatory op-
erational readiness review before an application is deployed onto the company’s
web servers. This 1s a relatively isolated change. Sure, there will be some developers
who will hate the new procedure and will complain, perhaps loudly. But, when 1t
comes down to it, this is not a pervasive change. Even if they don't like this change,
they can still continue doing the majority of their work unscathed.

Consider now the case of a developer transitioning to Scrum. This developer
has to work on smaller pieces of work at a time to complete something by the end
of each timeboxed sprint. The developer might have to write automated tests to
go with each new bit of code. She might even alternate short bouts of testing and
coding in something called test-driven development. And she might need to do
all this with her headphones off while pair programming. These are fundamental

SEEALSO

Chapter 4, “lterating
Toward Agility, "will
describe the overall
process | recommend
when adopting Scrum.

SEEALSO

The impact of Scrum
on other groups, such
as finance, operations,
human resources, and
others is discussed

in Chapter 20, “Human
Resources, Facilities,
and the PMO."”

SEE ALSO

Emergent design and
test-driven develop-
ment are discussed in
Chapter 9, “Technical
Practices.”

Chapter 1 Why Becoming Agile Is Hard (But Worth It)

changes. They aren’t something relegated to a few hours a day or week, as code
mspections might be. This type of fundamental change 1s difficult because it per-
vades everything about a developer’s workday. Resistance will be greater because
the impact is greater.

Adopting Scrum 1s pervasive in a second way as well. Being agile will have
implications to the organization that reach far outside the software development
department. Introducing the operational readiness review would almost certainly
not impact finance, sales, or other departments. But each of those departments can
be impacted by Scrum. Finance groups will have to reconcile company policies
on capitalizing or expensing with the way Scrum projects run. Sales will want to
consider altering how they communicate date and scope commitments and may
change how they structure contracts. With more groups affected by a move to
Scrum, there is more chance for resistance and certainly more chance for mis-
understandings. Tthese add up to make transitioning to Scrum harder than other
changes.

Scrum Is Dramatically Different

Not only do the changes created by adopting Scrum pervade everything develop-
ment team members do, but also many of the changes go against much of their
past training. Many testers, for example, have learned that their job is testing for
compliance to a specification. Programmers have been trained that a problem is
to be analyzed in depth and a perfect solution designed before any coding begins.
On a Scrum project, testers and programmers need to unlearn these behaviors.
Testers learn that testing is also about conformance with user needs. Programmers
learn that a fully considered design 1s not always necessary (and sometimes not
even desirable) before coding begins. Abby Fichtner, who shares her thoughts on
her Hacker Chick blog, has told me she agrees with how hard this adjustment can
be for programmers.

Getting used to emergent design is hard because it feels like
you're going to be just hacking! And if you’ve prided yourself on
being a very good developer and always doing well-thought-out
designs, it turns your whole world upside down and says “no, all
those things you thought made you great, now those same things
actually make you a bad developer” Very world-rocking stuff.

Because transitioning to Scrum involves asking people to work in ways that
are unfamiliar and run counter to training and experience, people are often hesi-
tant, if not outright resistant, to the change. Consider, for example, the case of
Terry, a senior and respected programmer in his company. Terry had participated
in a hands-on full-day class on test-driven development and was convinced of its
benefits. An enthusiastic Terry returned to the office expecting to stop doing big,

Why Transitioning Is Hard

up-front designs and allow design to emerge through the use of test-driven devel-
opment. It didn’t go as smoothly as he thought it would. He wrote me an e-mail
describing his deHating experience.

Getting the other programmers to even try test-driven develop-
ment was much harder than I thought. I tried pushing it as a way
to skip the long up-front design phases we’d become accustomed
to, but failed miserably. After a few months I got the other devel-
opers to start writing tests first, but only because it was a good
idea on its own. They still wouldn’t abandon the lengthy up-front
design phase. It took me another year to make much progress
shortening that, and we could still go much shorter.

Change Is Coming More Quickly Than Ever Before

Back in 1970 Alvin Toffler coined the term future shock, saying that it 1s the disori-
entation people feel when confronted with “too much change in too short a pe-
riod of time” (1970, 4). Human, and therefore organizational, capacity to change
1s limited—ask people to change too many things at the same time and they shut
down; the shattering stress and disorientation of future shock kicks .

In many organizations, employees have been suffering from future shock for
years. Teams are asked to do more with fewer people. Outsourcing and distributed
teams have become increasingly common. These adjustments were preceded by
the rush to move applications to a client/server model, then onto the web, and
then into services. Add to these the constant, and constantly accelerating, rate
of change in technology itself—new languages, new tools, new platforms—and
tuture shock 1s now. It should not be surprising that transitioning to Scrum can
often be the change that pushes people into future shock. The pervasive nature of
adopting Scrum and the fundamental changes it causes in how people work and
interact have a higher risk of triggering the future shock effect.

Best Practices Are Dangerous

With most organizational change, after someone figures out the right or best way
to do something, that way of doing it is captured as a “best practice” and shared
with everyone else. For some types of work, collecting and reusing best practices
1s a tremendous aid to the change effort. An organization that is selling a product
to a new type of customer may, for example, capture best practices for overcom-
ing objections from potential customers. When transitioning to Scrum, however,
collecting best practices can be dangerous.

Like sirens singing to us from the rocks, best practices tempt us to relax and
stop the effort of continuous improvement that 1s essential to Scrum.Taiichi Ohno,
originator of the Toyota Production System, has written that “there 1s something

9

10

Chapter 1 Why Becoming Agile Is Hard (But Worth It)

called standard work, but standards should be changed constantly. Instead, it you
think of the standard as the best you can do, it’s all over.”” Ohno goes on to say
that if we establish something as the “best possible way, the motivation for kaizen
[continuous incremental improvement| will be gone” (1982).

Although team members should always look to share with one another their
newly discovered good ways of working, they should resist the urge to codity
them into a set of best practices. One example of a best practice gone awry 1s the
company that decided that all daily scrums needed to be held no later than 10:00
a.m. [found this an extremely unnecessary dictate. I'm not entirely sure what
purpose the dictate served. But many employees took the rule to be further proof
that “Scrum 1s all about micro-management.”

O Think about your current transition to Scrum. Are you just getting
started, in the middle, or feeling like you're nearing the end of the
transition push? No matter where you are, identify the primary
obstacle you think may be holding you back from the next level of
success.

Why It's Worth the Effort

Despite all the reasons why transitioning to Scrum can be particularly difficult,
stakeholders in companies that have made the transition are happy they’'ve done
s0. One reason stakeholders are so satistied is that time-to-market 1s reduced when
using an agile process like Scrum. This faster time-to-market is enabled by the
higher productivity of agile teams, which is in turn the result of the higher qual-
ity seen on agile projects. Because employees are freed up to do high-quality
work and because they see their work delivered sooner into the hands of waiting
users, job satisfaction goes up. With higher job satisfaction comes more engaged
employees, which leads to more productivity gains, initiating a virtuous cycle of
continued improvement.

The rest of this chapter looks in more depth at these claims. In doing so I
present evidence in support of each. Some of the evidence is anecdotal and drawn
from my experience, experiences of my clients and colleagues, or experiences
reported in magazines or at conferences. Additionally, though, the claims are sup-
ported by data from the following sources:

e A rigorous comparison of 26 agile projects against a baseline database of
7,500 primarily traditional development projects. This study was con-
ducted by Michael Mah, managing partner of QSM Associates (QSMA),
which has been collecting productivity, quality, and other metrics on
projects for more than 15 years. The agile projects Mah studied ranged
in size from 60 to 1,000 people (Mah 2008).

Why It's Worth the Effort

e Various academic and research papers, including aggregate research by
David Rico, Ph.D., who surveyed 51 published studies of agile projects
(2008).

e An online survey of more than 3,000 people conducted by agile tool
vendor, VersionOne (2008), and another of 642 people conducted by Dr.
Dobb’s Journal (Ambler 2008a), a popular development magazine. Fach
survey was conducted in 2008. Industry surveys such as these cannot, of
course, be taken as definitive. Individuals opting to take such surveys are
probably predisposed toward favorable views of agile. Results from these
surveys are presented because they are more representative than con-
clusive. These surveys will be referenced asVersionOne and DDJ 1n the
sections that follow.

In the following sections we look at these reasons why transitioning to an
agile process like Scrum 1s worthwhile:

e Higher productivity and lower costs

o Improved employee engagement and job satisfaction
e Daster time to market

e Higher quality

e Improved stakeholder satisfaction

e What we’ve been doing no longer works

Higher Productivity and Lower Costs

There 1s unfortunately no universally agreed-upon measure of productivity. Mar-
tin Fowler has gone so far as to say that measuring productivity of developers is
impossible (2003). And although I agree with Fowler, I do think it is possible to
measure proxies or stand-ins for productivity. Some teams use the number of lines
of code as a proxy for productivity. Others use as a proxy the number of function
points delivered or simply the number of features delivered, ignoring that not all
features are the same size. Are there problems with these proxies? Absolutely. But
I think the usefulness of proxy productivity measures isjustified if we can reason-
ably make the assumption that data has not been gamed by teams fabricating lines
of code or function points by duplicating code, failing to take advantage of reuse,
or s0 on. In many cases, especially those involving large data sets as the QSMA
study does, I think this 1s a reasonable assumption.

QSMA calculates a productivity index for the projects in its database. This
index takes mto consideration effort, schedule, technical difficulty, and more and
1s an attempt to help make cross-team comparisons more meaningful. In his com-
parison between agile and traditional projects, Mah found agile projects to be 16%

1

SEEALSO

Data from this chapter
Is summarized in
Microsoft PowerPoint
and Apple Keynote
presentations available
at www.succeeding-
withagile.com.

12 | Chapter 1 Why Becoming Agile Is Hard (But Worth [t)

FIGURE 1.1

Agile teams are
significantly more
productive than the
industry average.
Source: Mah 2008.

more productive, an increase that he found to be statistically significant. Figure 1.1
shows the agile projects (as dots) compared to the average productivity and one
standard deviation around it in the QSMA database. As you can see, most of the
dots are above the industry average line, with a handful of projects more than one
standard deviation more productive than the industry average.

+/- 1 Standard deviation
(@) (o]
R o
< lo) om0 © —
o % (o)
X
(o)
(@) A'jﬂe rroje&ﬂ
Lower
Smaller Larjer

Projeo+ Size

The QSMA results are corroborated by both the DDJ and VersionOne sur-
veys. Bighty-two percent of participants in the DD]J survey felt that productivity
was somewhat or much higher when using agile methods like Scrum than it was
before. Only 5% felt productivity was somewhat or much lower. Seventy-three
percent of the VersionOne respondents believed that being agile had significantly
improved (23%) or improved (50%) productivity.

[t stands to reason that if people are productive, costs will be lower. The
VersionOne and DDJ studies both bear this out, as can be seen in Table 1.1.2

David Rico’s survey of case studies of agile teams published through 2008 1s
shown 1n Table 1.2. Rico found that the median reported productivity increase
was 88% and the median cost savings was 26%. These indicate solid evidence that
agile teams are more productive, which leads to cost savings to their projects.

2 TheVersionOne survey asked respondents to answer on a scale that included Signifi-
cantly Improved, Improved, No Benefit, Worse, and Much Worse. The DD]J survey used
a similar scale but used Much Higher, Somewhat Higher, No Change, Somewhat Lower,
and Much Lower. For improved readability, all tables in this chapter use the labels from the

VersionOne survey.

Why It's Worth the Effort

Improved 32% 30%

Significantly Improved 5% 8%

As encouraging as these numbers are, they tell only part of the story. A sig-
nificant benefit to being agile—but one not reflected here—is that agile teams are
less likely to build functionality that 1s no longer needed. A common criticism of
a sequential development process 1s that by the time the software 1s delivered, the
users no longer need the functionality being provided. Because of the frequent
teedback, timeboxed sprints, and ability to reprioritize each sprint, a Scrum team
1s more likely to work only on features users really need. Were we to include this
in our measurement of productivity, we would see even more dramatic results.

Productivity 14% 88% 384%

Cost 10% 26% 70%

Improved Employee Engagement and Job Satisfaction

One factor contributing to the higher productivity and lower costs on agile proj-
ects may be that employees enjoy their jobs more. Fifteen months after adopting
Scrum, Salesforce.com surveyed its employees and found that 86% were having a
“good time” or the “best time” working at the company. Prior to adopting Scrum,
only 40% said the same thing. Further, 92% of employees said they would recom-
mend an agile approach to others. Results such as these are common; many of my
clients have done employee satisfaction surveys and always with similar results. In
its industrywide survey, VersionOne found that 74% of those surveyed reported
morale was improved (44%) or significantly improved (30%).

One reason why employees may enjoy their jobs more is because of the sus-
tainable pace promoted by agile processes. Chris Mann and Frank Maurer of
the University of Calgary studied the amount of overtime worked by one team
for the year before becoming agile and the first year after (2005). They found
that before implementing agile practices, team members worked an average of
19% overtime. After adopting an agile process, that dropped by nearly two-thirds
to an average of 7% overtime. Further, even though overtime was occasionally
needed even after adopting agile practices, there was less variability in the amount

13

TABLE 1.1

A significant
number of survey
respondents report
that agile improved
development costs.

TABLE 1.2

Impact of agile on
productivity and
cost. Source: Rico
2008.

14 Chapter 1 Why Becoming Agile Is Hard (But Worth It)

FIGURE 1.2

Agile projects
have a 37% faster
time to market
compared to the
industry average.

Source: Mah 2008.

required, as measured by the standard deviations of the team before and after mov-
ing to agile. Johannes Brodwall, an agile software architect, says, “Overtime seems
to be much less common atter we started with agile. Testers are especially noticing
the effect. They used to have extremely chunky workloads.”

A lack of overtime is likely just one factor contributing to higherjob satisfac-
tion among people working on agile teams. There are also the benefits of having
more control over your day-to-day work, seeing the results of your work get used
sooner, working more closely with coworkers, creating products that are more
likely to meet customer and user expectations, and so on. Employees who are
happier with theirjobs and with their employers will be more engaged in the
work they do. Greater employee engagement will result in numerous benefits to
the organization.

Faster Time to Market

Agile teams tend to release their products more quickly than do traditional teams.
According to the VersionOne study, 64% of participants report that time to mar-
ket has been improved (41%) or significantly improved (23%). The QSMA study
comparing 26 agile projects to a database of 7,500 mostly traditional projects
found that agile projects have a 37% faster time to market, as shown in Figure 1.2.
Agile teams have faster times to market for two reasons. First, the higher pro-
ductivity of an agile team allows them to produce functionality more quickly
Second, agile teams are more likely to release incrementally When stakeholders
realize that a team can produce valuable functionality every sprint, they often de-
cide that they do not need to wait for one big-bang delivery of all functionality

f‘ﬁﬂher'

C (o)}
(o]

Lower

Smaller

Why It's Worth the Effort

Salesforce.com noticed the benefit of this immediately after its rapid transi-
tion to Scrum (Greene and Fry 2008). Figure 1.3 shows the cumulative number
of features delivered to customers in 2006 (before adopting Scrum) and 2007 (af-
ter initiating the transition around the start of the year). This figure shows a simple
metric: the raw number of features delivered and when they were delivered and a
powerful view of the additional value provided to customers in the first year of

using Scrum.

Cumulative Value (features) delivered in Major Releases

Mar April Maﬂ June Ju!f] A'uﬂ Sep Oct Nov Dec Jan Feb
Month

Higher Quality

If you ask a Scrum team what enables them to be more productive than in their
pre-Scrum days, most will say that at least part of their success is that they are
consistently producing higher-quality work. Without bugs left behind to drag the
team down, they can move quickly and consistently forward. Quality is improved
because working at a sustainable pace prevents sloppiness. Quality is also improved
through many of the engineering practices such as pair programming, refactoring,
and a strong emphasis on early and automated testing.

David Rico’s research bears out the claim that agile teams produce higher-
quality products. In his survey of 51 published studies of agile projects, he found
a minimum quality improvement of 10% and a median improvement of 63%.
Rico’s research matches my experience at clients where I've been able to measure
and report on quality. For example, ePlanServices provides retirement plans to
medium-sized businesses. The service is provided largely through a powerful web
application. In the first nine months after initiating a Scrum transition, their defect
rate per thousand lines of code dropped by 70%.

The VersionOne survey also bears out the claim for higher quality with agile
processes such as Scrum. Sixty-eight percent of participants answered that agile
had improved (44%) or significantly improved (24%) software quality. Further,

15

FIGURE 1.3

The cumulative
value of features
delivered by
Salesforce.com in
2006 (pre-Scrum)
and 2007 (Scrum).

16 Chapter 1T Why Becoming Agile Is Hard (But Worth [t)

TABLE1.3

Some of the rea-

sons stakeholders
are satisfied with

agile.

84% of respondents felt that agile had reduced the number of software defects by
10% or more; 30% felt agile had reduced the number of defects by 25% or more.
The DDJ survey reported similar results, with 48% saying quality was somewhat
higher and 29% saying it was much higher.

Improved Stakeholder Satisfaction

Given all of the benefits of agile processes thus far, it 1s not surprising that they
lead to improved stakeholder satisfaction. The DDJ survey found that 78% of
survey participants believe that using an agile process has led to somewhat higher
(47%) or much higher (31%) stakeholder satisfaction.

One reason stakeholders are more satistied by agile processes 1s because their
practices are more friendly toward the shifting priorities that are a fact of life
in today’s fast-paced, competitive organizations. In the VersionOne study, 92% of
participants felt that agile improved the ability to manage changing priorities.
Additionally, along with gaining the ability to more easily change priorities, stake-
holders on agile projects learn the impact of change. A stakeholder at PetroSleuth,
a small development company in the o1l and gas industry, found that to be true.

The Scrum process has led to our being more involved in the
daily review and discussion. This has led to us being more aware,
and being held accountable earlier in the process for any changes.
(Mann and Maurer 2005, 77)

The VersionOne survey looked deeper into additional factors leading to stake-
holder satistaction. Table 1.3 shows the high percentages of survey participants
who reported that agile leads to better alignment between the technology and
business groups, reduced project risk, better ability to manage changing priorities,
and improved project visibility. Steve Fisher, a senior vice president at Salesforce.
com and stakeholder to many of the agile teams there, says adopting Scrum has
“delivered total wvisibility, total transparency, and unbelievable productivity...a
complete win” (Greene 2008).

Enhanced ability to manage changing priorities 41% 51%
Improved project visibility 2% 41%
Improved alignment between IT and business goals | 39% 27%
Reduced project risk 48% 17%

Looking Forward | 17

What We've Been Doing No Longer Works

One tnal reason to consider changing to Scrum 1s if your current development
process 1s no longer working. When a process that has worked in the past stops
working, a common tendency is to do more of it. This was certainly the case at
Yahoo!, where chief product officer Pete Deemer was one of the Tirst to recognize
the need for change.

Originally, Yahoo! tried Scrum purely out of desperation—the
waterfall approach was clearly not working—and a year-long at-
tempt to do the waterfall “better” through more thorough plan-
ning and analysis, more in-depth documents, more sign-offs, and
so on was making things worse, not better. For the teams that
saw benefits, which were most of the teams that tried Scrum, the
benefits were visible almost immediately.

Clinton Keith, former chief technology ofticer at High Moon Studios, devel-
oper of console-based video games, tells a similar story.

As successful project managers at a well-funded startup, we felt
we could “apply more waterfall” to our ambitious new projects.
This had the opposite effect of what we hoped for and the proj-
ects spiraled out of control. Our assumptions were wrong and
forced us to rethink how we were managing projects.

Q ldentify the benefits you have gained from using Scrum so far.

Q If you have not yet gathered metrics on quality, employee morale,
stakeholder satisfaction, or so on, select a few factors of interest
and measure a baseline you can compare against later.

Q If you gathered baseline measurements earlier and have been do-
ing Scrum for at least three or six months, remeasure and see what
progress has been made. Create your own “why Scrum is worth
it” charts that you can share with other teams as they begin to
transition to Scrum or with existing teams who are having difficulty
sticking with it.

Looking Forward

Becoming agile is hard. It 1s harder than most other organizational change efforts
I've witnessed or been part of. I started this chapter by laying out some of the rea-
sons why this 1s so, including the need to change from the top-down and bottom-
up simultaneously, the impossibility of knowing exactly what the end state waill
look like, the dramatic and pervasive changes caused by Scrum, the difficulty of

Chapter 1 Why Becoming Agile Is Hard (But Worth [1)

adding more change on top of all that 1s already occurring, and the need to avoid
turning Scrum into a list of best practices.

Because you'’re still reading, I can assume that this list of challenges didn’t send
you away. That’s fortunate because there are tremendous advantages to be had by
the organization that overcomes the challenges. These include more productive
teams, lower costs, happier employees, reduced time to market, better quality, and
improved stakeholder satisfaction.

In the next chapter we look more closely at what 1s involved in moving you,
your team, and your organization from the stage where you know change 1s nec-
essary and you believe that Scrum 1is the answer to a point where you can begin
making real progress and continuous improvements.

Additional Reading

Ambler, Scott. 2008. Agile adoption rate survey, Februarhttp://www.ambysoft.com/
surveys/agileFebruary2008.html.
This article presents the results of a survey conducted in February 2008 and goes
beyond the results presented here.

Greene, Steve, and Chris Fry. 2008.Year of living dangerously: How Salesforce.com
delivered extraordinary results through a “big bang™ enterprise agile revolution. Session
presented at Scrum Gathering, Stockholm. http://wwwslideshare.net/sgreene/
scrum-gathering-2008-stockholm-salesforcecom-presentation.
Greene and Fry led the rollout of Scrum at Salesforce.com. They have shared this en-
tertaining slide deck that covers how they did it, what they learned, and what they'd
do differently.

Mah, Michael. 2008. How agile projects measure up, and what this means to you. Cutter
Consortium Agile Product & Project Management Executive Report 9 (9).
This 1s Mah's comparison of 26 agile projects to his baseline database of productivity
data on over 7,500 mostly traditional projects.

Rico, David E 2008. What 1s the ROI of agile vs. traditional methods? An analysis of
extreme programming, test-driven development, pair programming, and Scrum (using
real options). A downloadable spreadsheet from David Rico’s personal websitehttp://
davidfrico.com/agile-benetits.xls.
An extensive survey of the available literature on agile projects that summarizes key
percentage improvements in productivity, cost, quality, schedule, customer satisfaction,
and return on investment.

http://www.ambysoft.com/
http://www.slideshare.net/sgreene/

Additional Reading

VersionOne. 2008. The state of agile development: Third annual survey. Posted as a
downloadable PDF in the Library of White Papers on the VersionOne websitehttp://
www.versionone.com/ pdf/3rdAnnualStateOfAgile FullDataR eport.pdf.
Every year, agile tool developerVersionOne conducts the largest survey of the state of
agile adoption. The survey is international in scope and is the broadest view into the

use of agile practices.

Chapter

ADAPTIng to Scrum

ori Schubring was among the first to realize that things had to change. An ap-
plication development manager for a large manufacturing company, Lor1 realized
that its development process had become “so formalized that we hindered our
ability to remain flexible for the business. It got to the point where we weren’t
turning around project requests fast enough” (2006, 27). Aware of the need to
change, Lori attended a free, half-day seminar introducing Scrum. What she saw
there was a better way to develop software, a framework she thought might help
her organization. As such, Lori developed the desire to change to Scrum. Next,
she acquired the ability to do it by participating in a ScrumMaster class, attend-
ing an agile conference, and visiting a company that had already adopted Scrum.
Lori then promoted Scrum to her boss and team, convincing them of its benefits.
Finally, Lori transferred some of the implications of her team using Scrum to the
rest of her company so that organizational gravity would not pull the team back
to where 1t had started.
Lori’s story encapsulates the five common activities necessary for a successtul
and lasting Scrum adoption:

e Awareness that the current process is not delivering acceptable results
e Desire to adopt Scrum as a way to address current problems
e Ability to succeed with Scrum

e Promotion of Scrum through sharing experiences so that we remem-
ber and others can see our successes

e Transfer of the implications of using Scrum throughout the company

Conveniently, these five activities—Awareness, Desire, Ability, Promotion, and
Transfer—can be remembered by the acronym ADAPT.! These activities are also

1 The five activities of ADAPT are based on ADKAR (Hiatt 2006), a general model of
change that includes the steps of Awareness, Desire, Knowledge, Ability, and Reinforce-
ment. In practice, | have found separating Knowledge and Ability to be unnecessary. In a
field such as software development, knowledge without ability is meaningless. Additionally,
the Reinforcement step of ADKAR is replaced in ADAPT with separate Promotion and

Transfer steps, emphasizing the importance of these activities to a successful transition.

22 | Chapter 2 ADAPTIng to Scrum

summarized in Figure 2.1, which shows Awareness, Desire, and Ability as overlap-

ping, whereas Promotion and Transfer repeat and occur throughout the transition

effort. After you have transitioned, this cycle will continue as you continuously

improve.

FIGURE 2.1

The five activi-
ties of adapting to
Scrum.

Transfer

mumw

Fromotion

An organization that successfully adopts Scrum can be thought of as engaging

in these activities at multiple levels:

Organizationally. The organization as a whole will engage in these activi-
ties. No matter how aware one person or group is, there must be a critical
mass of people with a similar awareness before the organization will be
able to collectively move forward. In thinking of the ADAPT model at
this level, we may speak of a company with an organizational desire to
adopt Scrum. Or we may say that our organization currently lacks the
ability to do Scrum.

As individuals. Because organizations are made up of individuals, it is im-
portant to acknowledge that individuals will progress through the overall
transition at different rates. For example, you personally may already have
acquired the ability to do Scrum; you’ve learned some new skills and
some new ways of thinking about software development. A colleague,
on the other hand, is only starting to become aware that the current ap-
proach isn’t working.

As teams. Individuals can be aided or hindered in the transition to Scrum
by their teams. Teams tend to progress through the ADAPT cycle more
or less together. In the same way that studies have shown individuals are
more likely to be overweight it their friends are overweight (Thaler and
Sunstein 2009), you are more likely to have a desire to do Scrum if the
rest of your team does as well.

Awareness

o Per practice. The ADAPT model can also be applied to each new skill
that 1s acquired as part of adopting Scrum. Consider the increased reliance
on automated unit testing that 1s common on Scrum teams. The team and
its members must first become aware that the current approach to testing
1sn’t working. They must then develop the desire to automate more tests
and to do so earlier in the process. To do this will require that some team
members learn new skills. Promoting the team’s success with automated
testing will encourage other development teams to emulate them. Finally,
transferring the implications of the team doing more automated testing
to other groups ensures that forces external to the team do not prevent 1t
from continuing with the new practice.

One of the first things you’ll need to do, whether you are currently using
Scrum or just starting your adoption, is to decide where your individuals, teams,
and organization are in their ADAPT sequence. It could be that you are acquiring
the ability to do test-driven development on a team that 1s promoting its success
inside a department that desires to implement Scrum. The overall organization,
however, may be aware of only a general need to change. This chapter will discuss
not only the five ADAPT activities but also the tools you will need to encourage
and develop awareness, desire, ability, promotion, and transfer throughout all levels
of the organization.

Awareness

Change begins with an awareness that the status quo is no longer desirable. How-
ever, becoming aware that what worked in the past is no longer working can
be extremely difficult. The most dramatic example of this I personally experi-
enced was when I was a development director for a healthcare software company
back in the mid-1990s. Our company founder recognized that the company’s
sole product—the one that had led to an extremely successful public offering and
tremendous growth in the company—had at most one year of sales left because of
the fundamental shift occurring at the time in the United States healthcare indus-
try. Our company would need to develop a new product that could capitalize on
the shift toward managed care. In a meeting of the entire company, our founder
presented a slide with the chart shown in Figure 2.2.

While most employees had been congratulating ourselves on our success,
which we anticipated would last forever, our founder realized we were entering
what he called the “Valley of Death.” While in the Valley of Death, revenue from
the current product would quickly decline well in advance of increases in revenue
from the new product we hadn’t started developing yet.

24 | Chapter 2 ADAPTIng to Scrum

FIGURE 2.2

The “Valley of
Death” shows
declining revenue
from the current
product in advance
of the release of a
new product.

Revenue

New
— Frocl uct

Current
PN Frod uct

Time

Few of us can be as prescient as this company founder was. There 1s almost

always a lag between when the need to change first arises and when we become

aware of it. The lag can be particularly long if the company 1s doing well. Other

common reasons why individuals can be slow to develop an awareness of the need

to change include the following:

A lack of exposure to the big picture. The need to adopt Scrum may be
the result of a confluence of factors not visible to everyone. The need for
a change may be apparent only to those who have seen the decline in sales
to new customers, heard the rumors of a strong competitor entering the
company’s space, and anticipate the need to do more without adding staft.
A refusal to see what's right in front of us. Even when the need to change
1s clear, we sometimes deny it. We may think the problems are temporary
and often fear what change may have in store. The “if it ain’t broke, don’t
fix 1t” mentality 1s about as far as can be from an agile “if it ain’t perfect
(and 1t never will be), keep improving” mindset.

Confusing motion with progress. Every day we see a flurry of activity.
Meetings are being held, status reports are being circulated, documents
are being written, and code 1s being checked in. It 1s easy to confuse all
of this motion with progress. When a lot is happening, it can be hard
to admit that all that activity 1s not leading us any closer to the desired
products.

Listening to our own propaganda. The company newsletter is full of rah-
rah articles predicting the boundless future. The glass case in the lobby
proudly displays past Product of the Year trophies. Hallways are full of
gleeful, self-congratulatory chatter. Yet customers ask, “What have you
done for me lately?” Listening to our own cheerleading and propaganda
causes complacency. By all means, celebrate success but remember the
hard work that earned it.

Awareness

Tools for Developing Awareness

‘Team members will become aware of the need to change at different times. Those
who have come to this realization quickly have the opportunity to assist in bring-
ing others along to the same conclusion. In this section we will look at tools you
can use to help develop awareness of the need to change.

Communicate that there's a problem. BioWare is one of the world’s leading de-
velopers of story-driven video games, with more than 400 employees and well-
known games such as Mass Effect, Jade Empire, Dragon Age, Knights of the Old Re-
public, Nevenwinter Nights, and Baldur’s Gate. Although BioWare’s products had been
successful, the projects to deliver them were not very efficient. Projects were af-
flicted by the usual symptoms of overtime, communication issues, and deliverables
that occasionally failed to meet expectations.

Because of its strong track record of successful products, it wasn’t obvious to
all involved that the projects themselves could be more successful. Fortunately,
producer Trent Oster’s search for a better way to develop games led him to Scrum,
and he was able to hire several project managers with Scrum experience. But this
nucleus of early Scrum proponents could not make much progress until they
helped others become aware of the need to improve. They did this by communi-
cating a goal that would be shared by all projects.

High-quality games at a lower cost that are as fun to develop as
they are to play

This goal was wonderful for a couple of reasons. First, it is very hard to argue
with. I can’t imagine a team member arguing that it was as fun working all those
long nights as it was playing the game that resulted. Second, it neither preached
nor proposed the solution. Consider the likely impact if BioWare’s early Scrum
advocates had instead chosen “High-quality games built with an agile approach.”
This would have convinced no one of the need to change except for those already
in favor of it. William Bridges, author of Managing Transitions, stresses the impor-
tance of selling the problem, not a specific solution to it (2003, 16).

Use metrics. As part of an overall communication strategy, metrics provide great
reinforcement of the core reasons for change. I have seen companies use employee
turnover, results from job satisfaction surveys, revenue per employee, and other
simple metrics to convey the message that change is necessary.

Provide exposure to new people and experiences. Encourage people to attend
conferences or training so that they hear about new techniques and practices. Or
send people to a trade show for your industry. Let them see what products com-
petitors are releasing. Or arrange meetings between team members and customers

26

SEEALSO

Chapter 3, “Patterns
for Adopting Scrum,”
contrasts the merits
of starting with a pilot
project or transition-
ing everyone at once.
Chapter 5, “Your First
Projects,” describes
how to select an initial
or pilot project.

Chapter 2 ADAPTIng to Scrum

so they can hear firsthand about what features are needed and in what time frame.
A good long-term strategy for providing exposure to new people and ideas 1s to
value diversity in new hires. Intentionally seeking people from different back-
grounds helps not only bring new 1ideas into the organization when they’re hired,
but it also helps the organization with exposure to future new ideas.

Run a pilot project. A successful pilot project demonstrates that things can be bet-
ter. It 1s hard to argue with success. When those who aren’t yet aware of the need
to change see a highly successful project run in a different way, they must either
discount the results on that project or become a bit more aware that a change
could be appropriate.

Focus attention on the most important reasons to change. If your organization
1s like most others, you could probably create a lengthy list of reasons why the
current development process is broken: Products do not meet user expectations,
products take too long to develop, quality 1s poor, developer morale 1s low, over-
time 1s excessive, schedules are unpredictable, the cost of development is high, and
so on. In helping people become aware of the need to change, it 1s often best to
replace such a laundry list with one that is much shorter. What two or three rea-
sons are causing most of the problems? These reasons alone should be sufficient
to justify adopting Scrum. By narrowing the full list of reasons down to just the
critical ones, we focus more attention on the most compelling reasons.

One of my clients decided to adopt Scrum because its products had lost their
best-in-class status. Customers were continuing to use the products but mostly
out of years of loyalty and familiarity. To focus attention on this problem, I asked
them to remove all plaques, trophies, and industry awards from the lobby except
those earned within the past year. By removing old Product of the Year awards
from the lobby, we reinforced the fact that customers were asking “but what have
you done for me lately?” After the old mementos had been removed, the lobby
still showcased a decent number of awards. But the contrast with what employees
had become accustomed to was startling and helped increase the awareness that
the company’s glory days were behind it unless changes were made.

Desire

Beyond being aware of the need to change, one must also have the desire to
change. I am aware that I should eat more vegetables; I don’t yet desire to make
that change in my diet. Until my awareness turns to desire, my diet will remain
the same. Scrum trainer and consultant Michele Sliger tells of a company whose
transition was stalled by a similar lack of desire. A few weeks after a training class,
Sliger called the company to see how people were doing.

Desire

Due to the politics at their company, they decided that agile re-
ally wouldn’t work there. That’s the only group I know that took
the time to learn about agile (from an experienced agile consul-
tant and not just a book), really examined their culture and poli-
tics, and then said “No.” Were they being practical? realistic? or
were they being fearful? pessimistic? I don’t know. But no other
company I've worked with has ever said no like that. Perhaps
more should. I really respected the fact that these people decided
that they weren’t ready, for whatever reason, rather than making
some half-hearted attempt.

Because they’d gone to the expense of bringing a Scrum trainer into the
company, at least some employees must have been aware of the need to do things
differently. But from Sliger’s story we can conclude that there was msufficient
desire to take the change effort further.

Moving from an awareness that the current development process isn’t work-
ing to the desire to use a different one can be very hard for many people. After all,
we’ve been educated to prefer a sequential approach, both through our schooling
and years of experience. Additionally, although we may be dissatistied with ele-
ments of our projects, we've worked hard to get the right boss and the right team.
Scrum would change all that. Finally, as simple as it may seem, sometimes the tim-
ing may just not be right.

Twenty years ago a friend of mine recommended [read one of the Travis
McGee novels by John D. MacDonald. I bought The Girl in the Plain Brown Wrapper
that evening and started reading it. I hated it and stopped halfway through. About a
year later I saw the book on my shelf and decided to give it another try. I loved it
and went on to read all 20 of the other books featuring McGee. Something about
my mindset, where [physically was, or such, was wrong when I first read the book.
The same can be true when team members hear messages about the benefits of
Scrum. If the time isn’t right for people, you will not be able to convince them.
The good news is that the same message delivered the same way but at a different
time will often be enough to move someone along from awareness to desire.

Tools for Increasing Desire

Increasing the desire to adopt Scrum is often much harder than creating an aware-
ness that the status quo must change. Fortunately, there are many tools for moving
people from awareness to desire.

Communicate that there’s a better way. When building awareness, communication
centers on the key problems facing the organization or team adopting Scrum.
After we shift from building awareness to increasing desire, communication then
focuses on how Scrum can help address those problems. Mixing the two messages

Chapter 2 ADAPTIng to Scrum

(that the current approach 1sn’t working well enough and that Scrum can help)
can cause some people to shut down and become unreceptive to either message.
However, as more employees become aware of the need to change, the change
agent’s message can shift to one of evangelism. Lori Schubring, whose story started
this chapter, writes of the contagious nature of desire.

[was convinced agile could help us. I put a plan together, got
support from our director, and became the internal evangelist.
Because I believed so strongly, it was tough for anyone to ignore.
If people challenged the idea, I challenged them right back. My
desire caught on to some, others came along a little less willing.
A few key people took mterest, and that really helped the rest of
the group open up to the possibilities of Scrum.

Create a sense of urgency. One way to turn awareness into desire is to turn up
the heat. By creating a sense of urgency, we make 1t clear to others that the status
quo cannot continue as such for long. Remember my awareness that [need to eat
more vegetables? Suppose my doctor called tomorrow and said that I would die
in six months 1f [didn’t start eating broccoli, asparagus, cauliflower, and the like.
would likely respond by figuring out how to like them.

Build momentum. Rather than focus on those who are reluctant or opposed to
Scrum, spend your time and effort helping those who are already enthusiastic.
Rather than argue what can or can’t be done, do it with those who are will-
ing. The goal 1s to build an unstoppable momentum with each success leading
to another. When Steve Greene and Chris Fry of Salesforce.com look back on
their company’s successful transition, they advise others to “focus on getting sev-
eral teams to excellence” (2008). Rather than spread support too thinly across all
teams, strive to make the adoption of Scrum look inevitable through these early
successes. Then others will desire to be part of it.

Get the team to take Scrum for a test drive. Rather than allow team members to
argue about Scrum in the abstract, have them get some quick experience with it.
Then they can discuss it and argue about specifics. A good approach is to agree to
a three-month trial. This will give the team ample opportunity to get past the first
one or two sprints, which are likely to still feel very uncomfortable. Hold a thor-
ough retrospective with the entire team at the end of the three months and col-
lectively decide how to move forward. The decision does not need to be “Scrum”
or “not Scrum.” If the test drive was inconclusive or the team 1s divided, another
option 1s to continue the test drive for a few more months. Or perhaps the team

Desire

decides that it 1s not ready for a particular practice and chooses to temporarily
shelve 1t but will otherwise continue to work with Scrum.

Align incentives (or at least remove disincentives). There are many incentive pro-
grams, financial and otherwise, in organizations that can work against the adop-
tion of Scrum. Many organizations have bonus programs to reward one employee
for significant contributions to the team or department. Although such a program

113

may appear beneficial at first glance, it works against the “we’re all in this together”
teamwork mentality we want of Scrum team members. Bonus programs that re-
ward testers based on the number of defects found (and logged in a defect tracking
system) have a similarly debilitating effect.

One organization I worked with revised its annual review form, removing the
individual-oriented criteria, such as job knowledge, time management, and ability
to balance multiple priorities. It replaced them with team-oriented criteria, such
as makes others better at their jobs, contributes to shared knowledge, willingness
to work beyond job title, and met team deliverable and quality goals.

In another company, I got the product owner and functional managers to
promise a unique nonmonetary bonus to the team if the product would be re-
leased on schedule with an agreed-upon set of features. Although the product
owner and managers trusted the team to continue to do high-quality work, I
asked the team members to propose a quality metric. I didn’t want them to receive
their bonus by sacrificing quality. They proposed that quality would be measured
by the number of defects reported in the 30 days following release. Their goal
was to have fewer reported defects than two prior releases of a similar size. Four
months later the team delivered slightly more functionality than promised on the
planned date. When quality was measured a month later, the team members were
given their bonus—a four-week sprint during which they would be their own
product owners and could work on whatever they wanted. They took the op-
portunity to do some refactoring that had been bothering them. One tester took
time to explore a new testing tool. Two developers added a scripting interface to
a part of the application. This type of bonus was a win all around and avoided the
problems that tend to arise with cash or similar bonuses.

Focus on addressing fear. How we behave is often influenced by what we fear.
Because of bad past experiences, a product owner may fear an out-of-control
development organization that builds only what it wants. This leads the product
owner to prefer a development process with a detailed, up-front requirements
gathering phase, as this will prevent the developers from building only what they
want.

On the other hand, executive management may fear excessive schedule de-
lays. This leads them to favor a development process that provides early, precise

30

SEEALSO

Many fears are the
result of waterfalla-
cies and agile phobias.
These are discussed

in Chapter 6, “Over-
coming Resistance.”
Many other fears are
addressed in the objec-
tion sidebars through-
out this book.

SEE ALSO

Chapter 4, “lterating To-
ward Agility, " describes
the use of improve-
ment communities

as a way of engaging
employees in the tran-
sition to Scrum.

Chapter 2 ADAPTIng to Scrum

estimates of delivery dates. Managers almost always know they won'’t get the prod-
uct by the date promised. But, they reason, by getting the team to commit to an
early date and by keeping the pressure on them, they will get it earlier than they
would otherwise and can avoid large schedule slips.

An architect may favor doing a detailed up-front system design because she
excels at this. She fears that if the project’s design phase 1s removed, then she will
look no more brilliant than her coworkers. When communicating with mdividu-
als whose desire may be impeded by a fear, look for opportunities to address why
the fears are likely unfounded.

Help people let go. People will not desire a new future until they can let go of the
past. Every transition brings with 1t the possibility of loss, and with loss comes grief.
Allow people time to grieve. Listen and accept their losses without arguing. Loss
1s personal and subjective. You will never convince people who are grieving that
they are overreacting and that what was lost wasn’t “that important.” So don’t try.

Don’t discredit the past. In describing the transition and the brave, new agile
world you are moving to, do not downplay or discredit the past. Whatever devel-
opment process existed until now helped the organization succeed to the extent
it has. It deserves our sincere appreciation and respect. It couldn’t have been all
bad. William Bridges, author of Managing Transitions, describes the consequences of
building support for new initiatives at the expense of past efforts.

Many managers, in their enthusiasm for a future that is going
to be better than the past, ridicule or talk slightingly of the old
way of doing things. In doing so they consolidate the resistance
against the transition because people identity with the way things
used to be and thus feel that their self-worth 1s at stake whenever
the past is attacked. (2003, 34)

Engage employees in the effort. Enlist as many allies at this stage as possible. An
ideal ally 1s an opinion leader who has earned the respect of a large part of the
audience you are targeting. The infectious enthusiasm of a few opinion leaders can
rapidly spread to others in the organization. Benoit Houle, a ScrumMaster with
BioWare, experienced this firsthand.

I was very fortunate to establish a great working relationship with
one of the senior programmers on the team who was very re-
spected. He was the ScrumMaster of our initial “pilot” Scrum
team for several sprints. He got extremely excited about the
process and bought numerous books about Scrum and Extreme

Ability

Programming. He did a great job as a ScrumMaster, and his en-
thusiasm was echoing in every corner of the office.

Get skeptics involved as well. Ask employees what they would need to see, ex-
perience, or know before wanting to try Scrum; then find ways to give it to them.

Ability

All of the awareness and desire in the world won’t get a team anywhere if it does
not also acquire the ability to be agile. As we touched on briefly in Chapter 1,
“Why Becoming Agile Is Hard (But Worth It),” succeeding with Scrum requires
team members not only to learn new skills but also to unlearn old ones. Some of
the larger challenges Scrum teams will face include the following:

o Learning new technical skills. It is common for developers new to Scrum
to discover that while they are still good at their jobs, they aren’t yet good
at being agile. They will have to develop skills they didn'’t require previ-
ously (or could justify ignoring). For example, programmers will need to
learn how to evolve the design of a system. Testers often must learn how
to test a system without as much reliance on documentation. Both usually
need to learn new ways of automating tests.

o Learning to think and work as a team. Many of us have enjoyed years of
working silently in a cubicle, headphones securely on, with as little team
interaction as possible. “You develop your part; I'll develop mine. We’ll
talk 1if we find any problems when we integrate.” Scrum teams are en-
couraged not to think in terms of my tasks and your tasks but of our tasks.
This forces collaboration among team members to new highs. Working
in this way also creates a mindset of shared responsibility that will be new
to many team members.

o Learning how to create working software within short timeboxes.
Scrum’s short, focused, timeboxed sprints present significant challenges
to most teams who are new to working that way. Scrum teams strive to
avolid unnecessary handoffs from one specialist team member to another.
Developing working software by the end of each sprint will challenge
team members to find ways to eliminate wasteful handoffs and to work
more closely with each other.

Tools for Developing Ability

In most organizations, developing the ability to become agile (and then becoming
good at 1t) will take longer than building awareness or creating desire. Fortunately,
there are many good tools for developing ability, including the following:

Chapter 2 ADAPTIng to Scrum

Provide coaching and training. Scrum is sufficiently different from traditional soft-
ware development in that training along with on-site coaching or mentoring
1s usually required. Lori Schubring, who led a successful Scrum adoption, says,
“Our ability to be successfl with agile started with an educational process. In
my opinion, that was key. If we didn’t understand something, we couldn’t possibly
welcome it with open arms.” Elizabeth Woodward, one of the leaders of IBM’s
agile adoption, concurs.

We initiated our agile transformation by setting a goal to conduct
mstructor-led two-day Disciplined Agile Development classes at
every major site world wide within the first quarter. Wathin the
first three quarters, we had taught over 4,400 software engineers
world wide. This was important for getting everyone on the same
page, for sharing the vision, and for building a sense of urgency.
We found that there was misinformation about agile that needed
to be addressed in order for teams to more willingly embrace
agile.

Wihat seems to work best for most companies 1s some initial training, oriented
at creating a willingness to try Scrum and to understanding its core principles.
This general training is usually then followed up with practice-specific training
or coaching, such as bringing a test-driven development expert on-site to work
hands-on with teams in their code.

Shortly after initiating its Scrum adoption, Salesforce.com had me do an on-
site training course for more than 30 ScrumMasters, including some individuals
who would not be in that role on projects. Two months later it had me do a for-
mal, two-day training session for 35 product owners. Additional on-site coaches
were also brought in to work with the teams during this period. In hindsight, even
with this early and strong commitment to training and coaching, Chris Fry and
Steve Greene wish they had “trained product owners earlier and with more inten-
sity” and that they had gotten “outside coaching earlier.” They offer the following
advice to companies transitioning to Scrum: “Get professional help” (2008).

Hold individuals accountable. Along with providing coaching and training, em-
ployees need to know they will be held accountable for applying the new skills
the organization is paying them to acquire.

Share information. While developing the ability to be agile, team members will be
awash with new information and challenges. Provide opportunities for them to
share information and problems. One way to do this 1s by cross-pollinating teams:
Encourage team members to occasionally attend another team’s daily scrum

Ability

meeting or sprint review. Another option is to make use of the departmental
intranet, Wakis, communities of practice, and reading groups to disseminate infor-
mation. Yet another avenue for sharing 1s to ask those who have learned a new skaill
to present a short training session on it to others. Or, if your group 1s large enough,
go further and have a day-long miniature agile conference. This is exactly what
Yahoo! did i its California headquarters. J. I Unson, a Scrum coach with Yahoo!
at the time, describes the approach.

At Yahoo! we had a full-day internal open space conference,
where anyone could come in and propose topics. We had a
number of good sessions, especially ones dealing with enterprise
adoption, distributed agile, and so on. We had folks as far as the
UK schedule meetings around the open space and participate.
[t really helps to build community within your company and
get people to come up with and own their solutions. Of course,
it helped that as a company we had critical mass to generate
enough participation. (2008)

IBM takes a similar approach, conducting two four-day meetings each year
that include technical leaders and managers from around the world plus the tech-
nical staff at the local site. Elizabeth Woodward describes how the company con-
ducts a number of smaller “mini-conferences” around the world for IBM employ-
ees adopting agile.

Each of those meetings has focused on agile, with presentations,
education, experience reports, and community working sessions
on agile topics. The working sessions were particularly produc-
tive because we were able to address key challenges such as using
Scrum 1in a distributed environment, with face-to-face debate
and discussion from a diverse, experienced group of people.

Set reasonable targets. Presented with a goal such as “be agile now,” many teams
freeze, not knowing how to start. A successful Scrum transition needs to be split
into smaller pieces. So rather than asking a team to “start doing test-driven devel-
opment,” the ScrumMaster should ask the team to develop one feature that way
in the next sprint. Similarly, organizations must balance a push for rapid progress
against the risk of pushing for too much too quickly. By encouraging teams to
select realistic, actionable targets, you can help them avoid the hesitation that can
occur before initiating any immense undertaking.

Just do it. Don’t stall, waiting to know all the answers before you start. The best
way to develop the ability to do something 1s to start doing it. As Greene and Fry
advise, “Experiment, be patient, and expect to make mustakes” (2008).

33

SEEALSO

Communities of prac-
tice will be described

in Chapter 17, “Scaling
Scrum.”

Chapter 2 ADAPTIng to Scrum

Promotion

There are three goals during promotion. The first is to lay the groundwork for
the next pass through the ADAPT cycle. By promoting current successes you will
have a jump start on creating awareness for the next round of improvements. The
second goal 1s to reinforce agile behavior on existing teams by spreading the news
of the good things those teams have achieved. Finally, the third goal 1s to create
awareness and interest among those outside the groups directly involved in adopt-
ing Scrum. Many of those groups (such as human resources, sales, marketing, op-
erations, and facilities) can have a dramatic influence on the success of your transi-
tion. In the transfer phase, you will actively pursue making sure that such groups
will not pull the development organization back away from an agile mindset.

In seeking to promote Scrum, avoid turning your efforts into a marketing
campaign. Many employees have been through countless change initiatives. The
endless parade of such initiatives has left them jaded. Employees in many organiza-
tions have learned that if they don’t like one change initiative, wait; another will
soon follow to replace it. An announcement that “we’re going agile” 1s likely to
result in derisive comments and skepticism.

A good way to counter this cynicism is to avoid naming the transition effort.
Teams that have lived through the “Quality 2000” initiative that was followed by
“Better, Faster, Cheaper” and then “Customers First!” will not respond well to the
“Scrum and Proud of It” campaign. Organizational development expert Glenn
Allen-Meyer says that organizations name and brand their change initiatives be-
cause this type of marketing is what most organizations do.

When people at work hear the marketed messages of change,
they know they must either commit, comply, or leave. When they
do not see the value-adding features of the change, and they feel
they must comply in order to keep their jobs, then the differ-
ence between their true feelings and their compliance creates a
detachment—a schism—between themselves and their place of
work. (2000c, 24)

Getting coworkers to commit to a Scrum transition effort rather than merely
comply with it (perhaps waiting for it to blow over) 1s what we would like to
achieve with a successful promotion. One of Allen-Meyer’s recommendations 1is
to keep the change process nameless (2000a). My experience from the transitions
I've directly managed, participated in, or observed confirms this.

One benefit to pursuing a nameless transition process is that it is harder to
resist what you can’t name. Thomas, a team leader at a very large commercial
software developer, experienced this. After reading some of the early books and
articles on Scrum, Thomas thought it would be a good fit for his 40-person proj-
ect. Without any training or access to people with experience, he mtroduced

Promotion

Scrum to the team. Employees were receptive and agreed to try. The team openly
promoted the fact that it was doing Scrum as there was no reason to hide it. Un-
fortunately, it misunderstood a few key elements of Scrum and failed miserably.

When I met Thomas, he was still interested in Scrum and had continued read-
ing about it and learning more. Since his failed project, he’d attended a conference
and a two-day training class. Eighteen months had passed since the team’s failed
attempt at Scrum, and Thomas felt ready to give it another go. So did his team.
Despite failing earlier, team members had gotten enough of'a glimpse of:the ben-
efits that they were willing to try again. Unfortunately, the unique vocabulary of:
Scrum—ScrumMaster, sprint,:product backlog, daily scrum, and even Scrum itself—had
taken on negative connotations within the organization. Thomas knew he would
not be able to tell his boss they were going to use Scrum again. He told his boss
that they would instead use “agile.” (Note the lowercase a rather than the capital
A, which would have again implied a brand.) Thomas and his team went on to
successfully apply their version of “agile,” which was Scrum without the giveaway
vocabulary.

Tools for Promoting Scrum

Having established that coming up with an effective naming strategy and match-
ing T-shirts 1s one tool we won't use to promote the change process, let’s turn our
attention to some tools we can use.

Publicize the success stories. As always, communication plays a key role during
the promotion activity of the ADAPT cycle. It 1s especially important to broadcast
the successes of the early adopters of Scrum within the organization. A study by
McKinsey & Company found that in successtul change efforts, the emphasis was
on encouraging employees to build on successes rather than on having them fix
problems (2008). Promotional activities help shift employees’ energy away from
all the problems they uncovered during awareness and focus them instead on the
successes they have been able to achieve.

A great way to communicate success is through internal experience report
presentations from teams that have already adopted Scrum. Nothing beats hearing
from someone who 1s already doing it. These experience reports can be combined
with a general “Introduction to Scrum” presentation so that those unfamiliar with
Scrum can learn not only what Scrum 1s but also hear one team’s story of using it.
[f:teams have begun collecting metrics, those can be included in the presentations
as well. Early metrics may be nothing more than a survey showing the percentage
of people who enjoy using Scrum, the percentage who think it has made them
more productive, and the percentage who think quality 1s higher. Later you can
add more rigorous metrics.

35

SEE ALSO

An editable, redistribut-
able presentation for
introducing Scrum is
available at www.
mountaingoatsoftware.
com/scrum-a-
presentation.

SEEALSO

Some metrics are
presented in Chapter
21, "Seeing How Far
You've Come.”

Chapter 2 ADAPTIng to Scrum

Fortunately, the best way to promote the transition to Scrum requires no ef-
fort on your part. As Benoit Houle, ScrumMaster at BioWare, puts it: “Like viral
marketing, the best vehicle was word of mouth. The staff who worked on an agile
team praised the process—greater team ownership, more predictability, less wasted
effort and crunch time. Others heard and wanted to be part of it.”

Matt Truxaw, a development manager and agile advocate at First American
Corelogic, had a similar experience.

I liken the agile process to a whirlpool that builds over time,
sucking in new people and groups as it builds. We started with
limited buy-in from the developers themselves. By regularly talk-
ing about it and helping to promote the successes, we got more
developers excited about the process. Working both from within
the teams and providing coaching and guidance to the project
management group, we gained acceptance across most of that
team.

Host an agile safari. One of my favorite ways to promote Scrum comes from
Google. Team members who are curious about agile but who haven’t had the op-
portunity to work on an agile team are allowed to go on an “Agile Safar1.” Wihen
employees go on safari, theyijoin an agile team for a couple of weeks to get a feel
for what agile is like and how it works. They experience agile “in the wild” rather
than merely reading about it. I really like this idea because it addresses a concern
Machiavelli identified 500 years ago when he wrote that people “do not truly

2

believe in new things unless they have actually had personal experience of them
(2005, 22).

Attract attention and interest. Shamelessly seek attention. The more often people
hear about Scrum (or better, see it or experience it), the better you will be doing
at the goal of making its ultimate adoption seem inevitable. A few months into
her department’s transition, Lori Schubring attracted attention to the effort in a
novel way.

We also held an “Open House” on Halloween for the business
to come visit our department and see what we were doing with
Scrum. We created a Scrum-themed crossword puzzle and gave
away prizes. We put up posters explaining the different aspects
of Scrum such as the Scrum Board, Burndown Chart, Product
Backlog, and ScrumMaster. We gave away prizes and provid-
ed food and beverages. The internal information services staff
helped make the food and decorate the building, and the event
was a huge success.

Transfer

In their book Fearless Change, Mary Lynn Manns and Linda Rising point out
that providing food 1s always a good 1dea. Not only will you get more attendees,
they are likely to be 1n a better mood (2004). Benoit Houle brought food to sprint
reviews at BioWare to encourage broad attendance at those meetings, which he
says were “a great way to promote the successes. Everyone in the company was
invited to attend.” Houle also successfully used team rooms and walls full of index
cards detailing the work of the sprint to attract attention and interest.

Our war rooms full of 4" X 6" cards, team composition pictures,
and burndown charts were also quite communicative of our team
progress and accomplishments. Because of limited wall space in
team rooms, we started to spread miles of corkboards within our
corridors for our task boards and to show team progress and
achievements.

Transfer

After three years of pushing, attending literally thousands of daily scrums himself,
and running dozens of one-day “Intro to Scrum” classes for more than 500 team
members, Gino had much to be proud of. Much of the development department
was now using Scrum. Gino had started the company’s shift to Scrum when he
was one of its many development managers. Through early results by his teams, he
gained a promotion to director of a new group in the company called the “Scrum
Office” The Scrum Office provided support and services to any team that wanted
help. It was similar to the project management oftice (PMO) of a company doing
traditional software development. Gino was good in his new role and soon had
more than half of the company’s development staft working on projects that were
to some extent agile. Before the transition was fully realized, Gino accepted a big-
ger, better position at a company with bigger, harder challenges in transitioning
to Scrum. Back at his old company, the Scrum adoption eventually failed—not
because Gino was no longer there, but because no one (not even Gino) ever trans-
ferred the implications of Scrum outside the development organization.

[visualize Scrum as a rocket. Pushing that rocket forward is the power of its
engines. But pulling it back are the forces of gravity. If the rocket 1s able to push
far enough, it can enter into orbit. But if it cannot, it will inevitably get pulled
back to earth, right where it started. The implications of Scrum must be pushed
far enough into other parts of the organization so that the entire transition is not
pulled back by organizational gravity.

Gino did a wonderful job of gaining acceptance for Scrum among program-
mers, testers, project managers, database developers, user experience designers,
analysts, and so on. But the use of Scrum by more than 500 developers never

SEEALSO

The new role of prod-
uct owner is described
in Chapter 7, “New
Roles.” Changes to
the role of tester are
described in Chapter 8,
"Changed Roles.”

SEE ALSO

Implications of
Scrum on the human
resources group are
discussed further in
Chapter 20, “Human
Resources, Facilities,
and the PMO."

SEE ALSO

Implications of Scrum
on the facilities group
are discussed further in
Chapter 20.

Chapter 2 ADAPTIng to Scrum

led to changes in human resources, sales, marketing, or other groups. The same
individual-oriented bonus and annual review programs existed. Salespeople could
still promise one-oft enhancements to customers without first discussing such
promises with teams.

[t 1s impossible for a development team to remain agile on its own perma-
nently. If the implications of using Scrum are not transferred to other departments,
organizational gravity from those departments will eventually stall and kill the
transition eftort. By this, I do not mean that the rest of the organization needs to
start using Scrum. What [mean is that the rest of the organization must become
at least compatible with Scrum.

Sources of Organizational Gravity

Previous sections in this chapter provided a list of tools you could use to help
move your organization forward in ADAPTing to Scrum. There is really only
one tool for transferring agile to other departments: communicating with those
departments. So, rather than provide a list of tools, let’s look instead at the depart-
ments or groups most likely to possess a lot of organizational gravity. These are
the groups that deserve attention during the transfer part of the ADAPT cycle.
In working with these groups, maintain a goal of educating, not evangelizing.
You want other groups to understand how the development organization benefits
from Scrum. You do not need to convert them into staunch supporters of your
process. Rather, you want them to understand some of its unique principles and
how those might lead to friction between your group and theirs.

The following 1s a list of groups to whom you must transfer the implications
of using Scrum. Notice that I have not included testing and product management.
These groups are fundamental participants in Scrum rather than groups to which
the effects of Scrum are transferred. Involvement of product owners and testers
in Scrum is critical and needs to be established at the beginning of the transition
effort.

Human resources. A development organization using Scrum and the human re-
sources (HR) group are likely to clash in a number of ways. Many organizations
have human resources policies that work against the successful adoption of Scrum.
A periodic review process that forces managers to rank employees from most to
least valuable will undermine efforts to encourage teamwork. Equally damaging
1s a review process that values individual contributions while ignoring teamwork.

Facilities. Tales of meddling from the “Furniture Police” are common (DeMarco
and Lister 1999). Many teams are told they cannot hang index cards, burndown
charts, or others signs of progress or work on the walls. Few teams are allowed
to adjust their own cubicles; many have learned that the best way around this 1s

Transfer

to tear down or move cubicles over the weekend in the vein of “it’s better to ask
forgiveness than permission.” Benoit Houle of BioWare has a more encouraging
story of successfully transferring the implications of Scrum to his facilities group.

Facilities redesigned our floors to support agile team rooms. They
built us bigger rooms to support teams of six to eight people. Our
facilities team has a web application that catalogues everyone’s
location and allows us to easily submit a move through our in-
tranet. We all have the same desks, so most of the time the only
items we are moving are the computer and accessories. It 1s quick
and painless.

Marketing. In many organizations, development groups are so bad at projecting
ship dates that the marketing group stops asking and just makes them up. This also
happens in organizations where the marketing group 1s much more powerful than
the development group and can therefore dictate desired dates. In transferring the
effects of Scrum to the marketing group, a key focus should be on educating them
about the transparency provided by Scrum.

Most marketing groups don't like having to lock down plans a year in advance
any more than development teams do. The marketing group may need to schedule
an ad campaign nine months in advance. But, just like development teams, they
usually prefer to have a little flexibility. Rather than specify the exact contents of
the ad now, they’d prefer to commit today to running an ad but specify the exact
contents of the ad closer to publication date. A Scrum team’s progressive refine-
ment of plans combined with its strict adherence to dates should prove beneficial
to marketing groups that are open to it.

Finance. The finance group often intersects with Scrum projects in two areas.
First 1s the forecasting of project schedules and budgets. It will be important to
get the finance group to understand that—regardless of the development process
employed—a team cannot create an estimate that 1s accurate within 5% from a
new product description written on a napkin. Such unrealistic requests usually
come from a finance department that has been burned in the past by bad estimates
from development teams. It will take time to restore the finance group’s confi-
dence and trust in developers.

After a few Scrum teams have started to demonstrate success with the new
approach, it is usually helpful to meet with your finance department. In that
meeting, acknowledge past project-planning sins, but also show that while Scrum
still cannot guarantee on-time delivery, it can provide early exposure to possible
schedule slips.

Chapter 2 ADAPTIng to Scrum

The second area in which development and finance often intersect is in the
tracking or reporting of hours. Although Scrum does not require a team to track
hours worked, the team should be willing to do so if the finance department
needs this information. This would be the case, for example, in a contract develop-
ment company that bills customers by the hour.

Related to the tracking of hours can be a finance department’s desire to capi-
talize the cost of the project. Capitalizing a project refers to spreading the develop-
ment cost over the projected useful life of the project rather than accounting for
those costs in the month they occurred. Capitalization guidelines vary from coun-
try to country, and many of them are based on outdated concepts, including that
a project cannot be capitalized until technical feasibility has been demonstrated.
From past exposure to development processes, we’ve trained finance departments
to think that technical feasibility 1s achieved after analysis and design are done.
Without distinct analysis and design phases on a Scrum project, the finance group
may find it hard to determine when technical feasibility has been achieved.

['ve discussed this with many finance departments and have always been able
to make the case that technical feasibility 1s achieved after no more than a few
sprints. After all, if the team has produced working software that includes one
teature from the finished product, then it must be technically feasible. While I can
understand the counterarguments to this position, those arguments could also be
applied to considering something technically feasible after analysis and design are
done but when nothing has been coded.

There are groups beyond these to whom you will need to eventually also
transfer the implications of Scrum. For example, you may work with a project
management office, sales, information technology, operations, hardware develop-
ment, and other groups with organizational gravity. Transferring the implications
of Scrum to them will be important to your long-term success.

Q Identify the ADAPT activity that most closely describes you. Do
this for your team, your department, and your organization. ldentify
three things you could do to move one of these to the next level of
adaptation. Choose one (or work with your team to narrow down
the list, if applicable) and begin to implement it.

Q If you have already begun to adopt Scrum, think about promotion.
Identify ways to promote your early successes so that others be-
come intrigued by the process.

Putting It All Together

Like Scrum itself, ADAPTing to Scrum 1s iterative. It begins when some in the
organization develop an awareness that the current way of working 13 no longer

Additional Reading

producing acceptable results. As awareness spreads, some individuals develop the
desire to try Scrum in an attempt to improve the situation. Through trial-and-
error, these early adopters within the organization develop the ability to be suc-
cessful with Scrum. A new status quo may emerge with a small number of teams
successfully using Scrum within a broader organization that does not.

As these initial Scrum teams continue to improve their use of Scrum, they be-
gin to promote their successes—sometimes informally as might occur over lunch
with friends on another team, other times more formally as in a department-wide
presentation. This helps individuals on other teams begin their own progressions
from awareness to desire to ability. And then soon these other teams begin to pro-
mote their successes as well.

All of this early success 1s nice, but it 1s jeopardized if adopting Scrum 1s
viewed as something that occurs entirely within the development organization.
For continued long-term success, it will be necessary to transfer the implica-
tions of using Scrum to other departments that will be affected, including sales,
marketing, operations, human resources, and facilities. These groups do not need
to use Scrum—we don'’t need salespeople drawing burndown charts or facilities
doing daily scrums. But, unless these groups make small but important changes in
how they interact with the development group, they will affect the development
group’s ability to be agile.

In the next chapter, we’ll explore choices among patterns you can emulate as
you become able to transition to Scrum. We’ll consider whether it’s best to start
small or go all in and how much promotion should occur at the beginning of the
transition effort. We’ll also discuss several ways to spread Scrum beyond your initial
project or projects. Understanding the ADAPT process laid out in this chapter will
inform the decisions you will be asked to make in the next.

Additional Reading

Derby, Esther. 2006. A manager's guide to supporting organizational change. Crosstalk,
January, 17-19.
In this article, Esther Derby, coauthor with Diana Larsen of Agile Retrospectives (2006),
presents ten insights on what a manager can do to support a change initiative. Most of
the insights are focused on the awareness and desire phases.

Hiatt, Jeftrey. 2006. ADKAR: A model for change in business, government and our community.
Prosci Research.
ADKAR, which is an acronym for Awareness, Desire, Knowledge, Ability, and
Reinforcement, is a generic model for personal and organizational change. It served
as an inspiration in creating the ADAPT model. This book offers excellent, although

general, advice on awareness, desire, and ability,

Chapter

Patterns for Adopting Scrum

here are many different routes an organization can take to adopt Scrum. For-
tunately, from looking at companies that have already transitioned, we are able to
identify some common patterns of how to do it successtully. In this chapter, we
look at the strengths and weaknesses of four patterns, as well as when each may be
appropriate. The four patterns form a pair of questions that must be addressed at
the start of any Scrum adoption effort. These questions are as follows:

o Should we start with one or two teams, or should we convert all teams
at the same time?

e Should we announce our intent (perhapsijjust to others in the company
but perhaps publicly as well), or should we keep the change quiet for
now?

In addition to providing guidance for answering those two questions, we ex-
plore three options for spreading Scrum after the initial effort 1s underway. Finally,
the chapter concludes by considering how soon a new Scrum team should begin
focusing on adopting agile technical practices.

Start Small or Go All In

Conventional, long-standing advice regarding transitioning to Scrum or any agile
process has been to start with a pilot project, learn from it, and then spread agile
throughout the organization. This approach is the frequently used start-small pat-
tern in which an organization selects typically one to three teams (of five to nine
people each), gets them successful, and then expands Scrum from there. As Scrum
spreads through the organization, new teams benefit from the lessons learned by
the teams that have gone before. There are many variations of start small, depend-
ing on how many people the organization wants to transition and how quickly
they want to do it. Start small can also be applied differently based on how risk-
averse or uncertain about the transition the organization 1s. For example, in some
cases the first team or teams will finish their projects before a second set of teams

43

Chapter 3 Patterns for Adopting Scrum

even begins. Other organizations will take an overlapping approach, where the
second set of teams starts only one or two sprints after the first.

The start-small pattern, while popular, 1s not for everyone. Salesforce.com,
for example, followed the opposite pattern (Fry and Greene 2006). I remember
answering my phone on October 3, 2006, and hearing Chris and Steve from
Salestorce.com tell me that they had just converted 35 teams to Scrum overnight.
They asked if I'd like to help. My initial thought was that they needed a psychia-
trist more than a Scrum consultant. Not one to shrink from a challenge, though,
[agreed to help, packed a copy of Freud alongside my laptop, and set off for their
office in San Francisco. Part of what I saw there wasn’t entirely unexpected—
teams and individuals in an uproar over such a sudden, far-reaching change—but
[also saw other things that helped this large-scale, rapid adoption succeed.

Salesforce.com was pursuing the all-in pattern, which draws its name from a
poker player who bets all of his chips on one hand. Salesforce.com has a hard-
driving, aggressive, achievement-driven culture that would not have been a good
fit for a cautious start-small approach. Wihen key executives were presented with a
proposal to adopt Scrum, they were convinced. They felt that if Scrum was worth
doing for one team, it was worth doing for all teams, so they chose to go all in.

Surprisingly, the all-in and start-small patterns can be combined. An increas-
ingly common approach 1s a one- to three-team pilot project followed immedi-
ately by going all in. The pilot in this case serves the typical purpose of allowing
the organization to learn about Scrum and how it will function there. However,
the pilot in this scenario also serves the more important purpose of increasing
organizational awareness about Scrum. If you're going to transition 200 or more
people all at once, it 1s extremely helpful to be able to point to one team who has
already done it and say, “We're all going to do what they did.”

Reasons to Prefer Starting Small
The start-small approach offers several advantages.

o Starting small is less expensive. An all-in transition will almost certainly
cost more than starting small. Because of the greater number of people
learning a new way of working all at the same time, all-in transitions
generally rely more heavily on outside coaches, ScrumMasters, and train-
ers. The slower pace of a start-small adoption allows the organization
to build internal expertise and then use that to help the teams that start
later. Starting small also saves money because early mistakes affect only a
subset of the organization. Tom Gilb, who was perhaps the original agilist,
has written, “If you don’t know what you’re doing, don’t do it on a large
scale” (1988, 11).

o Earlysuccess is almost guaranteed. By carefully selecting the initial proj-
ect and team members, you can almost guarantee the success of your first

Start Small or Go All In

Scrum project. You may consider this cheating; I don’t. When starting
small, a goal of the first few projects 1s to generate the knowledge that
will enable the successtul rollout of Scrum. There may be value in starting
with a project and team that make success easy and then learning from its
experiences. Additionally, an early success can be vital to gaining buy-in
from skeptics or Tence-sitters.

Starting small avoids the big risk of going all in. An all-at-once transi-
tion can be very risky. Small mistakes will be magnified across the entire
transition effort. Perhaps the most significant risk to an all-in approach is
that you will be unlikely to get a second chance. If you start to transition
the entire organization, make a mistake that increases resistance, and then
revert to your pre-Scrum process while figuring out how to overcome
the newly discovered issues, it 1s unlikely that team members will give you
a second chance to start the transition. Resistance by that point will likely
be so entrenched that the transition effort will have failed. By contrast, if
you start small and find a fatal flaw in how you’ve started, you can keep
the next round the same size as the current one, rather than expanding,
effectively restarting the transition process.

Starting small is less stressful. Twenty-first century organizations and
their employees are under constant stress. An announcement that the
whole development organization is adopting Scrum, which affects so
many aspects of everyday work, could be the proverbial straw that breaks
the camel’s back. The stress of transitioning 1s reduced by starting small
because early adopters become coaches and ambassadors. They encourage
other groups to make the transition with stories of their successes and
honest discussions of the challenges they faced and overcame.

Starting small can be done without reorganizing. Most organizations that
fully adopt Scrum will eventually undergo some degree of reorganizing.
This can create further stress and can increase resistance from some in-
dividuals. By starting small, the need to reorganize can be put off longer,
ideally until valuable experience with Scrum has been gained.

Reasons to Prefer Going All In

Just as there are reasons to prefer starting small, there are reasons to prefer an all-in

transition:

Going all in can reduce resistance. In anything less than an all-at-once
transition, there will always be some skeptics who will hold out hope
that the whole effort 1s a pilot that will soon be abandoned. Like Cortez
burning his boats at Vera Cruz to prove his resolve to his soldiers, an or-
ganization that goes all i 15 demonstrating both its commitment to the

46

SEEALSO

Advice on how a
Scrum team can best
work in conjunction
with a traditional team
is offered in Chapter 19,
“Coexisting with Other
Approaches.”

SEE ALSO

We explore ways to
spread Scrum to other
teams later in this
chapter.

Chapter 3 Patterns for Adopting Scrum

new process and also that it will not turn back. This level of visible com-
mitment to the change can be beneficial in helping the change succeed.
It avoids problems created by having Scrum and traditional teams work
together. If you transition anything short of the entire company all at
once, you run the risk of having some teams using Scrum and others not.
This means there will be times when a Scrum team needs to coordinate
work with a traditional team, which creates challenges because of the
difterent attitudes Scrum and traditional teams bring to things like plan-
ning, deadlines, and communication. These problems go away when the
entire organization adopts Scrum at the same time. Chris Iry and Steve
Greene of Salesforce.com report that “the key factor driving us toward a
big-bang rollout was to avoid organizational dissonance and a desire for
decisive action. Everyone would be doing the same thing at the same
time” (2007, 137).

An all-in transition will be over more quickly. One of the central tenets
of this book 1s that an organization 1s never “done” becoming agile; there
are always improvements to be made. However, there 1s definitely a time
when employees can look back and say of the transition that the worst 1s
over. An organization that goes all in can reach this point more quickly.

Choosing Between Going All In and Starting Small

As I mentioned at the start of this chapter, starting small has been the default ap-
proach recommended by most agile authors and used in most agile adoptions.
The combination of this approach’s low risk and high likelihood of success make
it hard to find fault with. Always choose to start small when there is a reluctance
by leaders in the organization to fully commit to Scrum. Success, even on a small
scale, can be the best way to convince the skeptics. Always start small when there 1s
a high cost associated with failure. If the cost of failure is too high for those lead-
ing the transition, starting small is the way to go, even if it may not be best for the
organization as a whole. Start small is probably not the best approach when your
organization urgently needs the benefits of Scrum. (But if you do choose to start
small, scale quickly.) Starting small 1s safe, but it’s slow.

Going all in should be used in limited cases. Consider going all in if time 1s
critical. Although an all-in approach may cost more money, it will cost less time. If
time is your primary concern, all in may be the best solution. Consider going all
in if you, like Salestorce.com, want to send a clear message to a small number of
critics and stakeholders that Scrum is here to stay. Never go all in without enough
experienced ScrumMasters to serve each team. It doesn’t matter in the short term
whether these ScrumMasters are internal or external; but remember that eventu-
ally yow’ll want all of your ScrumMasters to be internal employees. Finally, size

Public Display of Agility or Stealth

matters. If there are only ten of you, you might as well go all in. But for teams of
more than perhaps 400, going all in may not be logistically possible.

Whichever route you choose for adopting Scrum, remember that choosing
this pattern is only the first of the many decisions you’ll need to make when tran-
sittoning. You will next need to decide whether to make your transition public.

Public Display of Agility or Stealth

The next choice to make is whether or not to publicize your transition. One op-
tion 1s to make apublic display of agility. In this approach, the team or organization
announces with great fanfare that it 1s adopting Scrum. Depending on the scope
and significance of the transition, the announcements may range from lunchroom
comments to other teams all the way up to press releases in the national media.
No matter the extent of the publicity, with a public display of agility, teams make
an effort to inform others that something agile 1s going on.

In contrast to a public display of agility 1s a stealth transition. In a stealth tran-
sition, only the team members know they are using Scrum until the project is
complete. I found a group doing a stealth transition at one of my clients. On my
first visit to this client, I spoke with Sarah, the director of the company’s project
management office. She told me that the transition to Scrum was well underway.
[t had begun shortly after I delivered a two-day training class to many developers
in its headquarters office. Sarah shared with me a well-thought-out plan she had
outlined to introduce Scrum across her company’s more than 200 developers.

Sarah’ plan showed four initial pilot teams, each of which had been selected
for specific reasons. One team was chosen for its willingness to relocate into a
shared team space very different from the dedicated cubicle environment in use at
the time. Another team was chosen because it would be one of the first to use a
new technology in which the company was making a significant investment. The
other two teams were selected to be part of the pilot for equally good reasons.
Sarah’ plan was great because it would enable teams to maximize the learning
right from the outset of this transition effort.

I left Sarah’ office planning to visit each of the four teams so that I could
get their perspective on how things were going. Strangely, though, I didn’t find
four teams—I found five. When I figured out which of the five wasn’t one that
Sarah had told me about, I went back and talked with that team some more. I
discovered that it was not an officially sanctioned part of Sarah’s pilot effort. The
members had noticed the goings on of one of the official teams, liked what they
had seen, and decided to try it themselves. They had a vague sense that they prob-
ably shouldn’t be doing what they were doing and had placed their wall-hanging
task board and burndown chart well mside a labyrinth of cube walls. I had only

Chapter 3 Patterns for Adopting Scrum

stumbled across it because I was unfamiliar with the building and had gotten lost

looking for one of the official teams.

This team was doing a stealth transition. Members were using Scrum but

were keeping their activities to themselves until the project was complete. There

are varying degrees of stealth—some teams may actively try to keep what they’re

doing quiet while others merely don’t publicize the change.

Reasons to Favor a Public Display of Agility

There are many good reasons for making a public display of agility. Among them

are the following:

Everyone knows you're doing it, so you're more likely to stick with it.
Standard advice to anyone attempting to adopt or abandon a habit 1s to
solicit the help of your friends. Whether you are starting a diet, quitting
smoking, or starting an exercise program, telling your friends about the
change 1s a good 1dea. You’ll likely feel an unspoken pressure to succeed
because you've announced your intentions; your friends will also be able
to support and encourage you. The same 1s true when transitioning to
Scrum.

A public display establishes a vision to work toward. Publicly proclaim-
ing your intent provides an opportunity to create thought and discus-
ston around the goal. With the intent out in the open, team members
will feel comfortable talking about the transition with those outside the
team. They’ll be able to share successes and failures. Those interested in
the transition (perhaps wishing they could be part of it) will offer advice;
those opposed will offer resistance. A public display can provide the op-
portunity to engage both groups, providing the opportunities to encour-
age the former group and to overcome the objections of the latter.
Operating in the open is a firm statement of your commitment. A stealth
transition can be perceived as a bit wishy-washy. It is as though the team
or organization is saying, “We believe in this but we want to hedge our
bets by having the chance to back away if it doesn’t go well.” There’s no
backing away from a public display. It makes a powerful statement that not
only does the organization plan to initiate the transition, but it also plans
to be successful at it.

You can solicit organizational support. If youre trying to keep the use
of Scrum quiet, you’ll have limited ability to reach outside the team for
assistance. There are many obstacles you may encounter as you transition;
before abandoning the assistance of possible allies in overcoming them,
make sure the advantages to stealth are compelling.

Stating your goal and then achieving it sends a powerful message. An-
nouncing at the end of a project that the project was successful because

Public Display of Agility or Stealth

it secretly used Scrum 1s much less compelling to skeptics than telling
them up front. Baseball player Babe Ruth’s most famous home run was
the 1932 “called shot.” With a count of two balls and two strikes, Ruth
pointed to the centerfield fence and hit the next pitch into the centerfield
bleachers. Saying what you’ll do and then doing it is more powerful than
announcing your goal after it has been achieved.

Reasons to Favor a Stealth Transition

Stealth transitions may seem a bit sneaky, but there are actually quite a few advan-

tages to keeping a low profile. These include

You have a chance to make progress before resistance starts. A public
announcement about the transition will bring resistors and naysayers out
of the woodwork. Their best chance to avert the change 1s before 1t gains
much momentum, and so they will argue strongly against it after it 1s
announced.

A stealth transition keeps additional pressure off. If adopting Scrum is
a high-publicity affair with proclamations in company newsletters, the
intranet, and so on, the team can feel a great deal of pressure to succeed—
both at the project and at the transition. For teams that thrive under pres-
sure this might be good. However, when the project 1s finished you won’t
know if it had been successful because of Scrum or because of the ad-
ditional pressure the team was under. Bob Schatz and Ibrahim Abdelshafi
did not announce a grand change of process when they led Primavera’s
successful transition to Scrum.

One of the first things we didn’t do was start telling every-
one that we planned to use a new process. We didn’t want
to make people apprehensive, and we wanted to give them
time to adjust to the changes. Plus, when you run around
announcing your new process and all its benefits, you can
quickly set unrealistic expectations. (2005, 37-38)

No one knows about it until you tell them. When operating in stealth mode,
you can wait until the project is successful before indicating that the proj-
ect was run in a different way. Or, if the project fails, you can adjust how
you are doing Scrum, try again, and only tell people after you've figured
out the nuances of doing so that lead to success in your environment.

If no one knows you're doing Scrum, no one can tell you to stop. If you
start so quietly that no one but the individuals mvolved know;, there’s
no one who can tell you to stop. I've seen individual teams choose the
stealth approach under the premise of it being easier to ask forgiveness
than permission. ['ve also seen vice presidents of development or project

Chapter 3 Patterns for Adopting Scrum

management offices choose to introduce Scrum 1in stealth mode so that
they could prove tangible benefits before having to debate the merits of
Scrum with groups they knew would resist.

Choosing Between a Public Display and Stealth

[find that organizations willing to make a public display of agility are more
likely to enjoy a successful transition than those that try a stealth approach. Always
choose to make the transition publicly known when you are confident in Scrum
and committed to the transition. Similarly, strongly consider a public display if you
expect there will be stiff resistance to the change but want to overcome it quickly.

In contrast, choose a quieter approach when you want to experiment either
with all of Scrum or just parts of it. For example, maybe you introduce daily
meetings—don’t call them daily scums n this case—and see how that works.
Then introduce the idea of working in timeboxed sprints. If these go well, maybe
start calling what you’re doing agile or Scrum and proceed from there. Additionally,
always choose a stealth approach when it is your only option. If you don’t have
the political clout to say,“We’re doing Scrum,” or if doing so will create too much
resistance, start quietly.

Patterns for Spreading Scrum

Getting started with Scrum 1s one thing; spreading it across the organization is
another. Unless you have chosen an all-in transition, you will need to build upon
the successes of the first few teams as you move Scrum into other teams. There are
three general patterns you can use for spreading Scrum beyond the initial teams.
The first two patterns involve taking a team that has begun to be successful with
Scrum and then using its members to seed new teams. The third pattern takes a
different approach and involves spreading Scrum using internal coaches.

Split and Seed

The split-and-seed pattern is typically put into use after the first couple of teams
have adopted Scrum and run at least a handful of sprints. By that point, team
members are beginning to understand what it 1s like to work on a Scrum team.
They certainly won'’t have figured everything out, but sprints should be ending
with working software, and team members should be working together well. In
short, the team probably has a long way to go to get good, but Scrum is starting
to feel natural.
[t 15 at this unlikely point that we split the team up.

Patterns for Spreading Scrum

In the split-and-seed pattern, one functioning Scrum team is split in two, with
each half of the original team forming the basis of a new team. New people are
then added to these splinter teams to form new Scrum teams. This pattern 1s
shown 1n Figure 3.1, which shows the creation of two teams from one original
team. A large initial team could be used to seed as many as four new teams, espe-
cially if the initial team included some members with previous Scrum experience
or a natural aptitude for it.

The new team members can be either newly hired employees or existing
employees moving onto their first Scrum projects. The idea behind the split-
and-seed pattern 1s that newly formed, second-generation Scrum teams will have
an easier time learning the mechanics and practices of Scrum because they will
have guidance from the experienced members of the team. The new teams are
left together for a few sprints until that team begins tojell and its new members
have developed a feel for Scrum. Then, again, the functioning teams are broken up
into smaller teams and new members are added to fill out the teams. This cycle 1s
repeated until Scrum has been fully introduced.

In a large, enterprise rollout of Scrum, you do not need to leave each genera-
tion of teams together for the same number of sprints. You can instead split each
team whenever it’s ready.

Grow and Split

The grow-and-split pattern is a variation of the split-and-seed approach. It involves
adding team members until the team is large enough that it can be comfortably
split in two, as shown in Figure 3.2. Immediately after splitting, each of the new
teams will probably be on the small end of the desirable size range of five to nine
members. After allowing the new teams one sprint at this reduced size, new mem-
bers are added until each team becomes large enough that it can also be split. This
pattern repeats until the entire project or organization has transitioned.

51

FIGURE 3.1

The split-and-seed
pattern applied to
two initial teams.

52 | Chapter 3 Patterns for Adopting Scrum

FIGURE 3.2
The grow-and-split

pattern used to cre-

ate two teams.

© 0

Internal Coaching

Philips Research’s Scrum adoption 1s an example of the third pattern for spread-
ing Scrum: internal coaching. Philips had begun adopting Scrum and was facing a
problem. Like many organizations, it had some teams that were excelling with
their new agile approach and others that were struggling. Philips” Christ Vriens
solved the problem by using internal coaching. On each team that was doing well,
he identified one person who truly understood what it meant to be agile and
designated that person as a coach to another team that had not yet progressed as
far in its understanding and use of Scrum.

Coaches were given specific responsibilities, such as attend sprint planning,
review, and retrospective meetings; attend one daily scrum each week; and be
available for two hours each week to provide other assistance to the mentored
team as needed. Coaches were not excused from their responsibilities on their
original teams, but it was acknowledged that each coach would have fewer hours
to contribute to those teams.

Reasons to Prefer Split and Seed
The split-and-seed pattern’s advantages are rooted 1n its quick-spreading nature.

¢ You can add teams more quickly than with most other approaches. Each
new team should ideally include at least 2 members of the previous team.
This means that possibly as soon as after 2 or 3 sprints, a team of 8 people
could conceivably be split into four 2-person groups used to seed a sec-
ond set of teams. If each of those 4 teams had 8 people you would have 32
Scrum team members. A few sprints later these 32 people could be used
to seed 16 more teams, each with 8 team members for a total of over 100
Scrum-experienced people after only 5 or 6 sprints.

o Eachteam has someone with Scrum experience to help guide them. Only
the very first teams to transition will be forced to do so without someone

Patterns for Spreading Scrum

on the team with Scrum experience. All subsequent teams will benefit
from having at least two (and hopefully three or four) team members
with at least a couple of sprints of experience under their belts. This can
help reduce the discomfort some people will feel about transitioning to
something new and unfamiliar.

Reasons to Prefer Grow and Split

The grow-and-split pattern spreads Scrum a bit more slowly than does the split-

and-seed approach but comes with some key advantages.

You don’t have to destroy any existing teams. The primary problem with
the split-and-seed strategy 1s that teams who are just starting to jell and
get a handle on Scrum are demolished to form the basis of new teams.
Breaking up a good team 1s always something that should be done with
caution. Growing the team before splitting it overcomes this shortcoming
because the team 1s kept together until it is large enough to form two
complete teams, each with agile experience.

Team members feel more continuity from sprint to sprint. When using the
split-and-seed pattern, teams are constantly being split and reformed be-
fore a true sense of team camaraderie 1s established. Because the grow-
and-split approach divides a team only when 1t has gotten too big, mem-
bers can stay together longer, and there 1s less feeling of disruption.

Reasons to Prefer Internal Coaching

The internal coaching approach is generally my preferred approach. Not surpris-

ingly, there are a strong set of advantages to it, including the following:

Well-running teams do not need to be split. A drawback to the prior pat-
terns 1s that functioning teams are split to form the foundations of new
teams. When using internal coaches, teams stay intact with only the minor
disruption of an occasional outsider (the coach) joining the team.
Coaches can be hand-selected for new teams. An approach like the split-
and-seed pattern takes a whole-team approach to coaching: The new
team is coached collectively by the seeding team members. Some of those
individuals will be good in that role; some will not. With internal coach-
ing, the most appropriate coach can be selected for each new team.
Coaches can be moved from team to team. After awhile a team and its
coach become stale. A fresh pair of eyes can be helpful in identifying new
ways to improve. When internal coaches move from team to team they act
like bees, pollinating each team with new ideas.

Chapter 3 Patterns for Adopting Scrum

Choosing Your Approach

There are two driving factors in choosing among these three patterns for spreading
Scrum: How quickly do we need to spread Scrum to additional teams, and do we
have good internal coaches who can assist the new teams? The answers to these ques-
tions will be key to helping you choose the pattern that best fits your organization.

In general, consider using split and seed when you are in hurry. The split-
and-seed approach can be one of the fastest ways to spread Scrum through an
organization. The approach can be accelerated in a couple of different ways: First,
you can split teams a bit earlier than might be 1deal. Second, you can split teams
into more new teams than might be 1deal, perhaps four new teams instead of two,
even if this means that some new teams get some less-than-ideal coaches from the
earlier teams.

Be cautious, though, about using split and seed if the technology and domain
cannot support moving people among teams. Changing team membership 1s al-
ways detrimental to productivity. That loss can be offset, however, by the benefits
of quickly spreading Scrum through a large project or organization. However, in
some cases, 1t 1s just not practical to move people between teams. For example,
seeding a .NET team with Java programmersjust because they have three sprints
of Scrum experience would not be a good idea.

The grow-and-split pattern 1s perhaps the most natural approach, as it mirrors
what would probably happen if no one intervened to help the spread of Scrum. In
most organizations, people move between projects, carrying good practices with
them. The grow-and-split approach 1s simply a more directed approach than let-
ting this happen naturally, which would take much, much longer.

Consider using grow and split when there 1s not enough urgency to push you
to the split-and-seed approach. Because growing and splitting a team 1is a less ag-
gressive (and less risky) approach than splitting and seeding a team, it is often used
in similar situations but when there is a bit less urgency. Also consider using grow
and split when the team size 1s growing anyway. True to its name, the grow-and-
split approach works best when teams are expanding.

Internal coaching can be used as a spreading strategy on its own, or it can be
used to augment either of the other approaches. This approach works best under
certain conditions:

e When the group is large enough that good practices won't fully spread on
their own. One of the strengths of this pattern is that coaches can move
from one team to another, spreading good practices as they do so. If your
organization is small enough that sharing good practices won’t be a prob-
lem, then you may not need this approach.

e When splitting teams is not practical for your projects. If any of the draw-
backs to splitting teams concern you, the internal coaching approach 1s a
good antidote.

Introducing New Technical Practices

¢ When you have enough internal coaches or can bring in outside help. An
ideal coach 1s someone who fundamentally understands Scrum and has
probably worked in an agile way for years before even hearing the word.
These individuals can be hard to identity in advance; they aren’t necessar-
ily the most experienced team members. If you don’t have enough good
coaches, consider using one of the other patterns initially. After enough
teams have run a few sprints, you can begin to augment a seeding ap-
proach with internal coaches.You can also spread the coaches you do have
out a bit more by having each coach assist more than one team. If budget
allows, you can also bring in outside consultants until you have built up
your internal coaching corps.

Introducing New Technical Practices

One final decision facing change agents, ScrumMasters, and new Scrum team
members themselves 1s how soon the team should adopt new technical practices.
One school of thought 1s that everything should start with the technical practices.
If a team 1s using the right technical practices—simple design, automated testing,
pair programming, refactoring, and so on—then agility will be the natural result.

The alternative view 1s that a team should be left alone longer and given time
to discover the technical practices that work best in its environment. ScrumMas-
ters, managers, and coaches may eventually nudge a team toward trying different
practices. “Would this have happened if we had more automated tests?” a Scrum-
Master might ask the team. But in general, the team is given longer at the start to
work without pressure to adopt or even try specific new technical practices.

In this section, we’ll consider both the reasons to encourage an early start at
trying new technical practices and the reasons why delaying might be a better
choice.

Reasons to Start Soon

There are three very good reasons for putting an early emphasis on adopting new
technical practices:

e Very rapid improvements are possible. Many of the technical practices
can provide some quick wins to the team and organization. Pair program-
ming, for example, can help cross-train programmers across more areas of
the system. Introducing a continuous build process can reduce integra-
tion hassles to near zero. Other practices—test-driven development, for
example—have steeper learning curves, but even these are measured in
days and weeks rather than months and years.

Chapter 3 Patterns for Adopting Scrum

If the team doesn’t try new technical practices early, it might never try
them. Too many Scrum teams adopt the bare minimum of Scrum and
stop there, deciding that the improvements already achieved through their
new iterative and incremental work style are sufficient. By not consid-
ering or trying new or improved technical practices, these teams forgo
much of the improvement they could have made. I tend to think of such
teams as having learned to work iteratively but having not become ag-
ile. Gabrielle Benetield reports having witnessed this problem at Yahoo!
while she was the company’s director of agile product development.

The most visible symptoms of dysfunction in Yahoo! prod-
uct development were at the project and team layer (cen-
tered around issues of planning, project management, re-
lease management,and team interactions), rather than at the
technical practices or tools layer. As a result, Yahoo!’s initial
focus was on the adoption of Scrum. There was active de-
bate about whether agile engineering practices should also
be adopted in parallel; in hindsight, it would have acceler-
ated the benetits had they been. (2008, 461)

It may address the project’s most pressing issues. Introducing a team to
the agile technical practices can solve an array of typical project problems,
including poor quality, over-engineered solutions, long delivery cycles,
and so on.There are other problems, though, that are not addressed by in-
troducing these practices. For example, a project with a disengaged prod-
uct owner will experience slow or incorrect decision making. This prob-
lem will not be remedied solely by introducing new technical practices.
The same 1s true for a project with multiple product owners, each with a
competing agenda, or for a project with strong personality clashes among
team members. If your project’s most pressing issues are ones addressed
by one or more of the common agile engineering practices, consider
emphasizing those practices early in the transition.

Reasons to Delay

Just as there are strong reasons for encouraging a team to adopt new engineering

practices early, there are also reasons why it may be better to wait:

There may be strong resistance to some practices. Introducing certain
technical practices can be one of the most difficult challenges you face
when transitioning. Many individuals are extremely reluctant to try new
things, such as simple design, pair programming, and test-driven develop-
ment. Although you may have good reasons to push the team to try new

One Final Consideration

practices close to the outset, they will need to be weighed against the risk
of increased resistance.

« Team members may already have their hands full. Just learning the fun-
damentals of working on a Scrum team can be challenging in many or-
ganizations. The added stress of also learning new technical practices may
simply be too much for some teams, causing them to shut down and
not try. Given enough time, the pressure of delivering working software
within Scrum’s strictly timeboxed sprints may bring these same teams to
the realization that they need to try new technical practices.

One Final Consideration

This chapter presented two questions that will confront any organization transi-
tioning to Scrum: Start small or go all in? Public display of agility or stealth? An-
swers do not need to be binary—there 1s a great deal of middle ground between
starting small and going all in for most organizations. The patterns for spreading
are similar. They can be used on their own or combined as needed to fit your par-
ticular circumstances. Perhaps, for instance, you first decide to split and seed, but as
time passes, and enough teams exist, you can slow down and let teams grow before
splitting them, while also speeding learning through the use of internal coaching.
In addition, no matter what pattern you choose, leaders of the transition effort
(and those participating in it) must address how much to change at any one time
for the team or teams transitioning. Attempt to change too much and teams are
disoriented; change too little and you risk exhausting people through a marathon
of small changes.

Joshua Kerievsky, a senior consultant with the Cutter Consortium, 1s in favor
of enacting all changes at once. He is opposed to what he calls “piecemeal transi-
tions” because he says they

e Are more painful because the change process 1s protracted

e Fail to address root problems

e Rarely lead to complete transitions

e Produce changes too slowly for the business to benefit from

e Tend to be done without expert help, resulting in making easily avoided,

costly mistakes (2005)

Although Kerievsky raises some good points, they ultimately derive from
thinking of the transition to agile as a one-time thing that can be completed. On
the contrary, adopting an agile approach such as Scrum 1s a process of continuous
improvement. There 1s no predefined end state. Because of this, it 1s incorrect to
talk about a “complete transition” or a change process that takes too long. Change

Chapter 3 Patterns for Adopting Scrum

1s no longer something organizations “go through.” Change 1s now a perpetual,
ongoing occurrence.

Wiriting in the Agile Journal, Liz Barnett presents a different view than
Kerievsky’s.

Starting slow 1s the way to go. For the vast majority of compa-
nies interested in agile practices, incremental adoption represents
the most pragmatic way to improve their software development
organizations while managing risk. As they implement organi-
zational, process, and technology changes, teams can continually
reassess their progress and determine the most pragmatic next
steps. It’s the agile way to become agile. (2008)

Kent Beck and Cynthia Andres, authors of Extreme Programming Explained,
agree, acknowledging the near necessity of starting with a subset of practices and
new ways of working and then improving one thing at a time.

[t’s easy to start by changing one thing at a time. [think it’s hard
to jump in and do all the practices, embrace all the values, and ap-
ply all the principles in novel circumstances by reading this book
and deciding to do it. The technical skills in XP and the attitudes
behind them take a while to learn. XP works best when it 1s done
all together, but you need a starting place. (2004, 55)

This brings us to our next chapter. After you've decided to transition to Scrum,
understood the ramifications of change, and made your decisions regarding the
pattern you are most likely to emulate, it’s time to begin making the changes
Scrum requires. As Beck and Andres so aptly point out, the best way to do that is
iteratively. We explore how to use the Scrum framework, along with specialized
communities of practice called improvement communities, to adopt and spread
Scrum, bring about continuous improvement, and transfer agile 1deas throughout
the organization.

Additional Reading

Beck, Kent, and Cynthia Andres. 2005. Getting started with XP:Toe dipping,

racing dives, and cannonballs. PDF file at Three Rivers Institute websitewww.

threeriversinstitute.org/ Toe%20Dipping.pdf.
Beck and Andres use entering a pool to describe three different approaches for adopt-
ing Extreme Programming. Toe dippers enter slowly, adopting one practice at a time.
Cannonballers make a big splash and deal with the sudden chaos it creates but transi-
tion quickly. They describe a racing dive as an “assisted cannonball,” referring to doing

a lot of changes quickly but with guidance from an experienced coach.

Additional Reading

Benetield, Gabrielle. 2008. Rolling out agile in a large enterprise. In Proceedings of the
41st Annual Hawaii International Conference on System Sciences, 461-470. IEEE Computer
Society.

This paper provides detailed information on Yahoo!’s large Scrum adoption ef-

fort. Details on both what was done right and what could have been improved are

included.

Elssamadisy, Amr. 2007. Patterns of agile practice adoption: The technical cluster. C4Media.
This book, which 1s available as a PDF throughwww.infoq.com, focuses on the tech-
nical practices that should be adopted by agile teams. As such, 1t 1s complementary. to
the patterns presented in this chapter.

Hodgetts, Paul. 2004. Refactoring the development process: Experiences with the
incremental adoption of agile practices. In Proceedings of the Agile Development Conference,
106-113. IEEE Computer Society.
This paper summarizes Scrum trainer Paul Hodgetts’ experiences from transitioning
a handful of teams to agile. He contrasts the advantages and disadvantages of incre-
mentally adopting agile with adopting it all at once based on experiences with those

projects.

Striebeck, Mark. 2006. Ssh! We are adding a process. ... In Proceedings of the Agile 2006
conference, ed. Joseph Chao, Mike Cohn, Frank Maurer, Helen Sharp, and James Shore,
185-193. IEEE Computer Society.
Mark Striebeck describes how agile was introduced to the AdWords front-end appli-
cation at Google. He describes the combination of a start-small and stealth approach,

with new practices added incrementally.

http://www.infoq.com

Chapter ¥

lterating Toward Agility

istorically, when an organization needed to change, it undertook a “change
program.” The change was designed, had an identifiable beginning and ending,
and was imposed from above. This worked well in an era when change was nec-
essary only once every few years. Christopher Avery has written, “I think in the
1960s and 1970s this approach was probably more frequently successful than it
has been 1n the 1990s and today because the frequency of change has intensified
as competition has become global, and the model has broken down” (2005, 18).
Avery continues by saying that “if the changes are coming so fast and furious that
programmed change won’t work, perhaps we have to arrange ourselves (organiza-
tionally speaking) to digest many more smaller changes on a continual basis” (20).

Whether you are jjust starting to adopt Scrum or you are at the point where
you are ready to fine-tune your use of Scrum, you should manage the effort in an
agile way. Following an iterative transition process—making small changes on a
continual basis—is a logical way to adopt a development process that 1s itself itera-
tive. Doing so will be much more likely to result in a successful and sustainable
transition. This is why I believe that the effort of adopting Scrum 1s best man-
aged using Scrum itself. With its iterative nature, fixed timeboxes, and emphasis
on teamwork and action, it seems best suited to manage the enormous project of
becoming and then growing agile with Scrum.

In 2004, the leaders of Shamrock Foods realized that change was coming too
quickly in their industry. As one of the ten largest food distributors in the United
States, Shamrock had for 20 years used a conventional, top-down strategic plan-
ning process, dedicating months each year to creating a 5-year plan that was out of
date before the ink dried.To address this problem, CEO Kent McClelland aban-
doned the company’s 20-year-old approach and began to apply a Scrum-based
iterative strategic planning process.

Shamrock’s process revolved around quarterly strategic “scrums”
[sprints|: Team members met at an offsite location for a day to
evaluate the company’s performance against the action plans
from the previous quarter. We asked them to identify the most
mmportant things they had learned about the company’s strategy

Chapter 4 Iterating Toward Agility

since the previous meeting and to suggest how those insights
should be integrated in the strategy going forward. The group
created new action plans for the upcoming period. In addition to
the quarterly scrums [sprints|, the participants met every year for
three days, during which time people were asked to step further
back and revisit the company’s strategic assumptions. (McFarland
2008,71)

Forty-five managers and employees participated in these sprints and were
chosen to represent each division and functional area. At the start of each quarterly
sprint, this group selected up to a handful of key areas in which they agreed the
company should improve. These were referred to as themes. Because Shamrock
was applying Scrum to an organizational improvement effort rather than software
development, the themes represented broad business goals. Examples included
increasing revenue on Shamrock’ house brands, improving how it serviced large
customers like Burger King, and improving the company’s ability to recruit, retain,
and develop good talent.

Many corporate improvement initiatives fail because plans are not made spe-
cific and actionable. Because they were using Scrum, Shamrock employees went
beyond just identifying themes for improvement: “Planning participants created
and prioritized a handful of specific and measurable strategic mnitiatives that would
advance each strategic theme. Then they built detailed action plans and set mea-
surable outcomes they thought could be achieved within 90 days” (McFarland
2008, 71).

Not only does the Shamrock story illustrate the broad applicability of Scrum,
it serves as an example of how Scrum can be used to manage an organizational im-
provement effort. In this chapter, we look at how to use Scrum first to adopt Scrum
and then to continuously improve by engaging communities of like-minded em-
ployees, such as the 45 people who guided Shamrock’s improvement effort.

The Improvement Backlog

Just as Scrum development projects use product backlogs, you should use an im-
provement backlog to track the effort of adopting Scrum in your organization. An
improvement backlog lists everything that the organization could do better in its
use of Scrum. When IBM began to adopt Scrum, its improvement backlog in-
cluded the following items:

e Increase the number of teams using Scrum.
e Increase adoption of test automation.

e Enable teams to implement continuous integration.

The Enterprise Transition Community

e Digure out how to make sure each team has a product owner.
e Determine how were going to measure the impact of adopting Scrum.

e Increase the use of unit testing and test-driven development.

Improvement backlogs, such as the one shown inTable 4.1, are dynamic, with
items coming and going as they are thought of, completed, found unnecessary,
and so on. Much of what we discussed in Chapter 2,“ADAPTing to Scrum,” will
find its way onto an improvement backlog. If you’re just starting with Scrum,
your improvement backlog will emphasize creating awareness and desire. If the
transition 1s already well underway, your improvement backlog may contain more
items around developing the ability to do Scrum well, to promote successes, or
to transfer it to other groups. Similarly, decisions about which patterns to use, as
described in Chapter 3, “Patterns for Adopting Scrum,” can create items on an
improvement backlog.

A small department or single-project transition may involve a single improve-
ment backlog. But when Scrum is being adopted across a large site, department,
or organization, the transition effort becomes large enough that multiple improve-
ment backlogs are used, each of which 1s created by a community of individuals
who are passionate about improving the organization in a particular way. There
may be, for example, 2 community and associated improvement backlog for figur-
ing out how best to do automated testing on Scrum projects, another for develop-
ing and becoming great ScrumMasters, and so on.

Additionally, in a large transition effort, there 1s what might be considered a
master improvement backlog, which 1s maintained by the group that guides the
organization’s overall transition. It 1s to that group that we turn our attention next.

The Enterprise Transition Community

The small group that initiates, encourages, and supports an organization’s effort
to introduce and improve at Scrum 1s known as the Enterprise Transition Com-
munity, or ETC.! The Enterprise Transition Community exists to create a culture
and environment where change can be released by those who are passionate about
the success of the organization and where success leads to more passion from more
people. The ETC does this not by imposing changes on the organization but by
guiding groups who are implementing changes, by removing obstacles to doing
Scrum well, and by creating energy and excitement for the change.

The members of the ETC, who usually number no more than a dozen,
come from the highest level imnvolved in the transition to Scrum. If a company 1s
adopting Scrum organization-wide, the E'TC should include senior people from

1 The acronym ETC is consistent with Ken Schwaber’s in The Enterprise in Scrum, al-

though he refers to it as the “Enterprise Transition team™ (2007).

64 | Chapter4

TABLE 4.1

An improvement
backlog is a list of
capabilities to be
developed, work
to be performed,
or issues to be ad-
dressed within the
organization.

Iterating Toward Agility

engineering or development plus vice presidents of groups such as product

management, marketing, sales, operations, human resources, and so on. For a

departmental adoption of Scrum, the ETC may include the vice president of

engineering along with the heads of QA, development, architecture, interaction

design, database, and so on.The key here 1s that the ETC 1s made up of the most

senior people for the level at which the transition is occurring.

Create a Scrum Office (like a
Project Management Office) where
teams can get help.

Jim (CTO) to talk this up at
monthly development meet-
mg. Let’s see if theres any
interest.

Establish an internal program for
developing ScrumMasters.

How do we 1dentify good
mternal candidates? How do
we develop them?

ing Scrum; have Jim discuss it at his

monthly meeting.

Collect and disseminate Scrum suc- | SC Savannah has expressed inter-
cess stories In our company. est in this.
Develop a continuing education Consider quarterly open space
program internally. meetings. [dentify and contact
mdustry experts for one-hour
lunch meetings.
Start doing lots of automated unit The Scrum team that makes
testing (even if its not test-first) and the most progress on this
using FitNesse. (as voted on by everyone in
the department) can have
all members attend next
summer’s Agile conference.
Help a community form to decide TG Tod to start soliciting volun-
how much up-front architecture is teers but says he can’t commit
enough. to any goals for it until next
quarter.
Resolve dispute with facilities over | JS Jim to talk to Ursula in facili-
rearranging second floor cubicles. ties about budget for this.
Craft message on why we're adopt- | JS Next meeting is 25 March.

Sometimes Scrum is introduced into an organization in a grassroots manner.

One team tries Scrum and successtully completes a project, others become inter-

ested, and Scrum spreads from there. In this situation, an ETC 1s usually formed

The Enterprise Transition Community

spontaneously by some of these early Scrum advocates who ask their boss to
be allowed time to help other teams learn Scrum. At some point, impediments
arise that need the help of that boss, who then joins the ETC. Alternatively, in an
enterprise-wide Scrum adoption, the ETC 15 usually formed more deliberately
when the decision 1s made to widely adopt Scrum.

As an example of an ETC, consider the case of Farm Credit Services of
America, a lending and financial services cooperative that works with farmers
in the American Midwest. As part of adopting Scrum, Farm Credit formed an
Enterprise Transition Community it calls the Agile Champions Team (ACT).The
16 or so individuals on the ACT participate on the team for between 6 to 24
months depending on their role in the organization and ability to commit time
to the team. Because the transition at Farm Credit covers the organization’s en-
tire information services and business departments, ACT members are chosen to
equally represent all functions involved. The Farm Credit ACT meets every other
week for two hours and augments those meetings with occasional longer offsite
meetings.

Comprising both formal and informal leaders, the ACT often works on issues
that arise between the information services department and the broader business.
It has resolved 1ssues related to a lack of stakeholder mvolvement in projects, the
proper use and meaning of deadlines, and executive leadership misperceptions of
what agile 1s and can do for the company. Quinn Jones is a software developer at
Farm Credit who served what he calls a six-month “tour of duty” on the ACT. He
says, “One of the best things to come out of the Agile Champions Team 1s the
wide-open, smack-down brown bag sessions where all are welcome to ask ques-
tions and share knowledge. These meetings have also helped uncover root chal-
lenges in agile, which could then be addressed by the ACT”

O Write a preliminary improvement backlog by convening a 30- or
60-minute meeting. Invite either your team members, a few people
you know will be interested, or the whole department. Brainstorm
things that you'd like to see improved. Conclude the meeting by
asking if there is sufficient passion to pursue just one or two of the
items, and then start with those.

ETC Sprints

Because the ETC uses Scrum, it makes progress in sprints, exactly like a Scrum
development team would. Each ETC sprint begins with a planning meeting and
ends with a review and retrospective. These meetings are completely analogous
to those held by Scrum development teams and often have the same problems.
Thomas Sefternick, of KeyCorp, a large U.S. financial institution, participated in
the first sprint review of his organization’s E'TC, which it called an Agile Enable-
ment Team. He recalls how that team made a mustake common to many new

65

Chapter 4 Iterating Toward Agility

Scrum development teams—talking about its plans rather than demonstrating
1ts progress.

That first Agile Enablement [ETC] sprint review was painful as
leaders stood up and described their plans to remove the im-
pediments they volunteered to address. The message was clear—
plans are good, but results count. The dynamic of those reviews
changed from that point, and results became the focus. (2007,
202)

Some ETCs hold daily scrums, and I think that 1s a good practice. But, I am
not as insistent upon this as I am with a Scrum development team. The work
being done by members of an ETC is not as tightly interwoven as the work of
a development team, making a daily scrum a great thing to do but not essential.
Similarly, ETC members are rarely full-time. Most have demanding jobs already,
and in many cases it 1s beneficial for them to remain in their jobs. A development
director who stays in that position, for example, can likely remove more organi-
zational impediments than a development director who steps out of that position
to serve on the ETC.

The length of an ETC sprint is up to its members. However, in my experi-
ence two-week sprints work best. This 1s also the sprint length recommended by
Ken Schwaber (2007, 10). Elizabeth Woodward, a member of the ETC that is
guiding the large-scale adoption of agile at IBM, describes the company’s sprint
length experience.

We’ve used both two-week and four-week sprints. And, so far,
the greatest success we’ve seen is with those on two-week sprints.
[believe the reason is that the “deliverables” demonstrate mo-
mentum and visible progress. We capture the efforts from each
community in a brief digest—a nice e-mail message that people
can read in about fifteen minutes.

The Sponsor and Product Owner

Most successful Scrum adoptions have been initiated or driven by an identifiable
sponsor, who is a senior person in the organization responsible for the success of
the transition. Salesforce.com’ highly successful large-scale transition was spon-
sored by company cofounder Parker Harris. As the executive vice president of
technology, Harris was well positioned to champion a change that would dramati-
cally alter how everyone in the Salesforce.com development organization worked.

The transition’s sponsor should come from the same level in the organization
at which the transition is being planned. Salesforce.com needed an executive as

The Enterprise Transition Community

its sponsor because it was doing an enterprise-wide transition. If you are involved
in a departmental transition, a department-level leader 1s an appropriate choice.

The sponsor 1s also the product owner for the ETC. This means that some-
times an ETC will have a product owner with little direct experience with Scrum.
That’s OK. Like all product owners, the sponsor of the ETC can fulfill the role by
calling on other ETC members tor help. As the ETC’s most senior member, the
sponsor will play a significant role in communicating about the transition effort,
but this person does not need to be the sole source of the vision.

Primavera learned the importance of a strong sponsor when it adopted Scrum.
Bob Schatz and Ibrahim Abdelshafi, technology executives within Primavera at
the time, write about the importance of a sponsor’s support.

Adopting agile, or implementing any significant change, requires
an executive’s sincere support. It can be a bumpy ride until things
settle down, and having executive support lets the learning take
hold despite any problems or failures. (2005, 38)

[t 1s critical that the sponsor demonstrate commitment to the transition effort
by participating on the ETC. Good sponsors do not initiate a transition, proclaim
support for Scrum, and then remove themselves from the effort of getting there.
If a sponsor 1s not committed, others will not be either. Scrum coach and author
of Collaboration Explained, Jean Tabaka considers a checkbook-only commitment
from a sponsor to be one of the most likely reasons a Scrum adoption might fail:
“Agile adoption requires a passionately engaged sponsor willing to make tough
organizational changes that serve agile teams and their success” (2007).

Although it would be fair to characterize ETC members as leaders of the
Scrum adoption effort, theirs 1s not what we think of as conventional leadership.
Writing in Harvard Business Review, internationally respected management author
Henry Mintzberg describes the necessary type of leader.

Communityship requires a more modest form of leadership that
mught be called engaged and distributed management. A commu-
nity leader is personally engaged in order to engage others, so
that anyone and everyone can exercise initiative. (2009, 141; em-
phasis his)

Mintzberg goes on to say that during an organizational change like adopting
Scrum, “we need just enough leadership—leadership that intervenes when appropri-
ate while encouraging people in the organization to get on with things.”

68 Chapter4 Iterating Toward Agility

“The sponsor of our transition project says he’s committed, but he’s
unable to come to any meetings or to put any time into the effort. He
gives us anything else we need, but we can’t get any of his time.”

You probably have the wrong sponsor. Although his willingness to support
the transition in other ways is admirable, a successful Scrum transition
requires some of the sponsor’s time. You don't want to lose this power-
ful ally, but you may need to look for a different sponsor. Alternatively,
you may want to negotiate with your sponsor for a small amount of his
time. The ETC can then prioritize how that time should be spent. It could
perhaps be in meetings or as a public supporter of the transition in other
forums.

Responsibilities of the ETC

An ETC 1s a2 working group. It is not a steering committee. During sprint plan-
ning, the ETC commits to completing some amount of work and demonstrating
it at the end of the sprint. However, even more important than the tangible things
the ETC accomplishes 1s that it ignites the interest of others. Members of the
ETC can only achieve so much themselves. They will need to rely on others in the
company to do most of the work of adopting Scrum and becoming agile. Change
management experts Edwin Olson and Glenda Eoyang concur.

In a self-organizing system, the leader has an important role to
play, but creative and long-lasting change depends on the work
of many individuals at many different levels and places in the
organization. (2001, 5)

One of the most important jobs of the ETC is creating energy around the
adoption of Scrum. Not everyone will be excited by the change, of course. But
the ETC needs to ignite the passion of those who will work to make adopting
Scrum successful. ETC members do this by showing their own enthusiasm and by
participating in constructive dialogue about the changes occurring. To ignite the
passion of others in the organization so that they become involved in the type of
creative and long-lasting change needed to adopt Scrum, the ETC is responsible
for the following:

e Articulate the context. Beyond conveying a vision of the organization’s
agile future, the ETC must also help employees both understand the need
to change and develop a desire to change. They do this by articulating the
context of the change: Why? Why now? Why Scrum? Members of the
ETC use their seniority, personal credibility, and more to get others to
understand the answers to these questions.

The Enterprise Transition Community

Stimulate conversation. All sorts of good things happen when people
talk. Debating the merits of various technical practices, sharing success
stories, probing reasons for failure, and other discussions will generate
1deas.

Provide resources. Adopting Scrum will take time, effort, and money. For
example, individuals who are trying to figure out how to be more agile
(say, learning how to write automated unit tests on a complicated code
base) may need to be granted time away from their development projects.
Because the ETC includes the most senior people involved in the transi-
tion, the ETC is in a position to ensure that both time and money are
available.

Setappropriate aspirations. Change efforts with clearly defined and truly
transformational goals are ten times more likely to succeed (McKinsey &
Company 2008). The ETC 1s responsible for setting and communicating
appropriate goals for the transition, which may (and probably should)
change over time as the organization improves. The ETC may establish
goals such as moving from one annual release to quarterly releases, a 50%
decrease in post-release defect rate, or so on.

Engage everyone. Scrum has long tentacles and will reach into many areas
of the organization. The ETC makes sure that the transition effort does
not become narrowly focused on just one group. Within the groups that
are affected, broad participation 1s encouraged.

Additional Responsibilities

Beyond encouraging people to engage in the transition, the ETC has the follow-

ing additional responsibilities:

Anticipate and address people issues. The ETC should try to antici-
pate which groups or individuals are going to struggle the most with the
changes brought about by Scrum and proactively work with them. The
cross-functional makeup of the ETC helps in this regard as it allows the
group to see problems from multiple perspectives.

Anticipate and remove impediments. Members of the ETC are respon-
sible for removing any organizational impediments to adopting Scrum or
doing it well. Beyond merely removing impediments it is informed of,
the ETC should try to anticipate obstacles and remove them before they
cause problems.

Encourage a simultaneous focus on practices and principles. Adopting
Scrum 1nvolves incorporating new practices and valuing new principles.
An organization cannot adopt the practices without the underlying prin-
ciples, nor can it adopt the principles without the practices. An effective
ETC looks for imbalances in how each 1s being adopted. If one 1s being

69

SEEALSO

Advice on appropriate
metrics for measur-
INg your progress is
offered in Chapter
21, "Seeing How Far
You've Come.”

70

Chapter 4 Iterating Toward Agility

accepted faster than the other, the ETC can bring them back in line by
directing conversation, attention, and resources toward the laggard.

[f an ETC performs these tasks well, not only will it be moving the organiza-
tion forward on its own, but it also will have generated interest and excitement
among others in the organization. To harness that passion, individuals with a com-
mon interest in improving the organization in a particular way (perhaps its adop-
tion of automated testing) come together, form a community of their own focused
on that improvement, and then run their own sprints. These communities are
known as improvement communities and are the topic of the next section.

“l can’t get the organizational backing to create an ETC. Can | still
transition to Scrum?”

Yes. Start with whatever sphere of influence you do have. Get your team
to do Scrum. If it is successful, people will notice. Perhaps another team
will want to do Scrum and ask for advice. Or a manager will get interested.
As people get interested, start the community informally as just a few
people who get together occasionally to talk about how Scrum is going
and what could be done better. A grassroots approach is very feasible but

will take longer to spread.

Q If you don't already have an ETC or equivalent group, identify sev-
eral people who ought to be on the ETC. If you are one of them,
begin forming this group. If you are not, share the idea of an ETC
and improvement communities with others in your organization
who can help form these groups.

Improvement Communities

An improvement community (IC) 1s a group of individuals who join together to
work collaboratively to improve the organization’s use of Scrum. An IC may form
when individuals notice an item on the ETC’ improvement backlog and decide
to work together to achieve that goal. Or an IC may form because individuals see
and are passionate about an improvement opportunity that hasn’t made the ETC’s
radar yet. IBM, for example, has five ICs, which are focused on test automation,
continuous integration, test-driven development, the role of the product owner,
and the general use of Scrum itself.

Improvement Communities

The Enterprise Transition Community and improvement communities
I am referring to are specialized types of what are known as communi-
ties of practice (Wenger, McDermott, and Synder 2002). A community of
practice is a group of like-minded or like-skilled individuals who volun-
tarily come together because of their passion and commitment around a
technology, approach, or vision. We will see other types of communities
of practice throughout this book. They will be thoroughly discussed in
Chapter 17 “Scaling Scrum.”

Graphically, the relationship between an organization’s one ETC and its mul-
tiple ICs can be seen in Figure 4.1. The ETC guides the transition process; it does
not direct or manage it. A big part of its role 1s fostering an environment in which
ICs form and dissolve organically in pursuit of improving how the organization
builds products.

ImProVemen+ Communities

Enterprise Transition Communitu

Suppport; reSources,
uidance, & direction (oooadona”g}

Improvement

baak!og

lmPedimenﬂ'

ImPro\/emen’r
oaok,!oj

This approach should be scaled up or down depending on the size of the or-
ganization undertaking the transition. A software development department of 30
people may have an ETC of 5 people and nothing more. A company-wide transi-
tion for a department of 200 developers may have a 10-person ETC (including
representatives from groups outside development) plus a handful of improvement
communities at any time. Things can scale from there as needed; IBM, for ex-
ample, has over 800 people 1n some of its improvement communities.

Most participants in an IC spend only a small part of their time engaged with
the community. They may read postings to its discussion list, add a comment on

71

FIGURE 4.1

An Enterprise Tran-
sition Community
guides the adop-
tion of Scrum, but
most of the work is
done by multiple
improvement com-
munities.

72 | Chapter 4 |Iterating Toward Agility

a wiki, and nothing more. The amount of time an IC member spends on the
community 1s determined by each individual, the person’s boss, or organizational
culture.

“Scrum teams are supposed to be self-organizing. Doesn’t an ETC
conflict with this? Shouldn’t teams get to decide what they want to
improve at?”

Self-organization occurs in response to a challenge taken on by a group
of individuals. For a development project, the company may tell a team,
“Develop this software to run faster and take less memory than the cur
rent version and do it two months faster than we've done in the past”
Individuals then organize themselves around how to achieve that goal. It
is no different with the ETC. An ETC states what it would like to see im-
proved but not necessarily how to achieve that improvement. The how is
left up to the improvement communities or Scrum teams.

Additionally, keep in mind that an ETC's biggest goal is to create an en-
vironment such that improvement communities identify their own goals
and form spontaneously to address them. We will look at self-organization
in detail in Chapter 12, “Leading a Self-Organizing Team.”

Catalysts for Improvement

Communities, when used as part of the effort to adopt and get good at Scrum,
become catalysts for improvement. Consider the case of Google, where improve-
ment communities are called “grouplets.” Google’s Testing Grouplet was formed
“to drive adoption of developer testing” (Striebeck 2007). Bharat Mediratta
founded the community and describes its activities.

We started with engineers from all over the company meet-
ing every couple of weeks to brainstorm. Slowly, over time, we
started turning into activists, planning to actually start improving
things. We started building better tools and giving informal talks
to different technical groups. (2007)

Notice that although this community met initially to brainstorm, they soon
found themselves as activists with plans for actual improvements. Improvement
communities act. Tthis is why they aren’ called task forces, work groups, commit-
tees, or any of the other terms that too often bring to mind ineffective groups.
If the Google Testing Grouplet had merely created presentations on the benefits
of developer testing, or if it had chosen to convince a powerful vice president to
mandate developer testing, its efforts would have been fruitless.

Improvement Communities

What the testing community at Google did instead was find direct and im-
mediate ways to help teams. Mediratta recalls how, in addition to building tools,
the community found a unique way of providing concrete, short examples and
advice about testing.

One day, toward the end of a long brainstorming meeting, we
came up with the 1dea of putting up little one-page stories, called
episodes, in bathroom stalls discussing new and interesting test-
ing techniques. Somebody immediately called it “’lesting on the
Toilet,” and the 1dea stuck. (2007)

The most effective communities are usually those that form not in response
to management dictate but because company culture or the ETC has created an
environment in which communities can naturally emerge. J. E Unson, a coach at
Yahoo! during its large-scale Scrum rollout, says this 1s exactly what happened at
one of Yahoo!s remote facilities.

At Yahoo!, in our Santa Monica campus, all the entertainment
agilistas started a monthly ScrumMaster lunch. This happened
organically as Scrum started to grow in the organization, without
having the agile group [ETC] pushing it. (2008)

Not all communities will form in such an organic manner, of course. Espe-
cially during the early weeks or months of adopting Scrum, the ETC will need to
encourage an improvement community to form by highlighting the importance
of a goal and then hoping a community forms around that goal. Occasionally, an
ETC may need to go so far as to ask someone to form a community around a
specific goal.

Two Metrics for Effectiveness

Professor Jeftrey Goldstein has written, “Change does not need to be imposed; it
simply needs to be released” (1994, 32).You can gauge how well the ETC 1s doing
at releasing change in two ways:

1. The number of improvement communities that have formed without a
direct request from the ETC

2. The percentage of such improvement communities to the total number
of improvement communities

If the number of spontaneously formed improvement communities 1s high,
and especially if these represent a majority of the total number of communities,
this indicates strong interest in Scrum and the changes it 1s creating. If these met-
rics are increasing or remain high over time, the organization is well on its way to
becoming agile. You should, of course, look at other metrics. These are just two
that I like.

Chapter 4 Iterating Toward Agility

An Improvement Community Sprint

As you might suspect, ICs perform their work in sprints as well. As with the ETC,
each IC can select its own sprint length, but two weeks is the recommended
length. An IC that was formed spontaneously will usually serve as its own product
owner, with members of the community electing to devote their time to the im-
provements they are the most passionate about. An IC that was formed in response
to an E'TC-identified goal, on the other hand, will usually work with a member
of the ETC as its product owner to plan a sprint.

That being said, an improvement community does not exist to serve the ETC.
[t exists to serve its customers: the Scrum development teams who are building
products or systems. Although an ETC member will act as product owner for
some improvement communities and will serve as the official product owner for
the sprint reviews, you should expect members of interested development teams
to be active participants as well. Additionally, the wise ETC understands that the
best results will be achieved when improvement communities are given broad
latitude in achieving their goals. In practice, this means an IC, even one formed
in response to E'TC-identified goals, will be responsible for prioritizing its own
work, while balancing the needs of the organization to improve in particular ways
and its members’ passion for working on those issues.

During its sprint planning meeting, each improvement community selects
one or more things it can commit to completing during the sprint. If an improve-
ment community has formed in response to a specific goal of the ETC, sprint
planning begins by taking an item from the ETC’ backlog and breaking it down
into smaller items that will be placed on the improvement community’s improve-
ment backlog. The best way to see this 1s with an example.

The ETC improvement backlog shown in Table 4.1 on page 64 mncludes the
item, “Establish an internal program for developing ScrumMasters.”” An improve-
ment community formed a month after the ETC put that on the improvement
backlog and made it known to the rest of the company that creating such a pro-
gram would be valuable. There were three people in the community initially, but
that was plenty to make progress toward this goal. In their first sprint planning
meeting, they discussed the ETC’s goal (“Establish an internal program for devel-
oping ScrumMasters”) and created their own improvement backlog of what they
would do to achieve this goal, which is shown in Table 4.2.

Also during sprint planning, the community members took some of the items
in Table 4.2 and identified the tasks necessary to complete each. For example, for
the final item in Table 4.2 (working with local groups to share the expense of
bringing in speakers), the community identified the following tasks:

e Search web to see what user groups are in our area.

e Create budget of expenses.

Improvement Communities

Send e-mail to internal distribution lists to see if anyone here 1s con-
nected to these groups.

Set up phone calls to introduce ourselves and what we're doing.

Conduct phone calls. See if any groups have previously split the cost
of bringing a speaker into town with another company. See if any will
work with us on this.

Meet with Susan to go over budget and get approval.

Figure out how to identify good candidates to
become ScrumMasters (in addition to those
who ask to participate in this program).

Establish an internal mentoring program.

Develop some internal classroom training.
Which courses? Who can teach them? Develop
our material, or can we license it?

Determine which classes we can teach inter-

nally.

Get budget for next year for external coaching. | James has already asked for rates
How many days? At what expected daily rate? from three coaches.

See what we can do with local user groups to Savannah has contact in local
share the expense of bringing in speakers. Scrum lunch meetup group.

As in a development team’s sprint planning meeting, the community then
estimated each item and decided they could commit to completing these tasks
during the sprint. Two weeks later at its sprint review, this team showed its product
owner, a member of the ETC, a list of local user groups and a plan to work with
one of them twice a year, sharing the expenses of bringing nationally known
speakers into the area.

O Add to your improvement backlog by looking at the section head-
ings of the chapters in this book. Many of them were written with
this possibility specifically in mind.

O Review any notes available from recent sprint retrospectives. These
are often an excellent source of improvement backlog items.

75

TABLE 4.2

An improvement
community’s back-
log for establishing
an internal pro-
gram to develop
ScrumMasters.

Chapter 4 Iterating Toward Agility

Focus on Goals with Practical Relevance

For an improvement community to have the most impact, its members must focus
on goals of immediate and practical relevance to the development teams using or
attempting to get started with Scrum. The best way to do this 1s for improvement
community members to work side by side with development team members on
something important to the development team. This is what Google’s “test mer-
cenaries” do. Test mercenaries are members of the testing community who are
experienced engineers with a passion for and expertise in testing. They spend up
to 20% of their time for three months on a project other than their own. During
this time they add tests and refactor code as a direct help to the development team.

[suppose that test mercenaries could instead spend this time creating presen-
tations and spreading the gospel of developer testing. Something tells me, though,
they are better able to achieve their goals by working with a team rather than
preaching to it. A development team that has had the help of a test mercenary
ends up with improved code and more tests. It also witnesses the benefits of an
additional focus on developer testing. This works wonders in motivating those on
the Scrum development team to continue the effort after the mercenary moves
on to another team.

Focusing on providing practical assistance to development teams also helps
keep improvement community members from falling into the habit of preach-
ing to the development teams. A common problem when adopting Scrum 1s that
the early adopters often become zealots anxious to convert everyone else. What
zealots often forget 1s that it took them time to get comfortable with the idea of
Scrum and the changes it requires. When others fail to convert instantly, zealots of-
ten perceive the delay as resistance. Because zealotry and pushing others to rapidly
adopt new 1deas can cause more harm than good, it is important for improvement
community members to understand that their role 1s to consult rather than preach
(Allen-Meyer 2000c, 25).

Improvement Community Members

Organizational change expert Glenn Allen-Meyer says that change should be
done “with, not to, the people expected to change” (2000b). Because of this, it
1s important that anyone with a passion for an improvement opportunity be en-
couraged to participate in its community. Membership should not, for example, be
restricted to only the organization’s most senior employees. Broad participation in
improvement communities helps everyone in the organization feel that change is
occurring with them rather than to them. There should be no limit on the num-
ber of people participating in an improvement community. Communities often
mnclude well over 100 members, with imndividual participation levels going up and
down over time based on the other demands of each person’s job.

Improvement Communities

Participating in a community is not meant to be a full-time job; it 1s some-
thing someone takes on in addition to regular work. Improvement community
leaders at IBM are asked to contribute two hours per week, although many con-
tribute more based on a desire to see more rapid progress. A participant’s manager,
product owner, and ScrumMaster, though, are responsible for ensuring that those
passionate enough about a change to work toward it are given sufficient time to
do so. Google accomplishes this by telling each employee to spend 20% of each
week on something of interest. The time could be spent, for example, exploring a
new product idea or participating in a community.

Successtul Scrum adopter Salesforce.com has a similarly innovative approach
it calls PTON, pronounced pee-tee-on and meaning “paid time on.” Patterned
after the common PTO (“pee-tee-oh™) policy for paid time off in many compa-
nies, Salesforce.com’s PTON program gives employees dedicated time at work
to pursue initiatives of their own choosing. Each employee 1s given one week of
PTON for each year with the company. Salesforce.com employees can use the
PTON time to work on a community initiative, explore new product ideas, or do
just about anything they want.

Google’s 20% policy and Salesforce.com’s PTON programs were not created
specifically to allow people to work in an improvement community. And organi-
zations do not need to make such dramatic changes just to get started adopting
Scrum. An easy starting point is simply for managers to commit to freeing up
some number of hours each week for those who want to work on an improve-

ment cCommunity.

“We've been working on this new product for a year. We ship it in
four weeks and, as the product owner, | need the team’s full time and
attention for the next four weeks.”

Absolutely. Team members probably already know this and have plans to
scale back participation in any communities to the minimum possible over
that period. A team member who generally feels valued and allowed to
devote time to the longer-term initiatives of a community will willingly
minimize community participation during a true crunch period because
she knows she can devote more time to it later.

77

78

Chapter 4 Iterating Toward Agility

“These improvement communities seem just like the Software Engi-
neering Process Groups (SEPGs) our company created to push CMMI.
Isn’t this just a new name for an old idea?”

Not really, but | can understand why you might think so. Both ICs and
SEPGs are focused on helping the organization improve how people de-
velop software. However, while their goals are the same, an SEPG and an
IC differ in a few subtle but important ways:

An SEPG looks at the process and answers the question, “What
could we improve?” Members of an improvement community
look at their own projects and ask, “What could we improve?” and
“What are we doing well that others should know about?”

Some SEPGs force compliance with a process; an improvement
community has no authority from which to force compliance.

Some SEPGs are chartered to look only at portions of the overall
development process. ICs are encouraged to look beyond the prod-
uct development process to find improvement opportunities.

Improvement communities are self-motivated and self-organizing.
In general, no one is told to join an improvement community. (Al-
though this may occasionally be done to start a new community.)
Members of an IC are more likely to take an experimental, try-it-
and-see approach to process improvement.

Improvement communities are ad hoc and organic, formed when-

ever passion for a topic brings people together. SEPGs are for-
mally created and often discouraged from functioning in an ad hoc

manner.

Dishanding a Community

Most communities will eventually disband. A community formed to promote au-
tomated testing, for example, may exist with members coming and going for years
as long as that 1s an area in which the organization needs to improve. Eventually
(at least we’d like to think), the organization becomes good enough at automated
testing that those community members can contribute more by devoting time to
other improvement communities and the opportunities they represent.

Regarding the ETC specifically: It should disband once the organization has
realized its transition to Scrum and has entered a phase of continuous improve-
ment. The ETC exists only during the transition period, which may be multiple
years for a large transition.

Looking Forward

Q Identify an improvement you are passionate about. Ask two or
three coworkers to help you. Create an improvement backlog and
plan a first sprint. Even if you can manage only an hour a week on
it, start. As you begin to make progress, incorporate your improve-
ment in the work of your team or offer it to another team. Generate
interest by telling (or, even better, showing) others what you've
accomplished.

One Size Does Not Fit All

In this chapter, I've presented a community-driven approach to Scrum adoption.
A guiding community—the Enterprise Transition Community—does some of
the work of the transition, but most important it creates an environment that en-
courages other communities to form. These communities—called improvement
communities—are formed when a group of employees choose to work togeth-
er to improve the organization’s use of Scrum. Both types of communitites use
Scrum to drive the organization toward becoming agile.

But one size clearly does not fit all. The approach I am describing in this
chapter works well when transitioning a medium or large department to Scrum.
Scale it down as appropriate. A software department of 20 professionals, for ex-
ample, may benefit from having one group of passionately agile individuals who
help drive change and improvement. They are both an ETC and an IC in that case.

Looking Forward

So far, in the chapters that make up the initial section of the book, we’ve discussed
why transitioning to Scrum is hard, but worth it. We’ve talked about the activi-
ties that accompany change and some tools you can use to help people make the
switch to Scrum. We've discussed patterns for adoption that can guide our general
approach to transitioning to Scrum. Finally, we’ve looked at how to combine all
of that information, and the Scrum process itself, and use it to manage a Scrum
adoption, on any scale. Throughout the first four chapters, I've made a point of
saying that, unlike other change initiatives, with Scrum there is no end state. There
is no point when you’re done. Instead, Scrum requires continuous improvement,
which can be managed through improvement communities, using Scrum itself

In our next chapter, we discuss how to pick your first project, your first team,
and get started with the business of becoming agile with Scrum.

79

Chapter 4 Iterating Toward Agility

Additional Reading

Conner, Daryl R. 1993. Managing at the speed of change: How resilient managers succeed and
prosper where others fail. Random House.
In this book, Conner describes eight key patterns of how people behave during orga-
nizational change. One of the goals of his process for change management 1s to foster
resilience mn people and organizations. His view of resilience is compatible with this
books presentation of change as continuous and agility as something to be iterated

toward.

Katzenbach, Jon. R. 1997. Real change leaders: How you can create growth and high peifor-
mance at your company. Three Rivers Press.
Katzenbach’s book is based on extensive interviews with individuals who he found
to be the true source of change in organizations. These are the “real change leaders™
of the books title. The book contains many engaging stories about individuals who

would make good improvement community members.

Kotter, John P. 1996. Leading change. Harvard Business School Press.
Kotters highly respected book is a classic on organizational change. In 1t, he lays out
an eight-step process for creating change. In his second step, Kotter advocates the cre-
ation of a guiding coalition, which has some similarities to an ETC. Additionally, his

article in Harvard Business Review (1995) offers a concise summary of this book.

Schwaber, Ken. 2007. The enterprise and scrum. Microsoft Press.
In this book, Schwaber, the coinventor of Scrum, describes what 1s necessary to
transition an entire organization to Scrum. Included 1s advice on the improvement
backlog and on the Enterprise Transition team, which 1s similar to the Enterprise

Transition Community as [have presented it.

Wenger, Etienne, Richard McDermott, and William M. Snyder. 2002. Cultivating com-
munities of practice. Harvard Business School Press.
Wenger 1s recognized as the authority on communities of practice. This highly read-
able book describes everything you need to know to begin cultivating communities
within your organization, including a chapter dedicated to advice to community
coordinators.

Woodward, E.V., R. Bowers, V. Thio, K. Johnson, M. Srihari, and C. J. Bracht. Forthcom-
ing. Agile methods for software practice transformation. IBM. Journal of Research and
Development 54 (2).
Members of IBM's Quality Software Engineering organization are using an approach
very similar to the one described in this chapter to spread agile throughout IBM. This
excellent paper describes how they function as an Enterprise Transition Community,
ways in which they encourage improvement communities to form, and how they use
the Scrum framework to drive improvements in how they use Scrum.

Chapter 5

Your First Projects

Unless you are operating in stealth mode, all eyes will be on the first project to
try Scrum, especially during the first sprints. Selecting the right project and team
1s critical. Your initial Scrum project should be one that 1s considered important
and significant, so that the results are not discounted, yet not so large that it 1s
ungainly. Team members should be selected with an eye toward not only their
compatibility but also their willingness to try something new

As the first sprint starts, expectations about the advantages Scrum will bring
may be sky high. Sometimes this is the result of general optimism; other times 1t
1s the result of zealotry by an organization’s early agilists, whose exuberance leads
others to think Scrum will cure all ills. You must correctly set and manage these
expectations; otherwise an initial project that should be viewed as wildly success-
ful will instead be considered a dismal failure when it does not live up to oversized
expectations.

In this chapter we consider the critical topics of selecting the right first project
and assembling the ideal team, and the subtle art of setting realistic expectations.

Selecting a Pilot Project

I was about to start this section with something like, “Scrum pilot projects have
become more and more rare over the past four years. The benefits of Scrum have
become so recognized that companies are now forgoing pilot projects and jump-
ing right in” And then I decided that perhaps I should look up the definition
of pilot project. Perhaps, like inconceivable to Vizzini in The Princess Bride, it did not
mean what I thought it meant. What I found was that there are indeed two slightly
different meanings. One is that a pilot project is a test, with the results used to de-
termine if more of whatever is being tested will be done. This 1s the type of pilot
project that most companies now bypass—they know they want to use Scrum;
they don’t need to “pilot it” to verify that.

SEEALSO

Transitioning In stealth
mode was introduced
in Chapter 3, “Patterns
for Adopting Scrum.”

81

82 | Chapter 5 Your First Projects

NOTE

I'm not forgetting the
importance of the
people involved to the
success of a pilot. The
topic is discussed in its
own section, “Select-
ing a Pilot Team,” later
in this chapter.

FIGURE 5.1

The four attributes
of the ideal pilot
project.

The other definition I found is that a pilot project is undertaken to provide
guidance to subsequent projects; it pilots the way in doing something new. It is
this second meaning that I'm interested in—the pilot that leads the way rather
than the one that is conducted as a test. As an industry we have enough evidence
that Scrum works; what individual organizations need to learn is how to make
Scrum work inside their organizations. So, they often conduct one or more pilots
as learning projects.

Four Attributes of the Ideal Pilot Project

Selecting the right project as a pilot can be challenging. Jeff Honious, vice presi-
dent in charge of innovation at Reed Elsevier, led his company’s transition to
Scrum. He and colleague Jonathan Clark wrote of their struggle to select the right
pilot.

Finding the right project was the most critical and challenging
task. We needed a meaty project that people would not dismiss
as being a special case, yet we did not want a project to fill every
possible challenge—too much was riding on its success. (2004)

Not every project is equally suited to be your first. The ideal pilot project sits
at the confluence of project size, project duration, project importance, and the
engagement of the business sponsor, as shown in Figure 5.1.You may find it im-
possible to identify the “perfect” pilot project. That’s OK. Consider the projects
you do have and make appropriate trade-ofts between the four factors presented
in Figure 5.1. It is far better to pick a project that is close enough and get started
than it is to delay six or more months waiting for the perfect pilot to present itself.

Short

Selecting a Pilot Project

Duration. If you select a project that is too short, skeptics will claim that Scrum
works only on short projects. At the same time, if you select a project that is too
long, you risk not being able to claim success until the project is over. Many
traditionally managed projects claim to be on track 9 months in to a 12-month
schedule, yet in the end are over budget and late, so a Scrum project proclaiming
the same may not be very convincing.

What I find best 1s to select a project whose length 1s near the middle of what
1s normal for an organization. Ideally and frequently this 1s around three or four
months. This gives a team plenty of time to start getting good at working within
sprints, to enjoy it, and to see the benefits for the team and for the product. A
three- or four-month project 1s also usually sufficient for claiming that Scrum will
lead to similar success on longer projects.

Size. Select a project that can be started with one team whose members are all
collocated, 1f at all possible. Start with one team, even if the pilot project will grow
to include more teams. Iry to select a pilot project that will not grow to more than
five or so teams, even if such projects will be common 1n your organization. Not
only is coordinating work among that many Scrum teams more than you want
to bite off initially, but you also probably wouldn’t have time to grow from one
team to more than five anyway if you are also looking for a project that can be
completed in three or four months.

Importance. It can be tempting to select a low-importance, low-risk project. If
things go badly, not much will be lost. And people may not even notice a failure
on a low-importance project. Don’t give in to this temptation. Instead, pick an im-
portant project. An unimportant project will not get the necessary attention from
the rest of the organization. Additionally, some of the things required of a team
transitioning to Scrum are difficult; if the project isn’t important, people may not
do all that 1s required of them. Early agilist and inventor of the Adaptive Software
Development process Jim Highsmith advises, “Don’t start with an initial ‘learning
project’ that 1s of marginal importance. Start on a project that is absolutely criti-
cal to your company; otherwise it will be too difficult to implement all the hard
things Scrum will ask of you” (2002, 250).

Business sponsor engagement. Adopting Scrum requires changes on the business
side of the development equation, not just the technical side. Having someone
on the business side who has the time and inclination to work with the team is
critical. An engaged business sponsor can help the team if it needs to push against
entrenched business processes, departments, or individuals. Simularly, there 15 no
one more useful in promoting the success of the project afterward than a sponsor
who got what was expected. One sponsor commenting to another that a recent

83

NOTE

Scrum projects work
with a product owner,
who is described in de-
tail in Chapter 7 “New
Roles! The sponsor
referred to here may or
may not be the product
owner. Minimally, it is
someone on the busi-
ness side of the project
who will recognize the
project as successful.

Chapter 5 Your First Projects

project tried Scrum and delivered more than past projects did will do wonders in
getting other sponsors to ask their teams to also try the new approach.

Choosing the Right Time to Start

That so many new exercise programs and diets begin on New Year’s Day is testa-
ment to the human desire to align change with outside factors, such as the calen-
dar. Just as we may feel that exercise programs should begin on the first day of:the
year, we may think that a new software development process should be introduced
on the first day of:a new project. Choosing a new project (or restarting a failed
one) for your pilot lets you make a fresh start. Teams who have chosen to start
fresh begin by focusing on the product backlog. Such a team will usually wait to
begin 1ts first sprint until it has created a product backlog that contains all of the
features that are known at the time. Trond Wingard, an agile project manager, has
been successtul with this approach.

In one of my first agile projects, our client had already spent
one year and approximately $150,000 to have another contractor
write a classic requirements document. I was able to convince
our client that we should replace this requirements document
with user stories. So the 150-page document was replaced with
a product backlog with 93 user stories. We would not have been
able to do agile if:we hadn’t done this.

Making a fresh start has only one major disadvantage: Waiting for a new proj-
ect to appear—and then hoping you think it is a suitable first Scrum project—
needlessly delays the benefits Scrum brings.

Resurrecting a failed project can also bring a fresh start feeling to your pilot.
Spending a few days creating its product backlog can help restore focus to the proj-
ect team, reengage stakeholders, and create buy-in throughout the organization.
Remember when starting fresh that you don’t want to spend weeks (or months!)
bogged down in creating your preliminary product backlog. Consider the irony of:
starting your Scrum transition with a two-month requirements-gathering phase.
When starting fresh, have the discipline to write the backlog quickly and in as
lightweight a manner as possible.

Impending Doom

Sometimes starting fresh is either not possible or not the right choice. If:a project
is in midstream and could benefit from Scrum, [see no reason not to switch. My
personal favorite pilot projects are ones that are currently headed toward impend-
ing doom vyet still have enough time to recover and succeed. Although this can be
a risky approach, a struggling project has nowhere to go but up. Delivering at all 1s

Choosing the Right Time to Start

often viewed as a success; delivering on time 1s often viewed as an amazing success.
Because of the focus and intensity created through working in short sprints and
because of the emphasis on creating at least some forward progress, Scrum 1s often
ideally suited to these types of projects, especially when an experienced Scrum-
Master or consultant is available to the team.

As the chief technology officer of Sammy Studios (now High Moon Studios),
Clinton Keith knew something drastic was needed. His team was developing what
was to be a'Iriple-A video game for the Sony PlayStation and Microsoft Xbox.
Teams were working hard, but the game was not coming together as quickly as
the development studio’s off-site owners had hoped. Without a change the project
would fail.

Fortunately, at about this time Keith learned about Scrum and decided to
introduce 1t to his teams. Employees of game studios are distinguished by a fierce
amount of individualism, so introducing a process that would require lots of talk-
ing, collaboration, daily scrums, and other similar hallmarks of Scrum was difficult.
Wisely, Keith chose to introduce Scrum at a time when team members were be-
coming aware that the current process and approach was not likely to lead to the
finished product that all desired.

Another common time when you might want to stress the risk of impending
doom 1s when the company will go out of business, or (in a2 more diversified com-
pany) cancel the project, if development continues at its current pace. Anytime a
continuation of the status quo has serious repercussions, demonstrating the 1m-
pending doom of inaction can help fuirel Scrum adoption. After all, if doing things
the “old way” will only lead to failure, it’s easier to convince team members to try
something new, experiment with different practices, and make a leap to Scrum
they would otherwise resist.

Forecasting impending doom can be powertul but 1s also dangerous. For 1t
to work, the peril faced by the project or organization must be real. In one com-
pany where I worked, our CEO was notorious for announcing that the fate of
the company rested on every project we undertook. Cry wolf enough times and
people stop believing. You, too, may be tempted to exaggerate the peril; don’t.
However, if a project is on its way to failure unless dramatic action is taken, point
it out. Team members probably know already but are reluctant to acknowledge
it. Additionally, if team members have become apathetic about their project and
their work, I will sometimes point out a likely doom that may occur if things don’t
change. I used this recently with a team who knew its company was in merger
talks with a competitor. “So,” I asked members, “when this merger finishes and
the big bosses of the combined company are trying to figure out which projects
are redundant and which teams should get the best new projects, how would you
like this project and team to be viewed?” This jolt of awareness 1s just what some
teams need.

’ Chapter5 Your First Projects

Selecting a Pilot Team

The intersection of the four factors of Figure 5.1 and the discussion of timing
leave out probably the most important factor in the success of a pilot project—the
individuals involved. I deliberately chose to leave people out of the discussion of
selecting the right pilot project under the assumption that we can select the proj-
ect and team independently. That 1s, we can select the best project as our Scrum
pilot and can then look around and assemble the right team for that project. |
understand this 1s an uncommon luxury in many organizations—the project and
the team often come as a package, just like the ham and eggs in a Scrum team’s
favorite breakfast. If you cannot separate the decisions of the ideal pilot project
and the 1deal pilot team, simply consider all factors together in selecting the best
available pilot.

Put initial teams together with an eye toward compatibility, constructive dis-
sension among team members, willingness and ability to learn and adapt, technical
skills, communication skills, and so on. Of these, the most important consideration
in selecting a pilot team 1s the willingness of the individuals to try something
different. Ideally, all will have moved through the awareness and desire steps of
the ADAPT acronym presented in Chapter 2, “ADAPTing to Scrum.” When pre-
sented the opportunity to influence who will be on the pilot team, I look to create
a combination of the following types of individuals:

e Scrumlobbyists. The project may not be big enough to include everyone
who has been lobbying to adopt Scrum, but I want to be biased toward
including as many of these individuals on the project as I can. It would be
painful for them to have to be on the sidelines even though they’d still be
hopeful for the project’s success.

o Willing optimists. These individuals understand that a new development
approach 1s needed but didn’t go so far as to actively argue for a change to
Scrum in the past. Knowing what they now do about Scrum, they believe
it sounds promising and want to see it succeed.

o Fair skeptics. I don’t want someone on the project who will work to
sabotage the pilot or the teamwork necessary to become a Scrum team,
but this does not mean I want to avoid all skeptics. It can be very ben-
eficial to include a well-respected, vocal skeptic as long as the skeptic
has demonstrated a past willingness to admit being wrong or change an
opinion. These individuals can become some of the transition’s strongest
supporters when convinced of the benefits through hands-on experience.

Of course, all of this must be mixed with an eye toward combining the right
set of skills for the project. If your pilot project’s goal 1s to develop a video game,
you had better put an animator on the team. I also look for individuals who have
a track record of working together successtully. Sometimes you find an existing

Selecting a Pilot Team

entire team that can become the pilot team. Other times, you can think back over
the past few years and put together people who worked together well on past
projects.

“All this effort toward selecting the right team is stacking the deck in
your favor. Of course, a team like this will succeed. But once we adopt
Scrum, not every project will be able to be staffed with willing people
who have worked well together in the past.”

Of course, this is stacking the deck in your favor. | said earlier that a pilot
isn't undertaken as a test of “will Scrum work or not.” We know Scrum
works. There is plenty of anecdotal evidence (and even some hard data) to
prove this. VWhat we don't know is, how will Scrum work best here? The
pilot is not some clinical, double-blind trial. It is an attempt to use a new
approach to deliver an important project. So, we stack the deck in favor of
doing so and see what we can learn.

What if a Pilot Isn't a Success?

What if, after all your decision making, planning, and hard work, the pilot project
fails anyway? First, you would be wise to avoid pinning all your hopes on one big
pilot project. Instead, run multiple pilots and keep in mind that the purpose of a
pilot project 1s to illuminate the way for the Scrum projects that follow The most
successful pilot projects will be able to create advice of two forms: do this and don't
do that.As long as the teams involved in the pilot learn about what 1s likely to work
or not work, which aspects of Scrum will be easily brought into the organization,
the types and sources of organization-specific resistance, or any other similar in-
formation, then [am reluctant to call the pilot a failure.

But, what if the pilot project fails to deliver the expected results?

In these cases I start by assessing whether the expectations placed on the proj-
ect were realistic. Perhaps before starting the project we agreed they were, but by
the end we’ve learned otherwise. If that’s the case, clearly communicate this to all
stakeholders. Don’t do so as an excuse for failing to deliver what was expected.
Stakeholders need to know that the team accepts responsibility for any part it
played in setting or agreeing to overly optimistic plans. But do make sure that
stakeholders understand that although the pilot failed to meet all expectations,
it may, in hindsight, have done as well or better than should have been expected.

At the end of a Scrum pilot, I find that the pilot project is often compared
to the unrealistic assumptions of a perfectly run sequential (“waterfall”) project.
There may be an old Gantt chart around showing a project plan that allows for
two months of analysis, a month of design, two months of coding, then concludes

87

Chapter 5 Your First Projects

with a month of testing. This very idealized six months 1s then compared to the
reality of a first-ever Scrum project that, let’s say, also took six months. The op-
ponents of Scrum will say, “See, there are no advantages. It takes the same amount
of time each way. And the old process has better design and 1s more maintainable
over the long run” The unfair comparison here is between the reality of a Scrum
project that took six months and a plan showing a waterfall project delivering in
the same schedule. Do not allow (or make) comparisons between the reality of
one project and the myth of another.

Setting and Managing Expectations

That brings us to our next topic: setting and managing expectations. In 1994 1
managed a team that delivered a project that any outsider or any project team
member would have considered a success. The product represented a great leap
torward for the company. It included far more features than the product that was
being replaced, was built using new state-of-the-art technologies with which the
company had no prior experience, and included the development of three data
centers that went on to provide 99.99999% uptime over the next six years. How-
ever, the project was almost considered a failure.

The project was to be delivered into multiple call centers with more than
300 nurses on the phones. It was to replace a quirky but familiar system that
the company was rapidly outgrowing. The nurses’ expectations of what the new
system would deliver were sky high. In monthly sprint reviews with the nurses,
[was routinely shocked by what they’d come to expect, some of which wasn’t
even technically feasible. With about three months left on the year-long project,
[realized my focus had to change. From then on, I spent almost all of my time
on expectations management. I met with nurses in each of the call centers and
described exactly what would and would not be in the delivered system. I toned
down their expectations about the system’s impact on world peace, global warm-
ing, and personal weight loss. Without this effort, the product would have been
perceived as a failure.

Since that project, I have been acutely aware of the importance of expecta-
tions management to the overall success of any project. Setting and managing
expectations is perhaps even more important at the start of a major shift such
as adopting Scrum. In initiating a transition to Scrum, I find it helpful to set
and manage expectations about four things: progress, predictability, attitudes, and
involvement.

Setting and Managing Expectations

Expectations About Progress

If peripherally involved stakeholders and outsiders have heard one thing about
Scrum, it 1s probably that teams will be faster. I witnessed this when I was invited
to speak at a large Silicon Valley company that had been previously visited by a
Scrum consultant who oversold company executives on the benefits of Scrum.
When [presented to the same group, | started by asking what they knew about
Scrum already. All they could recall from the prior session was, “Teams will go
faster, and we can change our minds whenever we want.” After recovering from
my stunned silence, I told them that those two things could be true but a lot of
hard work would be required to get there, and there would be a productivity cost
to changing their minds too often.

As for expectations that a team will go faster, Jim Highsmith’s advice is much
more conservative and realistic.

In a six-month project, the goal might be to match historic pro-
ductivity levels (down in the beginning, up at the end) while
improving quality and better matching with customer expecta-
tions. Putting too much pressure on early will cause teams to
abandon their newly minted practices and revert to the older
ones in which they still have more confidence. (2005)

Whether a team 1s more productive or not will largely be a function of how
well the team was doing before adopting Scrum. A team that 1s already doing rea-
sonably well (having learned to work around the inefficiencies and impediments
of the current organization and process) will likely, as Highsmith says, slow down
at first. In contrast, a team that 1s really struggling could indeed be faster right
from the start.

There are two things, though, that I have observed to be nearly universally
true of teams right from the start:

o Most teams will overestimate how much they will achieve in the first
sprint. Unless a team has significant prior experience working in truly
timeboxed iterations, team members will probably think they can get
more done in a few weeks than will be realistic. A team, for example,
may collectively commit to completing 850 hours of planned work in
the coming four-week sprint. In the end, the team finds that due to in-
terruptions, unplanned work, corporate overhead and other factors, they
complete only 725 hours of that planned work. They worked just as hard
as they had planned to; they were able to complete less planned work,
though, because they underestimated all other demands on their time.

e Most teams will be more useful. I'm using the term “useful” here for
what we probably mean by “productive.” But “productive” carries with
it connotations of how much product was produced; and usually in a

90 Chapter5 Your First Projects

SEEALSO

Velocity is described in
more detail in Chapter
15, "Planning.”

software project it 1sn'’t far from that connotation to measuring lines of
code. While I'm not completely opposed to measuring lines of code (and
do it myself for some purposes), I don’t want to say that Scrum teams start
out writing more code per period of time, especially because more code
may or may not be a good thing. What I do want to claim 1s that right
from the start, most teams begin to do more useful work shortly after

<«

adopting Scrum. This 1s because sprints focus their attention on “what
can we do in the next such-and-such weeks” Many traditional projects
stall trying to find “the best” or “the right” or “the complete” solution. A
Scrum team will be more likely to find a good-enough solution, try it,

learn, and change as needed.

Expectations About Predictability

When I was running development organizations, rather than consulting to them
as 1 do today, keeping my teams productive was not my only concern. I was
equally concerned with whether I could make predictions about how long a
team would take to finish a project. In many ways, I preferred a team that went at
a reasonably consistent (and therefore predictable) pace to a team that sometimes
went amazingly fast but that also sometimes went very slow. When piloting an
organization’s first Scrum projects, you should be clear with stakeholders that the
pace will initially be less predictable than with the organization’s prior approach
to software development.

Scrum teams measure progress using a metric known as velocity, which is a
measure of the work completed (or planned to be completed) in a given sprint.
[t 1s expressed in units such as story points or ideal days. Velocity 1is particularly
volatile during a team’s or an organization’s first few sprints. After all, the team 1s
learning to work in a new way, and many of the team members may be learning
to work with each other for the first time.

It 15 important to communicate to stakeholders that early calculations using
velocity will be particularly suspect. For example, after a team has established some
historical data, it will be useful to say things like, “This team has an average veloc-
ity of 20, with a likely range of 15 to 25.” These numbers can then be compared
to a total estimate of project size to arrive at a likely duration range for a project.
A project comprising a total of 150 story points, for example, may be thought of
as taking from 6 to 10 sprints if velocity historically ranges from 15 to 25.

Until a team has sufficient historical data, though, projections like this can be
very risky. This means that a high-risk contract with large penalties for late deliv-
ery 1s probably not an ideal Scrum pilot. (Nor 1s it an 1deal pilot for any process
change.) So how much data do you need before you can make projections like
this? The easy answer 1s the more, the better. You can start making predictions after
a team has completed its first sprint, but you should do so with a wide margin of

Setting and Managing Expectations

assumed error around that first observed velocity. Perhaps more helptully, I'll say
that the velocity of most teams will stabilize sufticiently after the third or fourth
sprint. Don’t take this as a rule;if there are a lot of other things changing in a proj-
ect’s environment (such as new technologies, team members coming and going,

and so on), velocity may very well bounce around longer.

Expectations About Attitudes Toward Scrum

After having been given time to adjust to working in a new way, most developers
prefer Scrum. A survey at Yahoo! found, for example, that 85% of all team mem-
bers would continue using the Scrum approach they’d adopted if the decision
were left solely to them (Deemer et al. 2008, 16). But this usually won’t be where
attitudes start. Those initiating the transition need to be prepared for lots of objec-
tions and complaining at first. Common complaints include the following:

e All the time wasted in daily scrums

e The time wasted in making sure the product 1s well tested at the end of
each sprint, even though it won’t ship that often

e Managers not being able to assess me well enough to write my annual
review because they can’t tell which work is mine

e The system falling apart six months after release because we’re not pro-
ducing adequate maintenance and support documentation

At the first sign of trouble, there will be a temptation to give in and fall back
to the old way of doing things. As Daryl Conner, author of Managing at the Speed
of Change, has written, “It 1s relatively easy to get your people to acknowledge that
a change 1s to be made and to get started on it. The really toughjob is to get them
to stick with it when the going gets tough” (1993, 116). One of the best ways to
head off a slide back to old habits 1s to anticipate it and talk about it in advance
and for team members to agree that when obstacles arise, they will stick to Scrum
despite the discomfort and worry.

Expectations About Involvement

One of the most important expectations to set early on is about involvement in
the process. Many project stakeholders accustomed to traditional-style develop-
ment view their role in a software development project as akin to dropping a car
off for service: You tell someone what you need done and come back at an ap-
pointed time to pick up the finished work. Stakeholders, especially anyone in a
product owner role, will need to understand that this 1s not the right way to build
software-intensive products.

Be sure to discuss expectations with the product owner and with other stake-
holders whose input and feedback you will solicit either during the sprints or

Chapter 5 Your First Projects

during sprint reviews. Make sure that each stakeholder knows what level of com-
mitment the team expects and needs.

Scrum 1s not a silver bullet that will eliminate a development organization’s
problems.You should work right from the start to make sure that expectations do
not rise to unrealistic levels. Managing expectations will be perhaps one of the
most important things you can do early on. If you don’t, you run the risk of an
otherwise successful Scrum transition being viewed as a failure.

It's Just a Pilot

Pete Deemer, an independent Scrum consultant, was the chief product officer at
Yahoo! when he initiated a program there to pilot Scrum. He recognized that
a pilot project 1s an experiment, and the purpose of that experiment is to gain
knowledge that will help later projects succeed. Deemer also recognized that by
calling them pilot projects, he was acknowledging that he knew things would
not always go smoothly. He said his hope was that “when difficulties cropped up,
people would be more likely tojjust roll up their sleeves and try to find a solu-
tion.” Deemer was using the label pilot to create some safety around the execution
of the process.

Deemer recognized this safety as the valuable thing it was. It created the com-
fort zone teams needed in which to experiment so that they could be successful
in finding the right ways to do Scrum. A year into the company’s transition effort,
though, and with well over one hundred Scrum teams, Deemer was still calling
every project a pilot. I asked him when he would stop calling them pilots. He told
me that until every project at Yahoo! had adopted Scrum and until they knew
everything there was to know, he would continue to call them pilots.

Whether you view every project as a perpetual pilot, the first few sprints will
be tremendously important. You can help ensure these initial sprints start your
teams on the right path by carefully selecting the right first project and team
members and by accurately setting and managing expectations.

Additional Reading

Karten, Naomi. 1994. Managing expectations. Dorset House.
A good, easy-to-read book with solid advice. The book is focused on customer
communication but almost all of its advice is applicable to other workplace relation-
ships. Advice is provided on topics such as listening, clarifying perceptions, avoiding

conflicting messages, and creating win/win solutions.

Additional Reading

Little, Todd. 2005. Context-adaptive agility: Managing complexity and uncertainty. IEEE

Software, May—June, 28-35.
Author Todd Little, a board member of the Agile Alliance and cofounder of the Agile
Project Leadership Network, presents a framework for categorizing projects as Bulls,
Colts, Cows, or Skunks based on the amount of uncertainty and complexity inherent
in the project. The framework could be applied to choosing an initial Scrum project,
where you avoid selecting the type of projects that Little calls Bulls (high-uncertainty,
high-complexity projects).

ParT i

Individuals

We have come to value...
Individuals and Interactions
over Process and Tools.

—The Agile Manifesto

Chapter

Overcoming Resistance

na 1969 article in the Harvard Business Review, Paul Lawrence noted that change
“has both a technical and a social aspect. The technical aspect of the change 1s the
making of a measurable modification in the physical routines of a job. The social
aspect of the change refers to the way those affected by it think 1t will alter their
established relationships in the organization” When facing resistance, there is a
tendency to emphasize the benefits of the technical aspect of change. After all, we
are already convinced ourselves, so it’s easy to assume that all we need to do now
1s to convince others. Lay out the perfect intellectual argument in favor of the
change, we think, and people’s resistance will vanish. Lawrence argues against that
flawed logic: “We may sometimes wish that the validity of the technical aspect
of the change were the sole determinant of its acceptability. But the fact remains
that the social aspect 1s what determines the presence or absence of resistance”
(1969, 7).

Although it 1s the social aspect of change that can create resistance, all resis-
tance comes from specific individuals. Teams or departments do not resist chang-
ing to Scrum; individuals do. This chapter, theretore, focuses on effective tech-
niques for overcoming individual resistance. We look first at how to anticipate
their resistance and take preemptive measures against it. Next, we look at how to
communicate about the change and why different messages are best delivered by
different messengers. Finally, in this chapter we look at how and why individuals
resist and then use that information to identify appropriate responses to overcom-
ing their resistance.

Anticipating Resistance

[t should not be surprising that some people will resist the change to Scrum. Some
people resist all change. I suspect you could walk into a company, announce that

98

TABLE 6.1

The top reasons
for resisting
change, as given
by employees and
managers.

Chapter 6 Overcoming Resistance

everyone will be getting a 20-50% raise, and there still will be resistance. Some
will suspect the boss’s ulterior motives—What do you bet there are strings at-
tached? Others will consider the raises unfair—I work harder than he does, why
did he get a bigger percentage raise?

A transition such as the one to Scrum brings great upheaval to the organiza-
tion. Responsibilities broaden, reporting relationships are altered, organizational
power shifts, and expectations change. Some individuals stand to gain personally
or professionally from such changes; others stand to lose. Understanding how
these shifts will affect your organization is vital to anticipating where resistance
will occur.

This 1s confirmed by a 2007 study of why people resist change, which re-
vealed that managers’ number one reason for resistance was a fear of losing control
and authority (Creasey and Hiatt). The top reasons given by employees and man-
agers for resisting change are shown in Table 6.1.

1 Lack of awareness Fear of losing control and authority

2 Fear of the unknown Lack of time

3 Lack of job security Comfort with the status quo

4 Lack of sponsorship No answer to “Whats in it for me?”

5 No involvement in solution design
Who Will Resist?

In attempting to anticipate where resistance will arise, it can be helpful to consider
the answers to questions such as these:

e Who will lose something (power, prestige, clout, or so on) if the transi-
tion to Scrum is successful?

e What coalitions are likely to form to oppose the transition?

By identifying individuals who will lose from the change and coalitions that
will form to oppose it, you will know where to target initial efforts at reducing
resistance.

Although some individuals resist change, others enjoy it. Musselwhite and
Ingram categorize individuals based on their disposition to change as shown in
Figure 6.1 (Luecke 2003). At one end are conservers, who enjoy predictability;
focus on details and routines; are deliberate, disciplined, and organized; and who

Anticipating Resistance

prefer change that maintains the current structure of the organization. Conservers
are estimated to be about 25% of the population.

2579
Conservers Pragma’ri;’r; Orijina’rorg
Prefer change that Prefer PrauHoa! « Prefer change that
maintaing thé curvent 0han36 0ha”enge§ e lg‘Hng

structire

- Will challenae
accepted agumptions

- Little reaard for
a&&erf‘ed Po“weg

structure Ofpen 1o both ¢ideg

F/njoﬂ Prediuf‘abi“‘f'j of an argumen’f‘
Honor tradition and
establiched PrauHoe

More focused on
results than structure

At the other end of the range are originators, who also represent about 25%
of the population. Originators may appear disorganized and undisciplined, en-
joy taking risks, have little regard for policies, and prefer change that challenges
the current structure. In between conservers and originators are pragmatists, who
represent the remaining 50% of the population. Pragmatists are usually practical,
agreeable, and flexible; are more focused on results than structure; usually appear
more team-oriented than conservers or originators; are open to both sides of an
argument; and usually make great mediators between conservers and originators.

I've found that being aware of these three dispositions to change is helpful in
identifying who will be likely to resist. Clearly, conservers will resist the transition
to Scrum. The types of changes that Scrum brings to ways of working, team mem-
ber interactions, and expectations are the type of changes that go against the
nature of a conserver.

Categorizing people as conservers, pragmatists, and originators pres-
ents an incomplete and overly simplistic picture. Of course, each person
needs to be considered and treated as a unique individual. Understand-
ing these categories, however, can help you to formulate strategies for
overcoming resistance. An individual's role in the organization can offer
additional insights into why someone is resistant. Many of these causes
of resistance are described in Chapter 7, "New Roles,” and Chapter 8,
“Changed Roles.”

99

FIGURE 6.1

Individual disposi-
tion to change.

100

Chapter 6 Overcoming Resistance

Conservers will not be alone, however, in resisting Scrum. Some of the prag-
matists will also resist. Because pragmatists are much more open to seeing both
sides of an argument for themselves and then adding their support to the right
side, laying an early groundwork for success can help turn pragmatists into Scrum
advocates. Consider the following activities to help bring pragmatists around to
Scrum:

¢ Run a pilot project and include pragmatists on the team.
e Make sure pragmatists who aren’t on the pilot team see the results of it.
e Provide training to pragmatists.

e Expose pragmatists to the successes of other companies through confer-
ences, regional agile interest groups, and so on.

e Be open to the drawbacks and challenges of Scrum rather than oversell-
ing it as a silver bullet.

e Involve pragmatists on the improvement communities that were
described in Chapter 4, “Iterating Toward Agility”

Waterfallacies and Agile Phobias

Many of the specific arguments yow’ll hear against Scrum are predictable and
common across many organizations. Others, of course, will be unique to your or-
ganization.You can often anticipate the arguments you’ll hear by thinking through
the challenges presented by your organization, domain, technologies, products,
culture, and people. In doing so, you’ll find that many of the objections (both the
universal and the specific ones) can be categorized as either waterfallacies or agile
phobias. A waterfallacy 1s a mistaken belief or idea about agile or Scrum created
from working too long on waterfall projects. Examples include

e Scrum teams don’t plan, so we’re unable to make commitments to
customers.
e Scrum requires everyone to be a generalist.

e Our team is spread around the world. Self-organization clashes with
some cultures, so we can’t be agile.

e Our team is spread around the world, and Scrum requires face-to-face
communication.

e Scrum ignores architecture, which would be disastrous for the type of
system we build.

e Scrum is OK for simple websites, but our system 1s too complicated.

Communicating About the Change

An agile phobia 1s a strong fear or dislike of agile practices, usually due to
the uncertainty of change. Some of the agile phobias you are likely to encounter
include the following:

e ['m afraid I'll have nothing to do.

e D'm afraid I'll be fired if the decisions we make don’t work out.

e DI'm afraid of conflict and of trying to reach consensus.

e I'm afraid people will see how little I really do.

e It so much easier and safer when someone tells me exactly what to do.

e It so much easier and safer when I can tell people exactly what to do.

Although a waterfallacy can often be countered with rational arguments, an-
ecdotes, and evidence, an agile phobia 1s usually much more personal and emo-
tional. Sometimes people just need to know that their objections have been heard.

Throughout this book I have tried to preempt as many waterfallacies and ag-
ile phobias as possible. Many chapters include “Objection” sidebars, which provide
my advice on how to address common questions and misunderstandings about
Scrum.

Communicating About the Change

If you look back atTable 6.1, you’ll notice that the number-one reason employees
gave for resisting change was a lack of awareness. I'm confident, though, that if we
searched the deleted e-mail folders of all who participated in that study, we would
find at least one message explaining the reason for the change. However, having
been told the reason and understanding the reason are not the same. Most of us
need to be given a message multiple times, and usually in multiple ways, before
it finally sinks in and we understand it. In addition to hearing a message multiple
times, there are some messages we hear better when they come from leaders and
others we hear better when they come from our peers.

Hearing from Leaders

Not surprisingly, research has shown that employees prefer to receive different
types of information from different people (Hiatt 2006, 12). Employees prefer to
hear messages about why a change is needed from someone high up in the organi-
zation. The same employees prefer to hear about how the change will affect them
personally from their immediate supervisor. This means that while the president
of the company or the general manager of the division may be best at commu-
nicating the reason for switching to Scrum, individuals need the opportunity to

Chapter 6 Overcoming Resistance

meet with their own managers to discuss the implications for them personally. Still
other messages are best communicated by peers.

If you are a formal leader in your organization or are informally recognized as
one, you will likely find yourself in a position to communicate about the transi-
tion. When communicating about an uncertain future, there 1s a good chance you
will be asked questions you do not know how to answer: Will there be layofts?
Who will I report to? Who will write my annual review? If you don’t know the
answer to a question, don’t guess. And always be honest. A single lie will destroy all
previously established credibility.

Additionally, when communicating about the transition, be sure to listen. As
a formal or informal leader, your role 1s not only to communicate what needs to
be passed along but also to listen and hear the objections that are being stated (and
the ones that are implied). Look once more at the list of common reasons for re-
sisting shown in Table 6.1. Notice that none of the reasons was “I don’t think this
change 1s a good 1dea.” Yes, of course, there will be some in the organization who
think shifting to Scrum 1s a bad idea, but there will be more who resist for other,
more personal reasons—the social aspects of change mentioned at the start of this
chapter. In every conversation with others, spend more time listening than talking.
For each person who resists the transition, see if you can complete this sentence
for them: “I can’t do Scrum because it means I....” There are an infinite number
of ways to complete that sentence. After a recent client engagement, [was able to
finish the sentence this way for some employees I met that day:

e [would have to work harder than I want to right now.

e I would have to stop doing the part of my job I enjoy most.
e [would have to travel more often to work more closely with my
remote team.

e [would not be able hide that I am no longer a good hands-on
programmer.

e [would not have as many people reporting to me.

None of these statements was uttered by the people I met with that day. But,
each was there to be heard when I listened carefully enough. Understanding why
individuals are resisting will be the first step in helping them overcome their
resistance.

Hearing from Peers

Any successful communication plan will mclude plenty of opportunities for
unconvinced employees to hear from their peers. An article in the MIT Sloan
Management Report conveys a similar message.

Communicating About the Change

Particularly during a period of uncertainty, the best route to
influence others can be from the side rather than from above.
For leaders, this means allowing employees who have yet to ac-
cept a change to hear from those who have, perhaps through
team meetings. Even just one exposure to the favorable position
of a peer can have a greater impact than multiple exposures to
the similar position of a supervisor. (Griskevicius, Cialdini, and
Goldstein 2008, 86)

An interesting anecdote concerning the power of peer influence involves
Sylvan Goldman, who invented the shopping cart in 1937 after noticing that
shoppers at his market stopped shopping when their hand-carried baskets became
heavy. Surprisingly, Goldman’s carts were not immediately popular. The carts sat
unused until Goldman hired male and female actors to push the carts around the
store, pretending to shop. After shoppers saw people they perceived as peers using
the carts, usage took off. Shopping carts are now a ubiquitous part of the grocery
shopping experience.

To make this more personal: Consider a time when you were at a confer-
ence or trade show and saw a throng crowded into one vendor’s booth to hear
the pitch. Admit it: You moved closer to hear what had everyone so interested. Or
recall a time you walked through an area with street performers, perhaps a mime,
musician, or juggler. You may have noticed that after a small crowd started to form
around one performer, the crowd got bigger and bigger.

These examples show the power of peer influence. If one’s peers proclaim
the benefits, people listen. An effective transition effort will include many oppor-
tunities for peer-to-peer discussion. Many will be informal and spontaneous—
coworkers talking at lunch, for example. But, effective leaders of a transition to
Scrum should also seek to create additional opportunities. This can be done by
encouraging participation in communities of practice or even by occasionally
scheduling more formal peer-to-peer lunchtime presentations. To the extent pos-
sible, try to match the messenger to the audience. Consider this advice from a
study on the impact of peer influence.

When working to ensure that the voices of supportive employees
will be heard, managers often select those who are the most ar-
ticulate when they should instead favor those who are the most
similar in circumstances to the individuals who are still uncon-
vinced. So if resistance to an initiative is strongest among em-
ployees with the longest tenures, then a fellow old-timer who has
genuinely embraced the change could be a better advocate than
someone who might be more eloquent but has only recently
come on board. (Griskevicius, Cialdini, and Goldstein 2008, 86)

103

104 Chapter 6 Overcoming Resistance

The Hows and Whys of Individual Resistance

People resist changing to Scrum for many different reasons. Some may resist be-
cause they are comfortable with their current work and colleagues. It has taken
years to get to their current levels in the organization, to be on this team, to work
for that manager, or to know exactly how to do their jobs each day. Others may
resist changing to Scrum because of a fear of the unknown. “Better the devil you
know than the devil you dont” 1s their mantra. Still others may resist due to a
genuine dislike or distrust of the Scrum approach. They may be convinced that
building complex products iteratively without significant up-front design will lead
to disaster.

Just as there are many reasons why some people will resist Scrum, there are
many ways someone might resist. One person may resist with well-reasoned logic
and fierce arguments. Another may resist by quietly sabotaging the change eftort.
“You think no documentation is a good 1dea? I'll show you no documentation,”
the passive resistor may think, proceeding to write nothing down, even bug re-
ports the team has agreed should continue to be stored in the defect tracking
system. Another may resist by quietly ignoring the change, working the old way
as much as possible, and waiting for the next change du jour to come along and
sweep Scrum away.

Each act of resistance carries with it information about how people feel about
adopting Scrum. As a change agent or leader in the organization, your goal should
be to understand the root cause of an individual’s resistance, learn from it, and
then help the person overcome it. There are many techniques you can use for
doing this. But unless the technique is carefuilly chosen, it is unlikely to have the
desired effect.To help select the right technique, I find it useful to think about how
and why someone 1s resisting. We can group the reasons why someone is resisting
Scrum into two general categories:

e They like the status quo.
e They don’ like Scrum.

Reasons for resistance fall into the first category if they are actually a defense
of the current approach. This type of resistance to changing to Scrum would likely
result no matter what type of change was being contemplated. Reasons fall into
the second category if they are arguments against the specific implications of be-
ginning to work in an agile manner. Tables 6.2 and 6.3 provide some examples of
different reasons for resistance and how each would be categorized.

Categorizing how individuals resist is even simpler: Is the resistance active or
passive? Active resistance occurs when someone takes a specific action intended
to impede or derail the transition to Scrum. Passive resistance occurs when some-
one fails to take a specific action, usually after saying he will. Combining the two

The Hows and Whys of Individual Resistance

general reasons people may resist Scrum with the two ways in which they will do
it leads to the standard two-by-two matrix, as shown in Figure 6.2.

[like who I work with.

[like the power or prestige that comes with my current role.

This is the way I was trained to do it and the only way [know how.

[don't like change of any sort.

[don't want to start another change initiative because they always fail anyway.

I think Scrum is a fad and we'll just have to switch back in three years.

Scrum 1s a bad idea for our products.

[got into this field so that I could put headphones on and not talk to people.

Scrum doesn’t work with distributed teams like ours.

Each quadrant of Figure 6.2 is given a name descriptive of the person who
resists in the way indicated by the labels on the axes. A skeptic 1s someone who
does not agree with the principles or practices of Scrum but who only passively
resists the transition. Skeptics are the ones who politely argue against Scrum, for-
get to attend the daily scrum a little too often, and so on. I am referring here to
individuals who are truly trying to stop the transition, not people with the healthy
attitude of “this sounds different from anything I’ve done before but I'm intrigued.
Let’s give it a try and see if it works.”

Above the skeptics in Figure 6.2 are the saboteurs. Like skeptics, saboteurs re-
sist the transition more from a dislike of Scrum than support for whatever software
development process exists currently. Unlike a skeptic, a saboteur provides active
resistance by trying to undermine the transition effort, perhaps by continuing to
write lengthy up-front design documents, and so on.

On the left side of Figure 6.2 are those who resist because they like the status
quo. They are comfortable with their current activities, prestige, and coworkers.
In principle, these individuals may not be opposed to Scrum; they are, however,
opposed to any change that puts their current situation at risk. Those who like the

105

TABLE 6.2

People may resist
Scrum because
they like how
things are today.

TABLE 6.3

People may resist
because they don't
like Scrum.

106

FIGURE 6.2

Four different types
of resistors based
on why and how
they resist.

Chapter 6 Overcoming Resistance

status quo and who actively resist changing from it are known as diehards. They
often attempt to prevent the transition by rallying others to their cause.

The bottom left of Figure 6.2 shows the followers, who like the status quo
and resist changing from it passively. Followers are usually not enraged by the
prospect of change, so they do little more than hope it passes like a fad. They need
to be shown that Scrum has become the new status quo.

Diehards

Followers g‘a,l;)r'uos

Like ctatus quo Don’'t like Scrum
Why theu regist

Skeptics

Thad had no choice but to adopt Scrum. His company had been acquired and was
being told by the new owners to begin using Scrum immediately. This wasn’t a
direction Thad would have chosen himself, and he had serious concerns about it.
Would the daily scrums add value, especially with a product owner who worked
from her home 600 miles away? How could a new product as complicated, large,
and novel as theirs be done without a lengthy up-front design phase? He could
see the value of iterating through the construction phase, but surely an up-front
design was still needed.

Thad was a skeptic. I knew this from his willingness to admit that Scrum was
fine for other domains, technologies, or environments—just not his. Thad openly
acknowledged the appropriateness of Scrum for web development but questioned
it for his company’s scientific applications.

As the most experienced member on his team and one of the longest-tenured
developers in the organization, Thad was an opinion leader. Others looked to him
to see how he would behave under the mandate to adopt Scrum. Thad exhibited

The Hows and Whys of Individual Resistance

a healthy amount of doubt; people should not be expected to change how they
work without the opportunity to ask hard questions or be expected to fully em-
brace Scrum until they’ve worked on a Scrum team and experienced the ben-
efits for themselves. Thad’s uncertainty, however, went beyond doubt to the point
where he was resisting the transition in small but important ways.

Because he didn’t see the benefit of daily scrums, Thad consistently pushed to
skip them. At the end of one meeting he said, “It sounds like we’re all on stuff that
will take at least today to finish. So let’s skip tomorrow’s daily scrum and just meet
again the day after. Every other day 1s probably good enough anyway”” Sometimes
his ScrumMaster could successfully counter these arguments, but not always. After
all, the ScrumMaster was new to Scrum, too.

Additionally, like many skeptics, Thad would sometimes claim to support a
Scrum practice but would then continue to work as he always had. For instance, he
said that he supported working iteratively and claimed to understand the value of
having a potentially shippable product at the end of each sprint. In truth, though,
Thad didn’t believe that all parts of their product could be designed, coded, and
tested within a single sprint. Consequently, he habitually pushed the team to bring
more work than it could handle into each sprint. Overcommitting was his way of
making sure that some features were worked on over at least two sprints.

Some of the tools that are useful in overcoming the resistance presented by
skeptics include

o Lettime run its course. If you can keep the transition effort moving for-
ward, evidence of the benefits of Scrum will start to accumulate. Even
it this evidence is merely anecdotal, it lessens the amount of resistance a
skeptic can put up.

e Provide training. Some of a skeptic’s resistance is a result of not having
done something or not having seen it done before. Training—whether
formal classroom training or as provided by an external coach brought
in to work with the team—helps by giving the skeptic the experience of
seeing firsthand how it can work.

« Solicit peer anecdotes. If you've never experienced something yourself
but your friends or those you relate to have, their personal stories will
resonate with you. If there are Scrum success stories from other teams in
your organization, make sure the skeptics hear them. If Scrum is new to
your organization, invite experienced agile outsiders in. Inviting a local
software architect to speak at lunch about her company’s success with
Scrum will do wonders in persuading your own skeptical architects.

o Appoint a champion skeptic. In their book Fearless Change, Mary Lynn
Manns and Linda Rising suggest designating someone as the company’s
“champion skeptic” (2004). The champion skeptic should be nfluential,
respected, and well connected but should not be openly hostile to the

108

Chapter 6 Overcoming Resistance

change. The champion skeptic 1s invited to all meetings and 1s given a
chance to point out problems. Use this information to sincerely address
the concerns the champion skeptic brings up. Doing so demonstrates
open-mindedness and prevents any one concern from escalating into a
Crisis.

Push the issue. Put the skeptic in charge of some part of the transition.
Suppose you are struggling with a skeptical tester who does not believe
testing can be done in the same sprint as the design and programming of
a feature. Challenge that tester to 1dentify five ways to help bring the team
closer to the goal of testing within the same sprint. The tester won’t be
able to come up empty for fear that the next person who takes on the task
successtully identifies five items. Then, ask the team to either try all five
things or to select the one or two ideas that seem most promising initially.
Build awareness. Presumably you have chosen to do something as diffi-
cult as introduce Scrum because there 1s a compelling need to do so.
Perhaps a new competitor has entered your space, perhaps your last prod-
uct took a year too long to release, or perhaps you have any of a number
of similar reasons. Make sure that those involved in the transition are
aware of the better future that will follow a successful transition.

More tools for overcoming resistance will be described in the sections
that follow on saboteurs, diehards, and followers. Although it is possible
that any tool may work on any type of resistor, | have listed the tools
along with the type of resistor for whom | have found the tool most
useful.

In Thad’s case, we were able to overcome his skepticism by pushing the issue.
We put a stop to his passive resistance to iterating by switching to shorter sprints.
The team had been using four-week sprints but was bringing in about six weeks
worth of work in each sprint planning meeting. I told them we were going to try
two-week sprints until they got a handle on how much could actually be com-
pleted in a sprint. Thad didn’ like this idea. In the next sprint planning meeting, to
point out the foolishness of working in such short sprints, Thad pushed the team
to commit to what he thought was a ridiculously small amount of work. It turned
out to be the right amount; for the first time the team finished all its work inside
one sprint.As team members came to see the value of completing what they com-
mitted to, Thad’s subtle efforts to force the team to overcommit were thwarted by
the team’s new insistence that it bring in to the sprint only what it could handle.

The Hows and Whys of Individual Resistance

Although pushing the 1ssue helped in Thad’s case, the biggest factor in eradi-
cating his resistance was time. It just took time (and a mounting pile of anecdotal
evidence that it could be done) to sway Thad.

Saboteurs

[t can be easy to mistake a saboteur for a skeptic—after all, some amount of un-
certainty about any change can be a good thing. I made the mistake of confusing
a saboteur with a skeptic while teaching a class at a search engine company. Elena,
a participant in the class, was asking a lot of good, challenging questions. I didn’t
know her role in the organization, but because many class participants were defer-
ential to her, I figured she was important in one sense or another, and so [spent a
lot of time answering her questions. If I was right and she was an opinion leader,
and if I could convert her by overcoming her objections one by one, I knew that
would be a big step forward for this company.

At the end of the day, I met with the director who had invited me to teach
that class in her company. We talked about how the class went and I told her how I
hoped I'd made progress helping Elena to see the light. The director said,“I should
have warned you about her. She hates Scrum. She runs a shared user experience
design group and is completely opposed to everything about Scrum. She’s been
fighting it since we started six months ago. I was surprised to see that she’d signed
up for your class.”

Elena was a saboteur—opposed to Scrum and actively resisting it. Like most
saboteurs, she had been soliciting others to her cause. Despite mounting evidence
within her company that Scrum was helping create better products more quickly,
she continued to argue that it would not. I asked Elena directly why she was so
strongly opposed. She said, “I have the best stateroom on the Titanic and 'm not
moving!”

In addition to some of the tools offered for overcoming the resistance of skep-
tics, the following tools have proven useful with saboteurs:

e Success. As long as there is any doubt about whether Scrum is the ap-
propriate approach, saboteurs will use those doubts to spread resistance.
“Yes, it worked on our web projects,” they may grudgingly offer, “but, it
won’t work on our back-end projects.” Success on many different types
of projects 1s a surefire way of weakening those arguments.

« Reiterate and reinforce the commitment. Saboteurs need to know that the
company is committed to the transition. Any sign of weakness and—Iike
a lion eyeing a tasty-looking antelope—the saboteur will attack. Faced
with a large number of saboteurs, a strong message from as high up the
executive chain as possible will at least let them know resistance 1s futile.

e Move them. If possible, find another team, project, or division and move
the saboteur there. Unless you are a small organization or are doing an

109

SEEALSO

Sprints, and especially
the value of producing
something potentailly
shippable by the end
of each sprint, are
covered in Chapter 14,
"Sprints.”

Chapter 6 Overcoming Resistance

all-in transition, it 1s quite likely that a saboteur can continue to be a
productive team member elsewhere—until Scrum starts to permeate that
team, project, or division, that 1s.

o Fire them. This is the extreme end of moving someone. But if someone
1s opposed to a stated corporate direction and 1s actively resisting it, then
this 1s quite possibly the appropriate action.

o Be sure the right people are talking. Chapter 4 introduced the idea of
forming improvement communities as a way of identifying and spreading
good practices and enthusiasm for Scrum through the organization. A
thriving set of communities focused around topics of special interest can
be invaluable in producing enough momentum to overcome resistance.
Hearing how others within a community of practice are succeeding with
Scrum can lessen a saboteur’s resolve to continue resisting.

Elena was fortunate to work in a large organization in which she could be
moved to a different department that was still taking a wait-and-see attitude to-
ward Scrum. She eventually came around to the point where she is again a pro-
ductive team member, though even today she will admit she 1s secretly waiting for
a change back to the old way of working.

Diehards

Katherine worked as the director of metrics and measurement for a large division
of a financial data provider. I had been told she was a supporter of the division’s
shift toward Scrum but that she had a few questions for me so that she could
more effectively do her job of collecting process and product metrics. I have a
natural interest in this subject, and such discussions are usually a great chance for
me to learn something new I was looking forward to meeting with Katherine as
a chance to discuss some creative, iInnovative metrics.

Was I ever wrong! Katherine had mastered the art of appearing to support the
transition to Scrum while trying to hold onto the status quo. Three years prior to
our meeting, software development within this organization had been character-
ized by missed deadlines and buggy software that didn’t meet customer expecta-
tions. At that time, Katherine was the newly hired test manager. She instituted
some new procedures that dramatically improved things. As a result, teams seemed
to be meeting their deadlines (mainly because schedules were padded by what I
considered astounding amounts) and quality improved (by creating a separate test
group that would spend months testing after a product was handed over to them).

For her efforts in solving these problems, Katherine had been promoted and
was now running what was essentially a project management office (PMO).As she
told me more about her background and about how she had previously helped
her company by introducing various process improvements, I was sure I had found
an ally in transitioning her division to Scrum. Instead, what I found was someone

The Hows and Whys of Individual Resistance

who had built herself a very nice empire (through good effort directed at earlier
company goals). She was now so enamored of her current status, the number of
people reporting to her, and her level of prestige that she was unwilling to con-
sider further changes. Moses could have come down from the mountaintop with
the 1deal process engraved on stone tablets, and Katherine would have resisted.

Katherine, like other diehards, was opposed to Scrum not because of anything
inherent in it but because she did not want to let go of the current state. She was
very actively resisting the change but always in ways that allowed her to claim to
be supporting it.

A common technique of diehards, and one Katherine employed, is to stall
the transition by controlling resources. This is possible because diehards are often
found at the middle and upper levels of management where they have enough
status to want to keep it. In Katherine’s case, she controlled a shared pool of testers.
This allowed her to harm the transition by profligately moving testers between
projects. There were always plausible reasons: A critical project needed an ad-
ditional tester, another project needed the expertise of a specific tester, and so
on. Katherine’s tactics had the effect of ensuring that no team retained the same
personnel from start to finish and that many Scrum teams didn’t have a tester for
the first few sprints.

Many of the tools appropriate for overcoming the resistance of the saboteur
will work with the diehard as well. Some additional tools you may want to employ
with diehards include

« Align incentives. Dichards are tied to the status quo because of the ben-
efits (either tangible or intangible) that it brings them. If you find a lot of
resistance from diehards, consider all incentives that exist in the organiza-
tion and make sure each aligns well with being agile. I am not referring
solely to financial incentives. Nonfinancial incentives such as who gets
promoted or otherwise recognized should also be reviewed. If having a
large number of people reporting to you creates clout in your organiza-
tion, for example, you shouldn’t be surprised when people resist losing
their direct reports.

» Create dissatisfaction with the status quo. Dichards like the status quo.
They are not opposed to Scrum because of what it is; they are opposed
to it because they like how things are. So, try to create dissatisfaction
with the current state. I don’t mean to go create a crisis, but if one looms,
point it out. If market share 1s declining, make sure people know:. If calls
to tech support are on the rise, show people. If an industry newsletter
recently heaped praise on a competitor’s product, hang copies of the ar-
ticle where everyone can see them. This 1s consistent with the advice of
Stewart Tubbs, author of a textbook on small-group interaction: “A pre-
scient manager 1s always looking for ways for the organization to improve

m

SEE ALSO

Chapter 20, “Human Re-
sources, Facilities, and
the PMO," provides
advice on many human
resources—related
issues.

Chapter 6 Overcoming Resistance

continuously. She or he 1s constantly on the lookout for ways to make the
organization more effective, and looks to communicate these ideas as a
way to generate dissatisfaction with the status quo” (2004, 352).

o Acknowledge and confront fear. Dichards resist in part because of the
uncertainty of what their jobs will look like with Scrum. They are usually
very happy with their current positions. Fear of an uncertain future can
be very powertul. How will my role change? How will I be evaluated?
Wihat will come next in my career? These are all powerful questions often
in the mind of the dichard. If you know the answers and are in a position
to give them, do so. If the answers are unknown, say so but commit—if
you can and if you value the work of the diehard—to working with him
to find the answers.You can also help calm these fears by clarifying what
1s expected not just of the diehard but of others with whom he may work.

In Katherine’s case, her vice president (Christine) and I sought to find the
right role for her in the new organization. We talked with her about our confi-
dence that her past experience in guiding the company toward dramatic process
improvements put her in a key position for helping the company again. Chris-
tine clarified Katherine’s role in the new organization. Unfortunately, Katherine’s
sense of identity and self-worth were so tightly coupled to the process that she
had helped put in place that she could not help the company move beyond it. In
the end, she left the company.

Followers

Like diehards, followers are more opposed to changing the status quo than they
are opposed to adopting Scrum 1in particular. Unlike diehards, however, followers
present passive resistance to the change. Dexter, a mid-level programmer at an e-
commerce company was a follower. He asked questions like a skeptic but always
with an undercurrent implying that he knew Scrum was a bad thing. Wihere a
skeptic would ask, “How does Scrum work on projects where getting the user
experience perfect is absolutely critical?” Dexter would ask, “Scrum doesn’t work
when getting the user experience perfect 1s critical, does 1t?”

I remember one conversation with Dexter in which he asked how many
times I would be back to visit his company. “I'm scheduled back in July and
October,” I said. This was June.

“Nothing after that?” he asked.

“Maybe, but we haven’t scheduled anything past October.”

“Good. This will be done by the end of the year, then”

[was impressed by his enthusiasm, but I thought his timeline for adopting
Scrum was a little aggressive considering the size of his company. “Well, probably
not,” I cautioned.“There will probably still be some work next year. Not everyone
has even started running sprints. But you probably won’t need me next year.”

The Hows and Whys of Individual Resistance

“Oh,” Dexter replied, “I didn’t mean it that way. I meant we’ll be onto our
next new process by then. After the Christmas shopping season 1s over, we always
change our process.”

No one had told me about these annual process changes prior to my first
visit with this company, but considering the company’s history of adopting a new
process every January, it wasn’t surprising that Dexter would take a wait-it-out
approach to Scrum. In fact, many followers adopt this approach, reasoning that
this change will be followed by some later change and they might as well skip a
tew along the way.

On his own Dexter didn’t present a significant hurdle to a successful transi-
tion. But, have enough Dexters in your organization, and they can impede a suc-
cessful transition. Fortunately, followers are not usually very vigorous in their re-
sistance. They will put up minor, passive resistance, mostly hoping that the change
goes away. In addition to some of the tools described already, there are a few more
tools that can be useful in dealing with followers:

« Change the composition of the team. Some coworkers bring out the best
in us; others bring out the worst. Changing the composition of the team
will undoubtedly change the nature of resistance. Replacing a grumbling,
always-negative saboteur with a skeptic may remove a follower’s motiva-
tion for resisting.

o Praise the rightbehavior. Rather than focusing on changing the behavior
of the followers, praise some aspects of appropriate behavior whether you
observe it in a detractor or supporter. Followers will notice and resistance
in some will weaken.

o Involve them. A great way to reduce the resistance of a fence-sitting fol-
lower 1s to involve her in the design of the new process. For example, you
might ask a follower to join an improvement community figuring out
how to do automated unit testing on your challenging legacy application
or to work with others putting together a presentation for the sales group
on how Scrum impacts your ability to put dates in contracts.

o Model the right behaviors yourself. Followers need someone to follow.
Increase the odds that they follow someone who is exhibiting the right
agile behavior by modeling those behaviors yourself. For example, given
that collaboration 1s an essential part of Scrum, strive to demonstrate this
in your interactions with others.

o |dentify the true barrier. Following the model described in Chapter 2,
“ADAPTing to Scrum,” determine whether a follower is resisting because
she lacks the awareness, desire, or ability to use Scrum. Then provide the
appropriate support to break through that barrier. If she 1sn’t aware of the
reasons for transitioning to Scrum, have a private conversation in which
you share them. If she currently lacks the ability to be agile, look for an
opportunity to pair her with someone who can help her learn those skills.

114 Chapter 6 Overcoming Resistance
Q ldentify the five fiercest resistors in your organization.

O For each of the five fiercest resistors, decide whether each is most
likely a skeptic, saboteur, diehard, or follower.

QO Identify one action you can take to lessen or counter the resistance
of each of the five fiercest resistors. Look for opportunities to find
one action that will work for multiple resistors.

O Assess whether you have correctly set the stage for the transition
by first building awareness and creating desire. Revisit these activi-
ties if needed.

Resistance as a Useful Red Flag

When introducing a complex change into a large organization, resistance will
be inevitable. What 1sn’t inevitable is the reaction of an organization’s leaders to
that resistance. Paul Lawrence, whom we heard from at the start of this chapter,
describes an appropriate response.

When resistance does appear, it should not be thought of as
something to be overcome. Instead, it can best be thought of as
a useful red flag—a signal that something 1s going wrong.To use
a rough analogy, signs of resistance in a social organization are
useful in the same way that pain 1s useful to the body as a signal
that some bodily functions are getting out of adjustment. The re-
sistance, like the pain, does not tell us what is wrong but only that
something 1s wrong. And it makes no more sense to try to over-
come such resistance than it does to take a pain killer without di-
agnosing the bodily ailment. Therefore, when resistance appears,
it 1s time to listen carefully to find out what the trouble 1s. What
1s needed 1s not a long harangue on the logics of the new recom-
mendations but a careful exploration of the difficulty. (1969, 9)

Be careful not to turn the need to handle resistance into an atmosphere of
“us” against “them.” The real goal is to create a feeling that the transition to Scrum
1s inevitable and that, as the Borg of Star Trek taught us, “resistance is futile.” The
need to foster this atmosphere does not give you carte blanche to ignore the feel-
ings and reactions of employees or to steamroll Scrum into an organization. When
an employee resists, an effective leader looks at the employee not as a problem to
be solved but as a person to be understood (Nicholson 2003).

Additional Reading

Additional Reading

Bridges, Willham. 2003. Managing transitions: Making the most of change. 2nd ed. Da Capo
Press.
The author 1s a general transition management expert rather than someone well
versed in software development. His book is a standard on how individuals deal with
transitions and contains a wealth of information on letting go of the past. There 1s also
strong coverage of moving through what the author calls the “neutral zone,” that time

between when the old has been abandoned yet the new approach 1s not established.

Emery, Dale H. 2001. Resistance as a resource. Cutter IT Journal, October.
Emery presents the view that a person’s resistance can be viewed as a response to a
change 1nitiative and that the response carries with it information. That information
can be used to learn about the person and hopefully get that person engaged n the
change process. The article includes an informative list of four factors that influence

whether someone resists.

Manns, Mary Lynn, and Linda Rising. 2004. Fearless change: Patterns for introducing new
ideas. Addison-Wesley.
This book presents 48 patterns that can be applied to any change initiative. Patterns
range from the well known (“do food™) to the lesser known, such as the value of des-

ignating a “champion skeptic,” and many others that can help overcome resistance.

Reale, Richard C. 2005. Making change stick: Tivelve principles for transforming organizations.
Positive Impact Associates, Inc.
Some of the 12 suggestions 1in this short book can be used to help overcome resis-
tance. Sections on catching people doing something right and confronting fear are
particularly useful. Other suggestions, such as align your culture, are too big to be

adequately covered in the few pages devoted to them.

Chapter

New Roles

s we discussed in the previous chapter, teams and organizations resist Scrum
for many different reasons. One likely source of opposition to adopting Scrum 1s
confusion over the new roles that exist on a Scrum project. The roles of Scrum-
Master and product owner are new ones without exact corollaries in the pretran-
sition organization. It 1s common for an organization new to Scrum to struggle
with filling these roles with appropriate individuals. Until people figure out what
the new roles entail and which individuals have those skills, it 1s hard to put the
right people 1n place.

In this chapter, I describe the new roles of ScrumMaster and product owner.
For each role, we look at the responsibilities of the role, ideal attributes of can-
didates for the role, and how to overcome some common problems these roles
present.

The Role of the ScrumMaster

Much has already been written about the job of the ScrumMaster in removing
impediments to the team’s progress (Schwaber and Beedle 2001, Schwaber 2004).
Most ScrumMasters quickly grasp that part of their job. Where many falter—
especially during the critical first 6 to 12 months of using Scrum—is in their
relationships to their teams, which is why we will focus on that topic here.

Many who are new to the ScrumMaster role struggle with the apparent con-
tradiction of the ScrumMaster as both a servant-leader to the team and also some-
one with no authority. The seeming contradiction disappears when we realize
that although the ScrumMaster has no authority over Scrum team members, the
ScrumMaster does have authority over the process. Although a ScrumMaster may
not be able to say,“You're fired,” a ScrumMaster can say, “I've decided we’re going
to try two-week sprints for the next month.”!

The ScrumMaster is there to help the team in its use of Scrum. Think of
the help from a ScrumMaster as similar to a personal trainer who helps you stick

1 Ideally, the ScrumMaster tries to get team members to decide this on their own. But,

if they do not, the ScrumMasters authority over the process allows for this decision.

118

SEEALSO

For more on the
meaning of potentially
shippable, see “Deliver
Working Software Each
Sprint,” in Chapter 14,
“Sprints.”

Chapter e Roles

with an exercise regimen and perform all exercises with the correct form. A good
trainer will provide motivation while at the same time making sure you don’t
cheat by skipping a hard exercise. The trainer’s authority, however, 1s limited. The
trainer cannot make you do an exercise you don’t want to do. Instead, the trainer
reminds you of:your goals and how you’ve chosen to meet them. To the extent
that the trainer does have authority, it has been granted by the client. Scrum-
Masters are much the same: They have authority, but that authority 1s granted to
them by the team.

A ScrumMaster can say to a team, “Look, we're supposed to deliver poten-
tially shippable software at the end of: each sprint. We didn’t do that this time.
What can we do to make sure we do better the next sprint?” This 1s the Scrum-
Master exerting authority over the process; something has gone wrong with the
process ifithe team has failed to deliver something potentially shippable. But be-
cause the ScrumMaster’s authority does not extend beyond the process, the same
ScrumMaster should not say, “Because we failed to deliver something potentially
shippable the last sprint, I want Tod to review all code before it gets checked in.”
Having Tod review the code might be a good idea, but the decision 1s not the
ScrumMaster’s to make. Doing so goes beyond authority over the process and
enters into how the team works.

With authority limited to ensuring the team follows the process, the Scrum-
Master’s role can be more difficult than that ofia typical project manager. Project
managers often have the fallback position of:“do it because I say so.” The times
when a ScrumMaster can say that are limited and restricted to ensuring that
Scrum is being followed.

Attributes of a Good ScrumMaster

Today’s surgeons are highly trained and skilled individuals who have had years of:
formal education followed by extensive internships. This was not always the case.
Pete Moore has written that “the first surgeons had little anatomical knowledge,
but plied their trade because they had sharp instruments and strong arms. They
often did surgery in their spare time while working as the local barber or black-
smuth” (2005, 143).

Many organizations choose their first ScrumMasters in much the same way;
but instead of:seeking sharp instruments and strong arms, they look for manage-
ment or leadership experience. As they become more experienced with Scrum,
organizations eventually realize there are many more factors to consider in se-
lecting ScrumMasters. To help save you from picking a ScrumMaster whose sole
qualifications are strong arms and sharp instruments, I have listed the six attributes
[have found to be common among the best ScrumMasters I've worked with.

The Role of the ScrumMaster

Responsible

A good ScrumMaster 1s able and willing to assume responsibility. That 1s not to
say that ScrumMasters are responsible for the success of the project; that 1s shared
by the team as a whole. However, the ScrumMaster 1s responsible for maximizing
the throughput of the team and for assisting team members in adopting and using
Scrum. As noted earlier, the ScrumMaster takes on this responsibility without as-
suming any of the authority that might be useful in achieving it.

Think of the ScrumMaster as similar to an orchestra conductor. Both must
provide real-time guidance and leadership to a talented collection of individuals
who come together to create something that no one of them could create alone.
Boston Pops conductor Keith Lockhart has said of his role, “People assume that
when you become a conductor you're into some sort of a Napoleonic thing—
that you want to stand on that big box and wield your power. 'm not a power
junkie, I'm a responsibility junkie” (Mangurian 2006, 30). In an identical manner,
a good ScrumMaster thrives on responsibility—that special type of responsibility
that comes without power.

Humble

A good ScrumMaster 1s not in it for her ego. She may take pride (often immense
pride) in her achievements, but the feeling will be “look what I helped accom-
plish” rather than the more self-centered “look what I accomplished.” A humble
ScrumMaster 1s one who realizes the job does not come with a company car or
parking spot near the building entrance. Rather than putting her own needs first,
a humble ScrumMaster 1s willing to do whatever is necessary to help the team
achieve its goal. Humble ScrumMasters recognize the value in all team members
and by example lead others to the same opinion.

Collaborative

A good ScrumMaster works to ensure a collaborative culture exists within the
team. The ScrumMaster needs to make sure team members feel able to raise issues
for open discussion and that they feel supported in doing so. The right ScrumMas-
ter helps create a collaborative atmosphere for the team through words and ac-
tions. When disputes arise, collaborative ScrumMasters encourage teams to think
in terms of solutions that benefit all involved rather than in terms of winners and
losers. A good ScrumMaster models this type of behavior by working with other
ScrumMasters in the organization. However, beyond modeling a collaborative at-
titude, a good ScrumMaster establishes collaboration as the team norm and will
call out inappropriate behavior (if the other team members don’t do it themselves).

119

SEEALSO

For more on whole-
team responsibil-
ity, see Chapter 11,
“Teamwork.”

120

Chapter e Roles

Committed

Although being a ScrumMaster 1s not always a full-time job, it does require some-
one who 1s fully committed to doing it. The ScrumMaster must feel the same
high level of commitment to the project and the goals of the current sprint as the
team members do. As part of that commitment, a good ScrumMaster does not
end very many days with impediments left unaddressed. There will, of course, be
times when this is inevitable, as not all impediments can be removed in a day. For
example, convincing a manager to dedicate a full-time resource to the team may
take a series of discussions over several days. On the whole, however, if a team finds
that impediments are often not cleared quickly, team members should remind
their ScrumMaster about the importance of being committed to the team.

One way a ScrumMaster can demonstrate commitment is by remaining in
that role for the full duration of the project. It 1s disruptive for a team to change
ScrumMasters mid-project.

Influential

A successful ScrumMaster influences others, both on the team and outside it. Ini-
tially, team members might need to be persuaded to give Scrum a fair trial or to
behave more collaboratively; later, a ScrumMaster may need to convince a team
to try a new technical practice, such as test-driven development or pair program-
ming. A ScrumMaster should know how to exert influence without resorting to
a dictatorial “because I say so” style.

Most ScrumMasters will also be called upon to influence those outside the
team. For example, a ScrumMaster might need to convince a traditional team to
provide a partial implementation to the Scrum team. Or, a ScrumMaster might
need to prevail upon a QA director to dedicate full-time testers to the project.

Although all ScrumMasters should know how to use their personal influence,
the ideal one will come with a degree of corporate political skill. The term “cor-
porate politics” 1s often used pejoratively; however, a ScrumMaster who knows
who makes decisions in the organization, how those decisions are made, which
coalitions exist, and so on can be an asset to a team.

Knowledgeable

Beyond having a solid understanding of and experience with Scrum, the best
ScrumMasters also have the technical, market, or other specialized knowledge to
help the team pursue its goal. LaFasto and Larson have studied successful teams
and their leaders and have concluded that “an intimate and detailed knowledge of
how something works increases the chance of the leader helping the team surface
the more subtle technical issues that must be addressed” (2001, 133). Although
ScrumMasters do not necessarily need to be marketing gurus or programming
experts, they should know enough about both to be effective in leading the team.

The Role of the ScrumMaster

Tech Leads as ScrumMasters

That we’d like ScrumMasters to have solid technical knowledge does not mean,
however, that we simply anoint each team’ tech lead as its ScrumMaster. In
fact, because Scrum teams are self-organizing, there should not be a company-
designated role such as “tech lead.” However, when adopting Scrum it can be
very tempting to take the former tech leads and search for equivalent roles where
they can exert similar influence on the team and the product. Often this leads to
designating tech leads as ScrumMasters. Although some tech leads make great
ScrumMasters, never select someone as a ScrumMaster solely because of this, or
any other, past role.

A few years ago | provided some initial training to a company, with the goal of
helping its leaders decide whether they would adopt Scrum. Two weceks later, one
of them called me and said that my training had convinced them, and they were
proceeding with Scrum. In fact, she and a few others were in a meeting that mo-
ment discussing who their initial ScrumMasters should be, and they wanted my
advice. She then said, “We don’t have time for a lot of discussion on this. We have
only one question: Can the tech lead on each team become the ScrumMaster for
that team? Just give a yes or no answer.” | began to reply, “Yes, they can, but...”
and was about to explain the risks of this when she thanked me for my answer
and hung up.

When I visited this client two months later, I was confronted with, “Why did
you say we should make our tech leads our ScrumMasters?” Uh, I hadn’t. Appar-
ently they had encountered some of the problems I had tried to warn them about
and had since found that having solid technical knowledge was only one of the
desirable attributes of a ScrumMaster.

One of the risks in using a former tech lead as the ScrumMaster 1s that tech
leads are used to providing direction to their teammates. And worse, team mem-
bers are used to looking to their tech leads for decisions. Because a good Scrum-
Master does not make decisions for the team, the former tech lead’s history as a
decision maker can work against the transition.

A second risk of converting tech leads into ScrumMasters 1s that they often
do not have the requisite people skills. Although technical leads must have some
interpersonal skills, ScrumMasters must be facilitators who can guide and lead
self-organizing teams over which they have no authority. Author of Collaboration
Explained, Jean Tabaka, shares similar concerns.

I work primarily with Scrum teams, and those that struggle the
most typically have a command-and-control project manager
or a decision-oriented technical lead as ScrumMaster. Without
a facilitative, servant-leader mode of team guidance, the agile
adoption will be only a thin veneer over nonempowered, de-
moralized teams. (2007, 7)

121

122

Chapter e Roles

All of this 1s not to say that tech leads should never be considered as possible
ScrumMasters. Rather, the point 1s to be aware of these issues and not cavalierly
decide that all tech leads in your organization will make great ScrumMasters.
Perhaps the best way to assess a tech lead as a candidate for the ScrumMaster role
1s to look at how that person has used the leadership authority that came with
the tech lead designation. Tech leads who took an “it’s-my-way-or-the-highway”
approach in the past will not make good ScrumMasters. On the other hand, tech
leads who could have dictated decisions but instead worked to rally supporters to

their viewpoint will probably do well.

Internal or External ScrumMasters

A common question 1s whether teams should use ScrumMasters from within the
company or whether outside experts should be brought in. The long-term answer
1s easy: Having skilled ScrumMasters 1s a critical requirement and as such they
should reside within the organization. You should not use contract ScrumMasters
over the long-term.

But it 1s hard to learn a new skill until you’ve seen someone else demonstrate
it. Learning how to lead without authority, when and how to nudge a team to-
ward adopting new engineering practices, when it’s OK to intervene, and so on
can be difficult. Therefore, many organizations benefit from bringing in an outside
consultant as a ScrumMaster initially. This outsider may act as the ScrumMaster to
the team, but he should also serve as a mentor to prospective ScrumMasters within
the team so that the organization can develop its own cadre of ScrumMasters.

Rotating the ScrumMaster

Some teams that struggle with choosing the best ScrumMaster decide that an ap-
propriate strategy is to rotate the role among all team members. I don’t advocate
this, as I don’t think it demonstrates an appropriate respect for the challenges and
significance of the role. In my family, we rotate who cleans the table and loads
the dishwasher. Any of us can do that job. We do not, however, rotate who cooks
dinner. My wife is a far better cook than anyone else in the family. We want the
cooking to be the best it can be, so we don't rotate that job. If you want your
Scrum team to be the best it can be, I do not recommend that you make a habit
of rotating the job of ScrumMaster.

However, there are some occasions when you may want to rotate. The most
common is when you want to create learning opportunities. For example, if team
members are struggling to understand the duties of the ScrumMaster, they may
want to consider rotating each team member through the role. This may allow
each to develop an understanding of what 1t means to be a ScrumMaster. Simularly,
if a team 1dentifies four or five good ScrumMaster candidates among its ranks, 1t
may want to rotate among them, giving each a chance to try the role. Then by

The Role of the ScrumMaster

considering the performance of each, the team will hopefully be able to choose
the most appropriate ScrumMaster.

Bob Schatz and Ibrahim Abdelshafi of Primavera Systems point out another
reason why rotating might be useful.

With time the team can begin to treat this position as their man-
ager. And the person in that position typically detects and duti-
fully fills the apparent need. The result 15 a breakdown in the
team’s self-management practice. By rotating the responsibility at
the start of each sprint, it diffuses the role and makes it a shared
team responsibility and establishes a balance of power. (2006, 145)

So, although 1t 1s possible to rotate the job of ScrumMaster, [recommend
doing it only for specific reasons, such as those just given, and only temporarily.
Rotating should not be a permanent practice. There are simply too many prob-
lems with 1it, including the following:

e Someone who has rotated into the role usually has other, non-
ScrumMaster tasks to perform during the sprint, and these often take
priority.

e It’ hard to train enough people to do the role well.

e Some people will use their time as ScrumMaster to try to push through
changes to the process.

e Designating someone as ScrumMaster for a sprint or two does not auto-
matically make someone value the job, which can lead to ScrumMasters
who think Scrum is a mistake.

Overcoming Common Problems

Some of the common problems you may face in making sure that each team has
the appropriate ScrumMaster and what you can do to address them include

Someone inappropriate takes the role. Sometimes the decision of who should be
the ScrumMaster is made for you: someone just says, “I'll do it,” and takes on the
role. Often this is great—after all, good ScrumMasters are likely to be the ones
who take on additional responsibility before being asked. But what if the person
who volunteers is inappropriate for the role? Your response to this will depend on
your role in the organization.

If you have some authority over the inappropriate ScrumMaster, the team,
or the adoption of Scrum, meet with the volunteer and explain why you need
someone different in the role. If appropriate, give the volunteer specific things
you would like him to do to be considered as a ScrumMaster candidate later. And
if the inappropriate person 1s already in the role of ScrumMaster? Even though
it will be a bit more difficult, I still suggest removing the person from the role if

123

124

Chapter e Roles

you are convinced the person is truly inappropriate. In either case, act swiftly. An
mnappropriate ScrumMaster should be changed as soon as possible; I haven’t met a
team yet who felt an inappropriate ScrumMaster was removed too soon.

If you do not have authority over the ScrumMaster, team, or process, I still
suggest you pursue a conversation with the person who has inappropriately as-
sumed the ScrumMaster role. Approach the discussion from the perspective of
having the team’s best interests in mind. Try to accentuate the ScrumMaster’s
strengths and suggest that he might be able to find a better way of applying them
to the project if he steps out of the ScrumMaster role.

The ScrumMaster is also a programmer/tester/other on the team. When it is im-
practical to have a dedicated ScrumMaster for a team, a decision must be made
between a ScrumMaster who splits time between two or more teams and a
ScrumMaster who 1s both a ScrumMaster and a programmer, tester, or other on
the same team. Although either of these approaches can work suitably well, I tend
to prefer that when necessary a ScrumMaster’s time 1s split between two teams.
Having a ScrumMaster who 1s also an individual contributor on the team carries
many risks.

One risk 1s that the person may not have adequate time to devote to both
roles. Another is that someone in a combined role will probably need to stay
away from critical path activities because the person could be interrupted with
ScrumMaster duties at any time. A more subtle risk 1s that other team members
will not easily know whether they are talking to their ScrumMaster or to another
individual contributor. Yet another risk is the ScrumMaster will have less cred-
ibility when protecting the team from outsiders. A dedicated ScrumMaster will
have more credibility when saying, “We can’t help. The team is busy,” than will the
ScrumMaster/individual contributor whose same message can be interpreted as
“We can’t help. I'm busy.”

As risky as it can be for someone to be both ScrumMaster and a technical
contributor on the project, it is a common situation. Awareness of these issues and
a willingness to work through them as they arise is often the best solution.

The ScrumMaster is making decisions for the team. This problem can arise for
two completely different reasons: it could be because the ScrumMaster misun-
derstands or is uncomfortable in the new role, or it could be because the team 1s
used to someone else making decisions. In either case, the solution is the same.
The ScrumMaster should be taken aside and reminded that being a ScrumMaster
1s about providing guidance, not answers.

As a new ScrumMaster, one of the first things I had to learn was how to
count. When we’d be in a meeting, struggling with some vexing problem, the
team would look to me to tell them the solution. Having previously been the

The Product Owner

team leader I was tempted to blurt out “the answer”” But I needed the team to
learn how to tind the right answers themselves, and so I sat there quietly counting
to myself. 1,2, 3.... 1 counted well into the hundreds on a few occasions, but this
helped me learn to keep my mouth shut. And it helped the team learn not only
how to make those decisions but also that I wouldn’t do it for them.

The Product Owner

I think of the ScrumMaster as the person who ensures that the team 1s working
well together, that impediments to progress are quickly removed, and that the
team 1s moving efficiently toward its goal. I think of the product owner as the
person who makes sure the team 1s aimed at the right goal. A good team needs
both roles to succeed. The product owner points the team at the right target; the
ScrumMaster helps the team get to that target as efficiently as possible.

Roman Pichler, author of Agile Product Management with Scrum: Creating Prod-
ucts that Customers Love, stresses the importance of the product owner: “The prod-
uct owner has the authority to set a goal and shape the vision. The product owner
1s not just a project manager who now also writes requirements and does a little
bit of prioritization.” Thinking of the product owner as the provider of a team’s
goal helps make certain aspects of the product owner’s job clear. For example,
the product owner is clearly responsible for defining and prioritizing the product
backlog that expresses the goal. Similarly, the product owner is responsible for
making sure the project earns a good return on the investment made 1in it.

Responsibilities of the Product Owner

Compiling an exhaustive list of the responsibilities of the product owner would
be difficult. Every application exists within its own context of company culture,
individual and team competencies, competitive forces, and so on. This context
strongly influences how the product owner role is performed in different compa-
nies. So instead of providing a checklist of product owner responsibilities (“must
attend sprint planning meeting”), I find it more helpful to think in terms of two
things that a product owner provides the team: a vision and boundaries.

Providing Vision

Many of the product owner’s responsibilities involve establishing and commu-
nicating the vision for the product. The best teams are those whose passion has
been ignited by a compelling vision shared by the product owner. Who will we be
selling to? What 1s unique about our product? What are our competitors doing?
How will our product evolve over time? Of course, the questions are different for
an application or service that 1s being delivered to a group of in-house users, but

125

SEE ALSO

See Agile Product Man-
agement with Scrum:
Creating Products that
Customers Love by
Roman Pichler for a
thorough discussion of
the product owner role.

126

SEEALSO

The product backlog
is a prioritized list of
features to be added
to a product. It is fully
described in Chapter
13, “The Product
Backlog.”

Chapter e Roles

having a shared vision 1s important for motivating a team and creating a long-term
connection between those developing the product and those using it.

Beyond having a clear vision in mind, the product owner must elucidate that
vision for the team. The product owner does this through creating, maintaining,
and prioritizing the product backlog. There 1s a lot of dissension among Scrum-
Masters and teams as to whether the product owner 1s the one who actually writes
the product backlog. I am firmly in the camp of I-don’t-care. It doesn’t matter to
me who performs the physical act of writing the product backlog; what does mat-
ter 1s that the product owner 1s the one who makes sure it happens. If the product
owner delegates this to a business analyst and the analyst gets sidetracked and fails
to write the product backlog, it 1s still the product owner who 1s responsible.

Beyond ensuring that the product backlog exists, the product owner adds
detail to the vision by answering questions team members will have: Do you want
it to work this way? What did you mean when you said such-and-such? Although
the product owner can delegate or distribute the responsibility for answering
these questions, the product owner cannot delegate the responsibility that they in-
deed get answered. A product owner can say, “Talk to Nirav if you have questions
about how the shopping cart and checkout features should work,” but if Nirav
1sn’t responsive or helpful, a good product owner will step in and answer questions
personally, find out why Nirav 1s unable to do so, designate a different person, or
find some other solution.

Providing Boundaries

Vision and boundaries can be thought of as competing aspects of the project. The
vision shows what the product can become. The boundaries describe the realities
within which the vision must be realized. Boundaries are provided by the product
owner and often come 1n the form of constraints, such as

e I need it by June.
e We need to reduce the per-unit cost by half.
e [t needs to run at twice the speed.

e It can use only half the memory of the current version.

Often when I tell groups that the product owner is allowed to dictate things
such as this—especially the date—I am met with angry responses. “No,” they tell
me, “estimates are up to the team. All the product owner does is prioritize the
work.” Although those statements are true, the product owner is also responsible
for defining the boundaries that will determine the success of the product.

Most experienced Scrum team members will readily agree that it 15 within
the product owner’s purview to say, “We need to develop at least this much of
the product backlog or the product won’t be worth shipping.” But many of these
same experienced people resist when similar statements are made about deadlines.

The Product Owner

But, let’s see what Takeuchi and Nonaka had to say in their study of the six teams
that formed the foundation of Scrum and that were the subject of the first paper
on Scrum back in 1986.

Fuji-Xerox’s top management asked for a radically different copi-
er and gave the FX-3500 project team two years to come up with
a machine that could be produced at half the cost of its high-end
line and still perform as well. (139)

Here, we clearly have a team that is given a challenging problem—match the
performance of the company’s best current copiers but at half the cost—and a
deadline for solving the problem. There is nothing wrong with this. Product own-
ers go wrong when they overly constrain a problem or when they make a solution
impossible. Had Fuji-Xerox’s management given that team the same problem but
only one month to solve it, the team would have seen the futility in the situation
and not even tried. The problem as presented to that team presumably left the
team plenty of operating room in which to find a solution. A part of the product
owner’s job that 1s more art than science 1s providing just enough of a boundary
around the project so that the team 1s motivated to solve the difficult problem
before them but not providing so many boundaries that solving the problem be-
comes impossible.

When brainstorming solutions to a challenging problem, common advice
18 to think “outside the box.” However, there 1s evidence that better solutions
emerge more easily from thinking that is done “inside the box” as long as the box
has been properly framed (Coyne, Clitford, and Dye 2007). When we’re told to
think outside the box, they say, the total lack of constraints can be unsettling.

Imagine a random product you are trying to improve in a typical
facilitated brainstorming session. Outside-the-box possibilities
could include making the product bigger or smaller, lighter or
heavier, prettier or more rugged (or changing its appearance in
any of a hundred ways). Further ideas could involve making the
product more expensive or less or maybe breaking it into parts
or bundling it with other products. They could involve chang-
ing the product’s functionality, durability, ease of use, or the way
it fits with other products. Or its availability, affordability, or re-
pairability. How do you know which dimensions are fruitful to
explore? Without some guidance, people cannot judge whether
they should continue in the direction of their first notion or
change course altogether. They cannot handle the uncertainty,
and they shut down. (2007, 71)

The product owner’s job 1s to create the new box—the boundaries—in
which the team will think. This new box prevents the team from getting lost in

127

128

SEEALSO

Schedule is one side of
the infamous iron trian-
gle of scope, schedule,
and resources. The iron
triangle is discussed in
Chapter 15, “Planning”

SEEALSO

Self-organization is
discussed in detail in
Chapter 12, “Leading a
Self-Organizing Team.”

FIGURE 7.1

A team’s time
demands on their
product owner
and ScrumMaster
move in different
directions.

Chapter e Roles

the infinitude of possible solutions and gives team members a basis for making
and comparing choices. Boundaries for that new box are determined by the most
important constraints for the business, which may involve things like minimum
guaranteed functionality, dramatically faster performance, reduced resource con-
sumption, and, yes, in some cases the date.

Each Team Needs Exactly One Product Owner

On a team that is new to Scrum, the ScrumMaster job can be very time consum-
ing. The ScrumMaster will be busy training team members on Scrum itself, en-
couraging them to think in different ways about the problems they encounter,
removing impediments to the team’s progress, and more. Early on, this might even
be a full-time job, depending on the newness of the team and the types of im-
pediments team members face. Over time, however, things improve. Eventually
the ScrumMaster has removed many recurring impediments, and the team itself
has begun to master Scrum and has embraced its self-organizing nature. As these
changes occur, the team needs less and less of their ScrumMaster’s time. If we were
to graph a team’s demands on its ScrumMaster’s time, it would look something
like Figure 7.1.

Time needed

——— Product
owhery

~—— ScrumMacter

Time

Contrast this with the team’s need for its product owner. When the team first
adopts Scrum, it will not be very good at it. It will struggle with how much detail
to put on the product backlog, how much work can be completed in a sprint,
how to work well together within the sprint, and so on. Team members will be
learning new practices and new ways of working together. The team will not be
very fast—at least not compared to how fast it will be after it gets good at Scrum.
As the team speeds up (through its own improvements and from the ScrumMaster
gradually removing impediments), it will be completing more work each sprint.
This means members will have more questions for their product owner. Therefore,

The Product Owner

as the team’s efficiency increases, so will its demands on the product owner’s time.
This 15 likely the case even as team members learn the domain and take on more
responsibility themselves.

This inverse relationship between a team’s demands on the product owner’s
and the ScrumMaster s time is shown in Figure 7.1.The lines in this figure show
that although it may be acceptable to have an experienced ScrumMaster work
with two or possibly even three teams (depending on how much help each team
needs at the time), it 1s not advisable to share one product owner across more
than two teams. Instead, each team should ideally have its own dedicated product
owner. The product owner job 1s very challenging. Part of the job is outward-
facing: talking to customers and following market trends. Another part of the job
1s inward-facing: working with the team to build the product. When a job involves
both inward- and outward-facing duties, the outward, customer-facing duties al-
ways seem to win. Any developer who 1s responsible for both new development
and customer support can confirm that customer-facing issues almost always win.

Just as a product owner should work only with one team, each team should
work only with one product owner. I have seen occasions where having two
product owners assigned to a team works, but this 1s usually a result of someone
in the organization not wanting to make the hard call of saying, “Your product
owner 1s so-and-s0.” Find someone to make the hard call, designate one product
owner for the team, and then encourage that person to solicit all sorts of helpful
mput and feedback from those who also could have been the product owner.

A team with two product owners will inevitably fall into the trap of “Mom
said no;let’s go ask Dad.” Of course, only the most dysfunctional (or perhaps des-
perate) teams will get the “wrong” answer from one product owner and go ask the
same question of the other. Even they know they will eventually be found out and
will be called on their behavior. However, most teams with two product owners
will go so far as to think about which product owner will give the most satisfying
answer before they choose which one to ask.

A Product Owner Team

In some cases, the product owner role can be too much for one person. Research-
ers Angela Martin, Robert Biddle, and James Noble found that the product owner
role 1s “consistently under more pressure than the developers and other partici-
pants in the project” (2004, 51). Ron Jeffries, one of the inventors of the Extreme
Programming process and a Scrum trainer, agrees: “It was only after the first book
or two on XP came out that we fully realized the load a single XP Customer/
Scrum product owner 1s taking on. It’s clear that they’ll need to be a group.”

A common solution 1s the use of a product owner team. Splitting the du-
ties of the product owner across a product owner team 1s fine as long as there
remains one person on that team who can be singled out as the person with

129

SEEALSO

The topic of scaling
the product owner
role for large projects
is described In detall

in Chapter 17, “Scaling
Scrum.”

130

NOTE

Remembering these
five attributes is easy.
Putting together the
first letter of each
spells ABCDE.

Chapter e Roles

ultimate responsibility and authority, a “the-buck-stops-here” individual. Even
with a product owner team, each development team needs to have one identifi-
able, consistent person they can go to for answers. As Ken Schwaber and Mike
Beedle have written, “The product owner is one person, not a committee” (2001,
34). Make sure each team can identify one person people can go to for decisions.
A good Scrum team moves far too quickly to wait for all questions to be answered
by committee. A product owner will never be able to instantly answer all ques-
tions the team may have; occasionally telling the team, “I need to run this by my
colleagues,” 1s fine. But, well-founded caution should not be replaced by de facto
decision-by-committee.

Attributes of a Good Product Owner

As when describing what to look for in selecting or hiring a good ScrumMaster,
I've culled the long list of:desirable product owner traits down to five must-have
attributes.

Available. By far the most frequent complaint T hear from teams about their
product owners 1s that they are unavailable when needed. When a fast-moving
team needs an answer to a question, waiting three days for an answer 1s completely
disruptive to the rhythm it has established. By being available to the team, a prod-
uct owner demonstrates commitment to the project. The best product owners
demonstrate their commitment by doing whatever is necessary to build the best
product possible. On some projects this includes doing things like assisting in test
planning, performing manual tests, and being actively engaged with other team
members.

Business-savvy. It 1s essential that the product owner understand the business. As
the decision maker regarding what is in or out of:the product, the product owner
must have a deep understanding of: the business, market conditions, customers,
and users. Usually this type of:understanding 1s built over years of:working in the
domain, perhaps as a past user of:the type of:product being developed. This is why
many successful product owners come from product manager, marketing, or busi-
ness analyst roles.

Communicative. Product owners must be good communicators and must be able
to work well with a diverse set of:stakeholders. Product owners routinely interact
with users, customers, management within the organization, partners, and, natu-
rally, others on the team. Skilled product owners will be able to deliver the same
information to each of:these different audiences while at the same time tailoring
their message to best match the audience.

The Product Owner

A good product owner must also listen to users, customers, and perhaps most
important the team. Especially as team members learn more about the product
and market (as they should over time, especially on a Scrum project), they will be
able to offer valuable suggestions about the product. Additionally, all teams will
have much to say to the product owner about the technical risks and challenges of
the project. Although it 1s true that the product owner prioritizes all work for the
team, the wise product owner will listen to her team when it recommends some
adjustments in those priorities based on technical factors.

Decisive. Another common complaint teams make about their product owners
1s their lack of decisiveness. When team members go to the product owner with
an issue, they want a resolution. Scrum puts a lot of pressure on teams to produce
functionality as quickly as possible. Teams are frustrated when a product owner
responds to a question with, “Let me call a2 meeting or convene a task force to
work on that” A good team will understand that this 1s sometimes necessary, but
teams are very perceptive at knowing when a product owner 1s actually just trying
to avoid making a hard decision. Just as bad as a product owner who won’t make
a decision 1s the product owner who makes the same decision over and over but
with different answers. A good product owner will not reverse prior decisions
without a good reason.

Empowered. A good product owner must be someone empowered with the au-
thority to make decisions and one who 1s held accountable for those decisions.
The product owner must be sufficiently high up in the organization to be given
this level of responsibility. If a product owner is consistently overruled by others
in the organization, team members will learn to go to those others with their
important questions.

The ScrumMaster as Product Owner

One common consideration 1s whether the ScrumMaster and product owner
roles should be combined. No. In the vast majority of times I've seen this done, the
results have been disappointing. Not only does combining these roles put a lot of
power in one person’s hands, but it also creates confusion for both team members
and the ScrumMaster/product owner hybrid. A certain amount of tension should
exist between these roles. Product owners continually want more, more, more
features. ScrumMasters protect their teams by pushing back against the product
owner when they feel that pushing their teams harder would be detrimental.
When the roles are combined, this tension is removed.

With an eye toward full disclosure, I feel compelled to add that two of the
most successful Scrum projects I've participated in or witnessed had a combina-
tion ScrumMaster/product owner. There are tremendous advantages to having a

132

SEEALSO

Establishing a product
owner hierarchy like
this is a common scal-
ing technique and is
described in Chapter 17.

Chapter e Roles

single person who has a deep understanding of the market, has the technical and
collaborative skills of a ScrumMaster, and can effectively balance them. Toyota es-
sentially combines the ScrumMaster and product owner roles into its single chief
engineer role. The Toyota chief engineer 1s someone who 1s most definitely an
engineer and could likely engineer any part of a new vehicle but who also has
a deep understanding of the market and likely purchasers of the vehicle being
engineered.

So, the combined ScrumMaster/product owner model can be successtul.
However, | suspect that there are very few individuals who are good at both jobs
and who are good at doing them both at the same time. Even if you suspect you
are one of them or can identity these people within your organization at the start
of the transition to Scrum, [still recommend using separate individuals in these
roles, at least at the start.

Overcoming Common Problems

‘There are many potential pitfalls when selecting the initial product owner. Some
of the most common early-stage problems and what you can do to address them
include

The product owner delegates decision making but then overrules the decision
maker. To fit the new duties of the product owner into their schedules, some
product owners delegate decisions about specific parts of the product. Other
product owners enlist a business analyst to be a “feature owner” over some part
of the system. This can work well because the product owner has more time to
dedicate to areas that are not as easy to delegate.

Problems arise when the product owner says that decision-making authority
has been delegated but then continues to approve or sometimes reverses deci-
stons. Before delegating, product owners should be sure they are really willing
to delegate without later second-guessing. Because of the pressure of the short,
timeboxed sprints, Scrum teams often move much more quickly than they did
before transitioning. It is inevitable that some decisions that the product owner
delegates will turn out to be wrong, and these should be revisited. What we want
to avoid, however, are situations where the product owner says,“Get your answers
from Dave; he owns this part of the system,” and then consistently overrules Dave’s
ANSWers.

My advice to a new and overloaded product owner is to free some time by
delegating just beyond the point at which you’re comfortable. You may be pleas-
antly surprised and find no important decisions to reverse. But you’ll occasionally
find some decisions you would have made differently. Often the best thing to do
in this case 1s the same thing we’re all taught when learning to drive: If the car
starts to slide, steer into the slide. Rather than pull against the decision (assuming

The Product Owner

it 1s not a horrendous one), allow that decision to persist through the end of the
sprint; then decide if it should be changed. When the cost of reversing a decision
1s compared against all the other valuable work on the product backlog, you may
find that the decision wasn't so bad after all.

The product owner pushes the team too hard. Product owners are often under
pressure to deliver financial results to the company; more features delivered sooner
1s one way for them to achieve it. As I've said, I have no objection to a product
owner who announces at the start of a project,“We need to build a product that 1s
smaller, better-performing, and cheaper than our competitor’s, and we need to do
it in three months less than we spent on the last product.” As long as a challenging
goal like that 1s accompanied by appropriate freedom in how the goal 1s achieved,
the team will do its best. The problems arise when the team is kept under constant
and changing pressure from sprint to sprint. One difficult goal of “do this amaz-
ing thing in 6 months” is in many ways less stresstul for the team than 13 succes-
stve two-week sprints of “I need more, more, more!” If you have product owners
who are pushing teams this way, the ScrumMasters should first push back and then
work with the product owners to set longer-term goals for the teams while ensur-
ing teams have commensurate degrees of freedom in how those goals are achieved.

The product owner wants to cut quality. Cutting quality is an oh-so-tempting
decision when trying to deliver a challenging set of features by a difficult date. It
can lead to the short-term appearance of having met the objectives established at
the start of the project. Eventually, however, the cost of having cut quality becomes
apparent as more post-release bugs than usual are reported, the team’s velocity de-
creases, and customers clamor for the product to behave as they thought it would.

Ken Schwaber has called quality a “corporate asset” (2006). As such, no one
except the chief executive has the authority to sacrifice quality in exchange for
achieving a short-term goal such as making a release date. A decision to cut quality
may be the appropriate one; I can’t tell you otherwise without knowing the full
context of a situation. But, that decision 1s one that needs to be made sufficiently
high up in the organization and with such openness that no one 1s surprised by
the negative impacts that will almost certainly follow

Selecting product owners who understand this is sometimes challenging in
organizations that are consistently focused on this quarter’s numbers. Pushing back
against attempts to reduce quality is the job of the ScrumMaster. The ScrumMas-
ter does not need to prevail in these early disagreements. The ScrumMaster does,
however, have to succeed in making the decision visible.

Time 1s on the ScrumMaster’s side. If the ScrumMaster successfully raises
the visibility of decisions to cut quality, he should eventually be able to win later

133

134

SEEALSO

For more on the
challenges of distrib-
uted development, see
Chapter 18, “Distributed
Teams)”

Chapter e Roles

arguments against reducing quality. “Remember on the Gouda project how I told
you that cutting quality on version one would hurt us during version two?” the
ScrumMaster can say. “Well, here are the graphs of velocity on the two projects.
Note that version two had a lower velocity even though we added two experi-
enced people. That was because we left bugs behind during version one (here’s
a graph showing that) and because the team didn*t feel it had the time to do a
goodjob of keeping its code clean. We even skipped the automated unit tests on a
few modules. Here’s a comparison of the number of defects found during the six
months following release, broken down by whether the module had automated
unit tests. Its up to you if we do this again on this project, but I think you know

my opinion.”

Our product owner is in a different city than the development team. With more
projects being developed by remote teams, this is an increasingly common situ-
ation. Both the team and product owner in this situation should assume some
of the burden of overcommunicating with the other. I have worked with many
remote product owners, and it can work very successfully as long as the product
owner does the following:

e Remains engaged in the project
e Establishes a rapport with the team
e Performs all usual duties of the role

e Isavailable to the team for phone calls for at least some part of the day,
even if 1t 1s after the usual workday for the product owner

e Responds by e-mail or phone when not available in person

New Roles, Old Responsibilities

The roles of product owner and ScrumMaster are critical for becoming a high-
performing Scrum team. In this chapter we’ve looked at the responsibilities of the
people in these jjobs, attributes we'd like our product owners and ScrumMasters
to possess, and how to overcome some common problems that occur when intro-
ducing these roles into an organization.

Although the roles of product owner and ScrumMaster are new, the respon-
sibilities are not. High-performance teams have always known they needed to do
the things described in this chapter. On a Scrum team, individuals are asked to
look beyond their explicit roles to find ways to help the team accomplish its goals.
In the next chapter, we look at what this new emphasis on teamwork and shared

responsibility means for existing roles in the organization.

Additional Reading | 135

Additional Reading

Davies, Rachel, and Liz Sedley. 2009. Agile coaching. The Pragmatic Bookshelf.
This book 1s full of practical, immediately useful advice for any ScrumMaster. It cov-

ers everything from how to help the team improve to how to help yourself improve.

Fisher, Kimball. 1999. Leading self-directed work teams. McGraw-Hill.
The self-directed work teams of Fisher’s book are the self-organizing teams of an

agile project. His book offers guidance appropriate to ScrumMasters.

James, Michael. 2007. A ScrumMasters checklist, August 13. Michael James’ blog on
Danube’s website.http://danube.com/blog/michaeljames/a_scrummasters_checklist.
In making his argument that a great team needs a full-time ScrumMaster, rather than
one who works with two or more teams, Michael James presents a rather exhaustive

list of work to be performed by the ScrumMaster.

Kelly, James, and Scott Nadler. 2007. Leading from below. MIT Sloan Management
Review, March 3.http://sloanreview.mit.edu/business-insight/articles/2007/1/4917/
leading-from-below.

This article presents useful information for those not in authority positions who

nonetheless realize they can still influence the direction of the organization.

Pichler, Roman. Forthcoming. Agile product management with Scrum: Creating products that
customers love. Addison-Wesley Professional.
The most complete coverage available of the role of the product owner. Pichler
clarifies the key differences between traditional and agile product management while

providing useful tips to product owners.

Schwaber, Ken. 2004. Agile project management with Scrum. Microsoft Press.
Schwaber's second book is full of anecdotes about teams using Scrum both suc-
cesstully and unsuccessfully. In addition to chapters dedicated to the product owner
and ScrumMaster roles, other valuable advice on performing those roles is spread
throughout the book.

Spann, David. 2006. Agile manager behaviors: What to look for and develop. Cutter Consortium
Executive Report, September.
In this extensive report, Cutter consultant David Spann addresses the question of
what attributes to look for in what he calls an “agile manager,” but which corre-
sponds closely to the ScrumMaster role of this chapter. He starts with a list of 22
candidate behaviors but reduces this to a list of 8 preferred behaviors to look for
when hiring an agile manager.

http://danube.com/blog/michaeljames/a_scrummasters_checklist
http://sloanreview.mit.edu/business-insight/articles/2007/1/4917/

Chapter

Changed Roles

he previous chapter focused on the two new roles on a Scrum project—Scrum-
Master and product owner. But changes to a Scrum project’s team members go
beyond the introduction of two new roles. For example, the self-organizing nature
of a Scrum team eliminates the role of the technical team leader, individuals are
asked to look beyond their specialties and help the team in any way possible, em-
phasis 1s shifted from writing about requirements to talking about them, and teams
are required to produce something tangible by the end of each sprint. Because
these changes alter the roles and relationships within the team and organization,
they often contribute to some of the challenges organizations face when adopting
Scrum.

This chapter will describe the primary adjustments individuals must make as
they transition from traditional roles to Scrum. The focus will be on how these
roles change, rather than on a thorough description of each role. I won't, for ex-
ample, describe everything a tester does as part of testing an application. [will
instead focus on changes in how a tester works on a Scrum project. I will discuss
the roles of analyst, project manager, architect, functional manager, programmer,
database administrator, tester, and user experience designer.

While reading about these roles, keep in mind that any team member
who is involved in developing a product or software system is first and
foremost a developer. When | use a term like tester, | mean a developer
with specific skills or an interest in testing. Similarly, analystis used to
refer to a developer who prefers to work on analysis tasks but who will
work on any high-priority task needed by the team.

Analysts

With an intimate knowledge of the product and strong communication skills,
some analysts will tend to shift into product owner roles. This 1s especially com-
mon on large projects that make use of a hierarchy of product owners. Someone
with product manager on her business card, for example, may act as the chief

137

138

SEEALSO

Scaling the product
owner role is discussed
in Chapter 17, “Scaling
Scrum.”

SEEALSO

Shifting the emphasis
from documents to dis-
cussions is described
inChapter13, “TheProd-
uct Backlog.”

SEEALSO

User stories are an
agile way of describ-
ing features. They are
described in Chapter 13.

Chapter 8 Changed Roles

product owner for the overall product, spending most of her time looking out-
ward at users and the market. An individual with analyst on her business card, on
the other hand, may act as product owner for the various teams, working with the
chief product owner to translate her vision into product backlogs for her teams.

Many teams find that having an analyst on the team continues to be very ben-
eficial, although the ways in which the analyst works will change. On traditionally
managed projects, the analyst’s mission seemed to be to get as far ahead of the team
as possible. On a Scrum project, just-in-time analysis becomes the goal. The ana-
lyst’s new aim 1s to stay as slightly ahead of the team as possible while still being able
to provide useful information to the team about current and near-term features.

Analysts can be instrumental in achieving the goal of shifting the emphasis
from writing about requirements to talking about them. Because analysts are not
working as far ahead of the team as they may be used to, they need to become
more comfortable sharing information with the team more informally, rather than
through a large document. As much information as possible should be shared
through verbal discussion, but analysts will still need to document some require-
ments, especially when working on a distributed team. Often though, what the
analyst writes will be less formal—more often a wiki than a document with a
sighature page.

On traditional projects, analysts often become intermediaries through whom
other team members and the product owner communicate. On a Scrum project
the analyst should become more a facilitator of team—product owner discussion
than an intermediary. Team members and product owners need to talk. Rather
than be the conduit for all conversation, the good agile analyst focuses on making
sure those conversations are as productive as possible given the time constraints
the team or product owner may be under. This may mean that the analyst steers
the product owner and team toward talking about one user story rather than an-
other because that is where there is more risk of going astray. Or it may mean that
the analyst conveys a top-level understanding of a new feature to the team before
bringing the team and product owner together to discuss the details.

On a traditional project, an analyst may say to the team,“I've talked to our key
stakeholder, understand what he wants, and have written this document describ-
ing it in detail.” By contrast, on a Scrum project, the same analyst should say, “I've
spoken to our product owner and have a feeling for what he’s after. I wrote these
six user stories to give you a start, and I've got a bunch of additional questions to
ask the product owner. But I want to make sure that I bring along a couple of you
when we have those discussions.”

With all this talk of analysts looking ahead, it can be tempting to think that
analysts work a sprint ahead of the team.They don’t. Gregory Topp, an analyst with
Farm Credit Services of America, describes how using Scrum has allowed him to
concentrate on the current sprint: “Before Scrum, I had to focus on requirements

Project Managers

that were not going to be developed for several weeks, if not months. Now, I focus
on the current sprint {(two weeks for us), so more time can be spent on user story
details, development, and testing.” An analyst’s first priority is to achieve the goals
of the current sprint. An analyst on a Scrum team will assist in testing, will answer
questions (or track down answers to questions) about features being developed,
will participate fully in all regular sprint meetings, and so on.

However, it 1s quite possible that these activities will not fully consume the
analyst’s time. Time that 1s not needed to complete the work of the current sprint
can be used to look ahead. However, being a part of the team on this sprint and
spending some time looking ahead is not the same as working a sprint ahead of
the team. Topp explains how jumping too far ahead actually put him behind: “I
tried working ahead a sprint or two, defining user story details. I found that this
caused the current sprint to suffer. I also found that many times the details of a
user story changed by the time the team actually started working on the story.”

A common question is whether the effort analysts spend looking ahead
should be included on the sprint backlog. My recommendation 1s to include on
the sprint backlog any specific analysis tasks that can be identified during sprint
planning. For example, suppose the team 1s working on an application that ap-
proves or rejects loan applications. If the product owner and team agree that the
next sprint will include work on calculating the applicant’s credit score, then pre-
liminary analysis tasks related to that should be identified, estimated, and included
in the sprint backlog. On the other hand, if the next sprint’s work i1s unknown, no
specific tasks related to the next sprint should be included on the sprint backlog.

Overall, many analysts enjoy the change to Scrum even though they relin-
quish the role of sole interpreter of customer desires. Two years after adopting
Scrum, Topp commented on how his relationship with others on the team had
changed.

Because we are all on the same team and all work on the same
user stories at the same time, the team seems to have more unity.
Before using Scrum, it seemed each function (analyst, program-
mer, tester, DBA) was done in a silo. There was more finger-
pointing when in that mode. Now using Scrum, the team is all
focused on a small set of stories. The finger-pointing has been
eliminated with an “as a team” mindset.

Project Managers

On a project using a sequential development process, the project manager has
the difficult job of ensuring that the product a customer wants is the one that 1s
developed.To do this, the project manager must try to manage everything about

139

140

Chapter 8 Changed Roles

the project, including scope, cost, quality, personnel, communication, risk, pro-
curement, and more. Some of these responsibilities really belong to others. Scope
control, for example, rightfully belongs with the customer. No one else is in the
position to make the necessary trade-off decisions that will arise during product
development, as priorities, team velocity, and market conditions shift. Prioritiza-
tion 1s not a static, one-time, all-at-the-start activity that can be managed by a
project manager. Yet time and again, sequential projects demand that project man-
agers make educated guesses to deliver the right product.

On Scrum projects we acknowledge the untenable role of the project man-
ager and eliminate it. Eliminating the role, though, does not mean we can do away
with the work and responsibilities. As you might guess, since self-organizing teams
are a core tenet of Scrum, a great deal of the responsibility previously shouldered
by the project manager is transferred to the Scrum team. For example, without a
project manager to assign tasks to individuals, team members assume the responsi-
bility of selecting tasks themselves. Other responsibilities shift to the ScrumMaster
or product owner.

Former project managers often assume one of the roles that have taken on
some part of their past responsibilities—the project manager becomes either a
ScrumMaster, product owner, or team member, depending on experience, skills,
knowledge, and interests.

Some people became project managers because they considered it the next
step in a desirable career path, yet they don’t enjoy project management. These in-
dividuals miss the technical challenge of working as a programmer, tester, database
engineer, designer, analyst, architect, or so on. Many of these individuals will take
advantage of the elimination of the project manager role to return to work they
found more satistying.

Other project managers have used their roles to become knowledgeable about
the business and its customers. A project manager in this situation will leverage
that knowledge into a role as a product owner. This can be an excellent fit, espe-
cially for the project manager who 1s having a hard time completely relinquishing
the ability to tell the team what to do. As part of their role, product owners are
allowed to tell the team a bit of the “what to do” as long as they stay largely away
from telling them how to do it. This can satisty a former project manager whose
nature makes it hard to stop occasionally directing the team.

If a project manager can overcome the old habits of directing the team and
making decisions for it, it is likely such a project manager can become a good
ScrumMaster. This 1s the most common new role for project managers in organi-
zations adopting Scrum. The new role will likely be difficult at first for the former
project manager as she learns to bite her tongue and let the team learn how to
work through its own issues and make decisions. Often, new ScrumMasters are
put in the challenging position of coaching teams at something that they are not

Project Managers

yet good at themselves—being agile. The best strategies for a ScrumMaster in this

situation include the following:

Stick as close as possible to doing Scrum by the book. Initially follow the
advice of'this or another Scrum book closely. Or engage an on-site trainer
or coach and follow her advice to the letter. Only begin customizing the
process after you have real, hands-on experience with it.

Talk to other ScrumMasters as much as possible. If there are multiple
ScrumMasters in your organization, form a community of practice with
the other ScrumMasters and share good and bad experiences. Look to
learn by extracting lessons from commonalities among these experiences.
If you are the only one in your organization, find outside ScrumMasters
with whom you can share stories and compare approaches.

Learn as much as you can as quickly as you can. Read books, articles,
blogs, and websites. Look into local agile interest groups and attend their
meetings. Iry to attend one or more of the major agile or Scrum confer-
ences.

Doris Ford, a software engineering manager with Motorola, was a classically

trained project manager and a Project Management Professional (PMP). However,

despite having a traditional background in project management, Doris’s approach

has always been about supporting and enabling her teams. Because of that, she was

able to easily move from project manager to ScrumMaster. She writes of how her

job has changed with Scrum.

Over the years in managing agile development [have learned
not to sweat the task details. As a traditional project manager,
[always needed to stay on top of who was doing which tasks,
what were their dependencies, and would they be done on time.
[spent countless number of hours just asking these questions to
get the answers in attempt to meet the scope/schedule/budget/
quality constraints and reporting upwards on the progress (some-
times using earned value). In an agile environment I had to learn
to trust the team members that they would identify and do the
tasks necessary to complete the scope for each sprint. It was hard
letting go at first, but I quickly learned that the team could do
this. I now spend the majority of my time supporting the team
members by addressing impediments that they raise and keeping
external noise from diverting their focus.

Why the Title Change?

If 1t’s possible for a project manager to become a team’s ScrumMaster or prod-

uct owner, why do we need to change the person’ title? Let’s consider the term

141

SEEALSO

Communities of
practice are described
further in Chapter 17.

142 Chapter 8 Changed Roles

ScrumMaster. Years ago, when I first started running Scrum projects, the term
ScrumMaster didn’t exist, and it never dawned on me to call the role anything but
project manager. This worked well enough. But, I was hiring new individuals into
these roles; I was clear with these new hires about my expectations for how they’d
interact with the team. I avoided domineering, command-and-control-style in-
dividuals. Also, these new project managers reported to me, which allowed me a
lot of influence over how they interacted with their teams. Calling them project
managers worked fine.

As our company continued to succeed and grow, we began to acquire other
companies. In those companies [would inherit project managers who sometimes
did have very traditional mindsets about the role of the project manager. I was
confronted with helping them shift that mindset to one more compatible with
agile development. I found this much harder than just hiring project managers
with a collaborative approach suitable to self-organizing teams.

Years later in a discussion with Ken Schwaber, he helped me understand
why transitioning existing project managers had been more difficult than I had
anticipated. Schwaber informed me that by allowing the project managers to
retain their titles, I was allowing them to think that the changes were less all-
encompassing than they were. He invented the word ScrumMaster in 1997 in part
because 1t would remind everyone that this was not just the project manager role
with a few additional responsibilities removed or added. Schwaber told me that
“the vocabulary of Scrum 1s a vocabulary of change. The words are often inten-
tionally ugly—burndown, backlog, ScrumMaster—because they remind us that
change is occurring.”

Although I recommend it, you do not necessarily need to banish the title
project manager. If you or your organization is enamored of it, continue to use it.
But be mindful of Ken Schwaber’s advice and my experience that using the old
words will slow or prevent the adoption of the new approach. Retaining an old
title discourages thinking in the new way. Further, if people are unwilling to relin-
quish something as insignificant as ajob title, they will probably also be unwilling
to make the far harder changes necessary to adopt Scrum.

Architects

Many architects have worked for years to deserve the august title architect. They are
rightfully proud of their knowledge, experience, and ability to propose elegant so-
lutions to technical and business challenges. I find that many of the concerns raised
by architects faced with adopting Scrum can be put into these two categories:

o Will people stll implement the architectures I tell them to?

Architects

e How can I ensure we build an architecturally sound product without an
up-front architecture phase?

The answer to the first of these concerns depends entirely on the architect in
question. Many architects may find that very little about their jobs changes. Solu-
tions recommended by these architects are implemented because other developers
respect them and know their advice 1s likely to be good. For example, if one <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>